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The aim of this book is two-
fold. First, to act as a reference
work on calculations pertain-
ing to hydrogen-like and helium-
like atoms and their compari-
son with experiment. However,
these calculations involve a vast
array of approximate methods,
mathematical tricks, and phys-
ical pictures · · · .

For atoms and ions with two
electrons, such as H−, He, Li+,
etc., exact analytic solutions are
not possible at the present time
· · · . (1957, three decades after
the invention of quantum me-
chanics, and still true today!)

What shall we do with solids with 1023 electrons?!?!



1. Origin of Energy Bands in a Solid (noninteracting HM)

Individual atoms: discrete energy levels

Atoms far apart: electrons are localized on single atom

Atoms brought together (solid): degenerate level couple and broaden into a band.

Eigenvectors are delocalized (plane/“Bloch” waves)
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Energy band completely filled: Insulator

Finite energy gap to next unoccupied level

Simple counting arguments predict whether many solids are metallic or insulating!!

k eigenstate can be occupied by two electrons (spin ↑, ↓ ).

Solids with an odd number of electrons per unit cell must be metallic.

Alkalis (Li, Na, K):

one valence e−

(2s1, 3s1, 4s1) per unit cell:

Good metals.

Diamond, silicon, germanium (C, Si, Ge):

eight valence electrons

(2s22p2, 3s23p2, 4s24p2): per unit cell

Insulators.
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Density Functional Theory: Accurate Energy Bands for Real Materials



Tight binding model:

Given a lattice geometry.

Electrons hop on neighboring sites 〈lj〉:

H = −t
∑

〈lj〉
(

c†l cj + c†jcl
)

Go to momentum space

c†k = 1√
N

∑

l e
iklc†l

to diagonalize H:

H =
∑

k Ek c
†
kck

Dispersion relation: E(k)

Fermi Surface: constant Ek trajectory.

Density of states:

N(ω) =
∫

dkx dky δ
(

ω − Ek

)

2D square lattice

Ek = −2 t
(

cos kx + cos ky
)

xk

ky

π,π
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Simplest picture of cuprate (high temperature) superconductors. (Nobel Prize 1987)

Focus on square array of copper atoms in CuO2 sheets.

-4 -2 0 2 4
ω

0

0.1

0.2

0.3

0.4

0.5

N
(ω

) (one hole per Cu atom)

µ
µ+dµ

half-filling

VanHove singularity of DOS: N(ω = 0) diverges.

Early theory of high Tc

Tc ∼ e−1/λN(ω=0) ⇒ Tc is high.

Previous superconductors: λN(ω = 0) ∼ 1/4.

Critical coupling Uc = 0 for

antiferromagnetic (AF) order.

χ(q, T ) = χ0(q,T )
1−Uχ0(q,T )



Graphene (Honeycomb lattice)
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Density of states vanishes linearly at ω → 0.

Tied to ‘Dirac cones’ E(k) = v |k|.

N(E) = 0 → Uc 6= 0 for AF order



Trouble in Paradise · · ·

Parent compounds of cuprate superconductors:

• 1 hole/Cu

• Fermi level cuts middle of band.

• Why are they antiferromagnetic insulators?!

Transition metal monoxides (MnO, FeO, CoO):

(Many oxides in earth’s interior.)

MnO: Mn2+ d band half-filled (d5: odd # electrons)

• Why are they antiferromagnetic insulators?!



2. The Hubbard Hamiltonian

(A different type of Insulator)

Consider a lattice of sites with

“commensurate filling”:

The average number of particles

is one per site.

Kinetic energy and entropy both

favor particles moving around lattice.

Metal: odd number (one) particle per cell/site.

(Like cuprate superconductors.)



+U

But what if there were a large

repulsive interaction U between

particles on the same site?

A Mott Insulator forms.

Basic physics of parent compounds

of cuprate superconductors!

(Also other solids: FeO, CoO, MnO.)



