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1. The Spreading of Wave Packets

Heisenberg uncertainty principle has become part of popular culture.

Heisenberg could have prevented your attendence of this colloquium · · ·



Cartoons can get it wrong.

∆x∆t > ?!?!

Uncertainty ∆x∆p > ~

2
, of static Ψ(x): wavefunction also spreads in time.

This picture useful qualitatively,

but, like cartoon, also wrong.

Would imply linear in t growth of ∆x.



Doing it right: free-particle Schroedinger Equation
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‘Imaginary time’ diffusion equation

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2

(This analogy underlies a powerful computational approach to the solution
of the Schroedinger equation: “diffusion monte carlo”)

Videos of numerical solution of Schroedinger equation.

https://scalettar.physics.ucdavis.edu/p104a/V10atx80K04new.gif

External potential can control spreading: e.g. Hydrogen atom
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2. Lattice Models

Diffusion, localization and quantum state transfer often formulated on a lattice.

‘Second quantized’ notation: c†i (ci ) create(destroy) particles.

H = −t
∑

〈ij〉

(

c†i cj + c†jci
)

i jt

Little fundamental difference from continuum space.

Combine ‘Bloch states’ φk(j) =
1√
N
eikj (eigenstates of H of eigenvalue ǫk)

ψ(j, t = 0) =
∑

k

ck φk(j) ψ(j, t) =
∑

k

ck e
−iǫkt/~ φk(j)

to form wave packets which can propagate and spread.

Anderson localization: Nuclear potential confines electron in an atom ⇒
Site energies µi localize quantum particles on lattice sites i of lowest µi.

H = −t
∑

〈ij〉

(

c†i cj + c†jci
)

+
∑

i

µi c
†
i ci



Quantify ‘size’ of ψ via inverse participation ratio: I ≡
∑

j |ψj |4

ψ(j) = δj,j0 ⇒ I = 1 ψ(j) =
1√
N

⇒ I =
1

N

I is inverse of number of sites ‘participating’ in wave function ψ.

Some eigenstates of the

Anderson model in 3D.



I as function of disorder |µi| < W and eigenenergy E for 3D Anderson model.

→ 10 sites.

→ 102 sites.

→ 103 sites.

→ 104 sites.

Anderson localization of cold atoms

in optical lattice:

(Dark blue regions: no eigenstates.)

Mobility Edge (∼ yellow) separates localized/delocalized states.



3. Perfect Quantum State Transfer

In designing a quantum computer,

or other quantum information

applications, spreading is very bad news.

Would like instead to be able

to transport a quantum state

precisely from one location to another.



Is this goal at variance with our intuition concerning the Schroedinger equation?

After all, imaginary time diffusion equation.

Can we engineer a lattice Hamiltonian exhibiting perfect quantum state transfer?

Revisit:

H = −
∑

〈ij〉
tij

(

c†i cj + c†jci
)

+
∑

i

µi c
†
i ci

Cleverly tune { tij , µi } to engineer eigenstates φα and eigenenergies Eα of H.

Goal: At some passage time tp

ψ(j, t = 0) =
∑

α

cα φα(j) = δj,1 ⇒ ψ(j, tp) =
∑

α

cα e
−iǫαtp/~ φα(j) = δj,N

Is this possible?!



Intuition: Eigen-energies Eα must allow ψ to be ‘in phase’ at later time t.

Eα − Eβ related as rational fractions. Simplest scenario: Eα − Eβ = c.

Do we know any quantum mechanical system with equi-spaced eigenenergies?

We sure do! Quantum harmonic oscillator.

Crud! That’s a infinite collection ⇒ infinite length chain.

Ah-ha. Angular momentum J has Jz = m = ~(−j,−j + 1, · · · j)

J+ |j,m〉 =
√

j(j + 1)−m(m+ 1) |j,m+ 1〉

j = 4 has nine m = −4,−3,−2,−1, 0, 1, 2, 3, 4.

i 2*7 3*61*8 8*17*26*35*44*5t   =

Spin Chain: ‘engineered’ hoppings (for N = 9) which will give perfect QST!

Passage time: tp = π
2
.

Symmetry ti = tN−i will be important. Notice too: No µi (as yet).



These ‘quantum spin chain’ perfect state transfer systems are being built!

“Perfect quantum state transfer in

a superconducting qubit chain with

parametrically tunable couplings”,

X. Li, etal,

Phys. Rev. Applied 10, 054009 (2018).

Five Qubits.

Well-studied problem.

“Perfect transfer of arbitrary states in

quantum spin networks”,

M. Christandl etal,

Phys. Rev. A71 032312 (2005).

We will be interested in more

complex geometries.



4. Monte Carlo and the Inverse Eigenvalue Problem

George Marsaglia (1924-2011) was an American

mathematician and computer scientist.

Professor Emeritus of Pure and Applied Mathematics

and Computer Science at Washington State University.

Established the lattice structure of linear congruential generators: G. Marsaglia,
“Random numbers fall mainly in the planes”, Proc. Natl. Acad. Sci. 61, 25 (1968).

Marsaglia, G., Tsang, W.W., “The Monty Python method for generating random
variables,” ACM Transactions on Mathematical Software, 24, 341 (1998).

