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1. Holstein Hamiltonian

i
X e−

“Studies of polaron motion: Part I. The Molecular-Crystal Model”
T. Holstein, Annals of Physics 8, 325 (1959).

“Studies of polaron motion: Part II. The ‘small’ polaron”
T. Holstein, Annals of Physics 8, 343 (1959).

Roughly Contemporaneous: “Electron Correlations in Narrow Energy Bands,”
J. Hubbard, Proc. Royal Soc. London 276, 238 (1963).

Linear chain of N identical diatomic molecules.

Inter-nuclear separation on each molecule adjusts if electon is present.

Goal: Describe e− motion in a solid along with accompanying lattice distortion.

“It is felt that the model, although physically different from the cases encountered
in practice, corresponds conceptually to them in sufficient degree, so as to merit
investigation.”



Holstein: wave function ai probability amplitude for (single) electron on site i.

(Holstein did not use second quantization.)

Modern (many body) notation. Noninteracting electron kinetic energy:

Ĥel−ke = −t
∑

〈ij〉σ

(

ĉ†iσ ĉjσ + ĉ†jσ ĉiσ
)

Spin ↑, ↓ electrons interact with boson displacement on site i

Ĥel−ph = λ
∑

i

X̂i

(

n̂i↑ + n̂i↓

)

Hboson =
1

2
ω2
0

∑

i

X̂2
i +

1

2

∑

i

P̂ 2
i

Bosons local ⇒ energy independent of momentum (dispersionless) ω(q) = ω0.

Similarly, electron-boson coupling is local ⇒ independent of momentum.

Dimensionless coupling: λD = λ2 / (ω2
0 W ) where W = electronic bandwidth.

i
X e−



Theorists have a reputation for oversimplification:

In that sense the Holstein model is
an unfortunate name · · · .

Today: more real ‘cows’?

Holsteins originated in Holland
more than 2,000 years ago, and were
brought to America in the 1850’s.

* Higher dimension

* Many electrons: CDW and SC

* Phonon dispersion

* Disorder

If I fail:

circa 1970 Stanford Seminar Notice:

Speaker and Title to be renounced.



Initial insight from t = 0 (Independent sites)
Complete the square

1

2
ω2
0X

2 + λX(n↑ + n↓) =
1

2
ω2
0

(

X +
λ

ω2
(n↑ + n↓)

)2− λ2

2ω2
0

(n↑ + n↓)
2

Integrate out the phonon coordinate X.
Effective attraction

−λ2

ω2
0

n↑n↓ = Ueff n↑n↓ Ueff = −λ2

ω2
0

Imagine you are at half-filling. Then turn on t perturbatively.

Attractive interaction (−U Hubbard; Holstein):

Local pairs form.

Double occupied/empty alternation favored:

Charge Density Wave.

Repulsive interaction (+U Hubbard):

Local moments form.

up/down spin alternation favored by J :

Antiferromagnetism.

x t t

x t t



The effect of ‘band structure’ (lattice geometry)

Noninteracting λ = 0 fermions on a lattice (same as Hubbard U = 0...)

Square lattice has several interesting features:

• ‘van Hove singularity’ in density of states N(E = 0) at half-filling.

• Perfect ‘nesting’ of Fermi surface, also at half-filling.

Both lead to enhanced ordering tendency when λ (or U) nonzero.

Stoner criterion: UN(0) = 1 (Hubbard model language)



Stoner criterion: UN(0) = 1 (Hubbard model language)

On a square lattice N(0) diverges ⇒ long range order at low T for any λ or U .

A graduate student enjoys the Stoner Enhancement.

(Courtesy of Dan Arovas.)



Local order can become long ranged if thermal/quantum fluctuations reduced.

Repulsive (AF) Attractive (CDW)

Holstein Model:

• Charge order at half-filling (bipartite lattice).

• Superconducting order when doped.

CDW transition at finite T in 2D (Ising universality class).

Contrast to Hubbard: AF order only at T = 0 in 2D (Heisenberg universality).

Quantitative values for Tc obtained for square lattice only recently!

Weber and Hohenadler, Phys. Rev. B 98, 085405 (2018).



In contrast, for honeycomb lattice:
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Determine λc=?? for charge ordering in the Holstein model on a honeycomb lattice.

The Hubbard model Uc = 3.87t for AF order was determined ∼ 5 years ago.

Methodology:

• Determinant Quantum Monte Carlo simulations

• Langevin Algorithm (similar to approaches used in lattice gauge theory).



3. CDW Order on Square, Honeycomb, and Cubic Lattices

Structure factor

Scdw(π, π) =
1

N

∑

i,j

〈ninj〉(−1)i+j ↔ Saf(π, π) =
1

N

∑

i,j

〈Sz
i S

z
j 〉(−1)i+j

High T : 〈ninj〉 ∼ e−|i−j|/ξ ⇒ S(π, π) independent of N .