Two ways to destroy Mott Insulator:

∗ Decrease U/t: By applying pressure (MnO)

∗ Shift 〈n〉 6= 1: Dope chemically (cuprate superconductors)

What is optimal spin arrangement?

Hopping of neighboring parallel spins forbidden by Pauli.

Antiparallel arrangement lower in second order perturbation theory.

x
t t

∆E(2) = 0 ∆E(2) ∝ −t2/U = −J

Mott insulating behavior and antiferromagnetism go hand-in-hand.

Qualitative picture of cuprate physics before doping.

Surprisingly, square lattice Hubbard Model captures physics of doped cuprates:

Spin gap and strange metal behavior, stripes, d-wave pairing · · ·



Can however make MnO have the expected metallic behavior...

Diamond Anvil Cell

Apply pressure (and lots of it!) to push atoms closer.

∗ Direct measurement of resistance

∗ Probe magnetic moments with synchotron radiation (APS at Argonne)



Resistance drops to typical metallic values at P ≈ 100 GPa.

J.R. Patterson etal., Phys. Rev. B69, 220101(R) (2004).



(Single band) Hubbard Hamiltonian

Ĥ = −t
∑

〈ij〉σ
(c†iσcjσ + c†jσciσ) + U

∑

i

(ni↑ −
1

2
)(ni↓ −

1

2
)− µ

∑

iσ

(niσ + niσ)

• Two spin species σ =↑, ↓.

• Kinetic energy t describes hopping between near-neighbor sites 〈ij〉.

• On-site repulsion U discourages double occupancy

• Chemical potential µ controls filling.

• Half-filling (ρ = 1) at µ = 0.

Cuprate materials (LaSrCuO, YBaCuO, . . .) drive interest in 2D square lattice:

Cu atoms in CuO2 sheets are in that geometry.

Ignore bridging O atoms.

Ignore La, Sr, Y, Ba between layers.

Graphene → honeycomb lattice.



Determinant Quantum Monte Carlo

Compute operator expectation values

〈Â〉 = Z−1 Tr [Âe−βĤ ]

Z = Tr [e−βĤ ]

Hubbard Hamiltonian

Ĥ = −t
∑

〈ij〉σ
(c†iσcjσ + c†jσciσ) + U

∑

i

(ni↑ −
1

2
)(ni↓ −

1

2
)− µ

∑

iσ

(niσ + niσ)

• Inverse Temperature discretized: β = L∆τ

Z = Tr [e−βĤ ] = Tr [e−∆τĤ ]L

• Suzuki-Trotter Approximation

e−∆τĤ ≈ e−∆τK̂e−∆τP̂

Extrapolation to ∆τ = 0.



• (Discrete) Hubbard-Stratonovich Fields (Hirsch) decouple interaction:

e−∆τU(ni↑− 1
2
)(ni↓− 1

2
) =

1

2
e−U∆τ/4

∑

Siτ

e∆τλSiτ (ni↑−ni↓) = e−∆τPi(τ)

where cosh(∆τλ) = eU∆τ/2.

• Quadratic Form in fermion operators: Do trace analytically

Z =
∑

{Siτ}
Tr [e−∆τK̂e−∆τP̂(1)e−∆τK̂e−∆τP̂(2)e−∆τK̂ . . . e−∆τP̂(L)]

=
∑

{Siτ}
detM↑({Siτ})detM↓({Siτ})

dim(Mσ) is the number of spatial sites. For multi-band models

dimension is (number of spatial sites)x(number of orbitals per site).



• Sample HS field stochastically.

Si0τ0 → −Si0τ0

detMσ({Siτ}) → detMσ({Siτ}
′)

Algorithm is order N3L .

N ∼ 102 − 103 lattice sites/electrons

L = β/∆τ ∼ a hundred imaginary time slices (low temperatures).

• Measurements

〈ciσc
†
jσ〉 ↔ 〈[M−1

σ ]ij〉 = 〈[Gσ]ij〉

• Sign Problem

At low temperature detMσ can go negative.