Marsaglia called this the Monty Python method because opening graphics on the
British television show “Monty Python’s Flying Circus” resembled the essential ele-
ment: The zany Monty Python crew pictured a stylized head with a hinged top that
folded open, with all kinds of silliness pouring out.



1D chain with near-neighbor hopping: H is a tridiagonal matrix (left, below),

H =


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0 J1 0 . . . 0
J1 0 J2 . . . 0
0 J2 0 . . . 0
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...
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Ω1 J1 0 0 g1 0 0 0
J1 Ω2 J2 0 0 g2 0 0
0 J2 Ω3 J3 0 0 g3 0
0 0 J3 Ω4 0 0 0 g4
g1 0 0 0 ω1 0 0 0
0 g2 0 0 0 ω2 0 0
0 0 g3 0 0 0 ω3 0
0 0 0 g4 0 0 0 ω4




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



We will be interested in this geometry (N = 4):

1 2 3 4

5 6 7 8

J1 J2 J3

g1 g2 g3 g4

H (for N = 4) at right, above.

Notes:

• Allow non-zero diagonal entries.

• Notation change: ti → Ji.

• Ωi, ωi in a moment · · ·



Similar problem: Engineer { Ji, gi } for {λα } with appropriate relationships.

Proceed via Monte Carlo.

Assume eigenvalues for original d = 1 geometry (length 2N) giving perfect QST

also give perfect QST for new ‘two-component’ N +N geometry.

‘Target’ eigenvalues λ
(t)
n . Define an action:

S =
∑

n

(

λn − λ(t)
n

)2

λn: actual eigenvalues of the matrix H of for given { Ji, gi }.
Begin with a random set of { Ji, gi }.
Propose ‘moves’ which change { Ji, gi }.

Accept with the ‘heat bath’ probability e−β∆S(1 + e−β∆S)−1
.

∆S ≡ the change in action from Monte Carlo move.



‘Annealing:’ β starts at a small value (e.g. βinitial ∼ 0.1).

After L Monte Carlo steps increased by factor α.

Repeated for K steps until βfinal = αKβinitial is large (e.g. βfinal = 104.)

Statistical mechanics language β = 1/T is the inverse temperature.

βinitial = 0.1 corresponds to high temperature.

βfinal = 104 corresponds to low temperature.

Gradual increase of β (lowering of T ) allows Monte Carlo to escape metastable states.

‘Ground state’ S = 0 :

{Ji, gi} give Hamiltonian with target eigenvalues to high accuracy.



5. Cavity-Emitter Systems and Some Results

Where does this geometry come from?

Coupled Cavity Array (CCA): chain of optical cavities.

Light localized on the nanometer scale.

Photons hop between adjacent cavities due to overlap of neighboring resonance modes.

CCA may contain atom-like ‘emitters’ coupled to cavity electromagnetic field.

Expect variance in cavity levels Ωi, atomic levels ωi, number of atoms/cavity.

Strong interactions between light and matter can be induced.

Superfluid to insulator transitions and other many-body phenomena examined.

“Quantum simulation with interacting photons”,
M.J. Hartmann, Journal of Optics 18, 104005 (2016).



Emitters (Quasi-atoms): color centers formed as lattice defects in semi-conductors.

Defect causes electron wavefunctions to localize, creating isolated energy levels.

Most common material substrates: silicon carbide and diamond.

“Silicon Carbide and Color Center Quantum Photonics”, M. Radulaski, (2017).

“Quantum photonics in triangular-cross-section nanodevices in silicon carbide”,
S. Majety etal, Journal of Physics: Photonics 3, 034008 (2021).



Perfect Quantum State Transfer for the original 1D (‘spin chain’) geometry:

Monte Carlo converges to analytically known (angular momentum) eigenvalues.

(Verifying known result.)

Return to initial site i = 1: Reflection symmetry of H.



Perfect Quantum State Transfer for the CCA geometry:

Monte Carlo works! Transfer with perfect fidelity from site i = 1 to site i = N .

Small/negligible deviation from fidelity f = 1 due to finite MC simulation time.

Can achieve arbitrary accuracy by lengthening run.



Real materials are imperfect: Effect of Energy (Ωi) Disorder.

Gradual loss of fidelity quantified.



Real materials are imperfect: Effect of hopping (ti) Disorder.

Gradual loss of fidelity quantified.



Real materials are imperfect: Effect of hopping random emitter positions.

Random {Ji} effect on QST previously explored.

Novel type of ‘geometric disorder’.



6. Conclusions

• Usual diffusion of wave function can be circumvented by ‘engineering’.

• Monte Carlo method useful for inverse eigenvalue problem.

• Extended known ‘spin chain’ results to CCA.

• Quantification of ‘geometric disorder’ on fidelity loss.

To learn more: Michael Forbes

Dynamics of quantum many-body systems (include interactions!)



Typical experimental CCA parameters:

gi ∼ 5GHz 0 < ∆gi < gmax

Ji ∼ 1GHz can be ‘repaired‘

Ωi ∼ 200THz can be ‘repaired‘

Systems that have been constructed:

• ∼ 20 empty cavities (no emitters)

• One cavity with two emitters

• Two cavities with one emitter each

Origins of disorder:

• ∆gi position of emitter within cavity.

• ∆ωi variation of strain in material

• ∆Ji,∆Ωi can be ‘repaired’ (laborious) photo-oxidation of part of cavity.