CPU time grows exponentially in L (β).

QMC limited to T & t/4.
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Special symmetry points (half-filling ρ = 1) detM↑ = detM↑. No Sign Problem!

Kolodrubetz at al, The Journal of Chemical Physics 138, 024110 (2013).



DQMC is really nice (when it works · · · )

The Square Lattice at Half filling

Electron spins on two neighboring sites like to be antiparallel.

Bipartite lattices are a natural for long range antiferromagnetic order

where this up-down pattern extends over entire lattice.

Especially square lattice: Perfect nesting



Antiferromagnetic spin correlations

c(lx, ly) =
〈 (

nlx,ly,↑ − nlx,ly,↓
) (

n0,0,↑ − n0,0,↓
) 〉
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There is long range antiferromagnetic order!

“Quantum Monte Carlo Study of the 2D Fermion Hubbard Model at Half-Filling”, C.N. Varney, C.R. Lee, Z.J. Bai,

S. Chiesa, M. Jarrell, and RTS, Phys. Rev. B80, 075116 (2009).



DQMC results- Fermi distribution n(kx, ky)

U = 2 Fermi function:
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-π -π/2 0 π/2 π
-π

-π/2

0

π/2

π
ρ = 0.4

-π/2 0 π/2 π

ρ = 0.6

-π/2 0 π/2 π

ρ = 0.8

-π/2 0 π/2 π
 0

 0.2

 0.4

 0.6

 0.8

 1

n
(k

)

ρ = 1.0

-π/2 0 π/2 π

U = 2 Gradient of Fermi function:

-π -π/2 0 π/2 π
-π

-π/2

0

π/2

π

-π/2 0 π/2 π -π/2 0 π/2 π -π/2 0 π/2 π
 0

 0.5

 1

 1.5

 2

 2.5

∇
 n

(k
)

-π/2 0 π/2 π



4. Making Use of the Sign Problem
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Is it a coincidence that the sign problem in the 2D Hubbard model is worst at density

ρ ∼ 0.87 precisely where Tc is highest?

Examine the behavior of 〈S〉 for models whose critical points are known known.

Example 1: spinful Hubbard model on a honeycomb lattice.

Vanishing of N(E = 0) (semi-metal) gives Uc/t ∼ 3.869 for semi-metal to AF QCP.

“Absence of a Spin Liquid Phase in the Hubbard Model on the Honeycomb Lattice”, S. Sorella,

Y. Otsuka, and S. Yunoki, Sci. Rep. 2, 992 (2012).



B upper(lower): 〈S〉 in T/t-U/t (µ/t-U/t) planes.

C: 〈S〉 extrapolated in linear system size L at T/t = 1/20 and µ/t = 0.1.

D: Derivative of double occupancy

Star Marker: known QCP from ‘traditional’ observables. (eg. AF structure factor).
“Quantum Critical Points and the Sign Problem”, R. Mondaini, S. Tarat, and R.T. Scalettar.



Example 2: Square lattice

Ionic Hubbard model

Site energy ±∆

on sublattices A/B

→ Band gap opens.

“Traditional Observables”:

Saf , ρdc, A(ω), 〈n↑↓〉

Band insulator U/t . 2.

Mott insulator U/t & 5.

Metallic phase intervenes.

〈S〉 reproduces known PD.

Fermionic superlattices:

Chuanwei Zhang,

Phys. Rev. A100, 023616 (2019)



Example 3:

Spinless fermions on

honeycomb lattice, intersite V

Transition from Metal

to charge density wave

Vc/t = 1.35

Z.X. Li, Y.F. Jiang, and H. Yao,
Phys. Rev. B91, 241117 (2015).



Example 4: Square Lattice– Cuprate Phase Diagram



Example 4 (cont’d): Square lattice Hubbard model

A: 〈S〉 in T -µ plane

B: Enhancement of d-wave

pairing.

C:Magnetic susceptibility.

D, E, F: Same quantities

in T -ρ plane.



5. Simplified Materials

Complex Materials
MnO, YBaCuO, etc

Quantum Monte Carlo
requires simple models.
Hubbard Hamiltonian

?
The direct simulation of quantum systems on classical computers is very difficult
because of the huge amount of memory required to store the explicit state of the
quantum system. This is due to the fact that quantum states are described by a
number of parameters that grows exponentially with the system size.
Iulia Buluta and Franco Nori, “Quantum Simulators” Science 326 pp.108-111, (2009). DOI: 10.1126/science.1177838



Complex Materials
MnO, YBaCuO, etc

Quantum Monte Carlo
requires simple models.
Hubbard Hamiltonian

Simple Materials

"Quantum Simulators"

Quantum simulators are controllable quantum systems that can be used to simulate
other quantum systems.
Iulia Buluta and Franco Nori, “Quantum Simulators” Science 326 pp.108-111, (2009). DOI: 10.1126/science.1177838



i: Optical Lattices

Lattice formed by interference of counterpropagating laser beams.

Atoms
(

o(105)
)

trapped by Stark shift. Cool evaporatively · · · .

Different geometries accessable (e.g. cubic, honeycomb, · · · )

Control hopping t, interactions U

much more easily than solids.

Use, e.g. to drive Mott insulator.

Tune laser wavelength

or Feshbach resonance.



Quantum Monte Carlo Simulations of Hubbard Model with Confining potential.

Illustrates first challenge: Confining potential leads to inhomogeneous density.

Local Mott/AF regions coexist with paramagnetic metal.

How to disentangle?

“Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms”, R.A. Hart, P.M.
Duarte, T. Yang, X. Liu, T. Paiva, E. Khatami, RTS, N. Trivedi, D.A. Huse and R.G. Hulet, Nature 519, 211
(2015).

“Compressibility of a fermionic Mott insulator of ultracold atoms,” P.M. Duarte, R.A. Hart, T-L. Yang, X. Liu,

T. Paiva, E. Khatami, RTS, N. Trivedi, and R.G. Hulet, Phys. Rev. Lett. 114, 070403 (2015).



Comparison of experiment and Quantum Monte Carlo

Illustrates second challenge:

Limitations on ability to cool.

Temperatures: nanoKelvins, but so are hopping t and interaction U :

Comparison with QMC provides thermometer.

⇒ T/t is not small!



ii: Engineered Silicon

Arrays of dopants in semiconductors,

placed with atomic precision.

Procedure:

• Silicon surface terminated with

atomically-ordered layer of H.

• STM tip selectively removes surface H:

patterned chemically active sites.

• Dopants chemisorb to

lithographically patterned regions.

• Silicon is overgrown to protect

atomically-patterned layer.

Like optical lattices:

• Control over array symmetry, spacing, carrier density, bandwidth and filling.

• Manipulation of the number of dopants in a node controls interaction strength.

⇒ Basic ingredients for a tunable Fermi-Hubbard system.

Temperatures (much) lower than optical lattice systems!

J. Randall, J. Owen, W. Kirk, R. Moheimani, R. Silver, J. Lyding, I. Kuljianishvili, D. Natelson,

S. Misra



Despite ‘precision,’ the disorder can be pronounced.

(Unclear, as yet, what other obstacles will arise.)



Quantum Monte Carlo tests of effect of disorder on AF.

Left: Disorder in interaction strength U

Right: Disorder in hopping t
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6. Some Conclusions

• Hubbard Model: a way to understand many-body effects in solids

Mott insulators, magnetic order, exotic superconductivity · · ·

• But: Sign Problem is show-stopper for low T QMC in most situations.

“The Hubbard model cannot be solved”

• This has opened up the field of quantum emulators:

Ultracold atoms; Engineered Silicon

• It is possible to exploit the sign problem to investigate quantum criticality.