Low T : 〈ninj〉 ∼ constant ⇒ S(π, π) ∝ N .
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Square Lattice

Finite size scaling collapse

determines Tc = 1/βc.



Honeycomb Lattice:

Dirac spectrum for fermions.

Quantum critical point for Hubbard Model:

Minimal Uc/t & 3.87 to induce antiferromagnetic order.

Effect of electron-boson interactions on Dirac fermions and charge order?

(a)

✆✞☛
✆✞�

(b)

0
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22

19

Long range real space

charge correlations develop

as β increases.



CDW structure o(N) when charge correlations long range (β > βc).

Data collapse/crossing yield critical temperature.
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Phase Diagram of Holstein Model on Honeycomb Lattice
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Quantum critical point from T = 0

Invariant correlation length crossing

Rc ≡ 1 −

S(Q + δq)

S(Q)

“Charge Order in the Holstein Model on a Honeycomb Lattice,” Y.-X. Zhang, W.-T. Chiu,
N.C. Costa, G.G. Batrouni, and RTS, Phys. Rev. Lett. 122, 077602 (2019).

“Charge-Density-Wave Transitions of Dirac Fermions Coupled to Phonons,” C. Chen,

X.Y. Xu, Z.Y. Meng, and M. Hohenadler, Phys. Rev. Lett. 122, 077601 (2019).



Cubic Holstein
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4. Superconductivity?

Pairing structure factor Ps =
1

N

∑

i,j

〈∆i∆
†
j〉
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CDW structure factor S(π, π)

suppressed rapidly with doping

away from half-filling.

ω0/t = 1: Ps remains small.

ω0/t = 4: Ps ∼ ×10 larger.

(Quasi-)long range pairing?

(KT univerality class)



Finite size scaling
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Contour plot of best fit to A and βc.

ω0/ = t: Tc = β−1
c ∼ t/28 = W/224:
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An unexpected feature.

First order phase transition?

Density ρ takes a discontinuous
jump with chemical potential µ.



5. Phonons with Dispersion

We explored momentum dependence of boson dispersion.

Easy to implement in Determinant QMC.

A ‘close cousin’ of momentum dependent coupling g = λ/
√
2ω0.

Σg(k, ω) ∼
∫

dq dν |g(q)|2 1
ω−ν−ǫ(k−q)

2ω0

ν2
−ω2

0

Σω(k, ω) ∼
∫
dq dν |g0|

2 1
ω−ν−ǫ(k−q)

2ω(q)
ν2

−ω(q)2

Σg: momentum dependent electron-boson coupling.

Σω: momentum dependent boson dispersion.

ν → 0 (boson carries no energy): Σg = Σω if |g(q)|2/ω0 = |g|2/ω(q).
(For nonzero ν the two self-energies are not equal.)



Conventional Holstein Model:

Ĥ = −t
∑

〈ij〉σ

(

ĉ†iσ ĉjσ + ĉ†jσ ĉiσ
)

+ λ
∑

i

X̂i

(

n̂i↑ + n̂i↓

)

+
1

2
ω2
0

∑

i

X̂2
i +

1

2

∑

i

P̂ 2
i

An intersite boson coupling introduces q dependence in boson energy.

Ĥ2 =
1

2
ω2
2

∑

〈i,j〉

(X̂i ± X̂j)
2

(a) (b) (c)
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�
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y
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a. X̂i+X̂j : lowers ω(q = (π, π))

(Checkerboard CDW).

b. Mixed signs in x, y directions:

lowers ω
(

q = (0, π)
)

(Stripe CDW).

c. X̂i−X̂j : raises ω(q = (π, π))

(no CDW, superconductivity?)

Phonon bandwidth: ∆ω ≡ ωmax − ωmin.



No dispersion (H2 = 0) we found βc = 6.0± 0.1.

Initial effect of H2, checkerboard CDW still dominant, but shifted Tc.
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For sufficiently large ‘mixed’ H2, which favors stripe CDW,

Checkerboard to stripe transition:
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Key observation here:

No alteration to electron band structure. Half-filled square lattice.

Fermi surface nesting remains at (π, π).

But CDW ordering vector can be elsewhere.

CDW transition outside of canonical Peierls picture.



Can also examine these phenomena via CDW gap.

�✁✂✄ �✁✂☎ �✁✂✆ �✁✂✝ ✁✂✁ ✁✂✝ ✁✂✆ ✁✂☎ ✁✂✄

✁✂✞
✝✂✁

✝✂✆
✝✂✄

✟✠✡☛ ✠✡✠ ✠✡☛

☞
✌

✍
✎✏

✎✑
✒
✓
✔ ✕✖✗✘

✙
✚
✛✜ ✔ ✢

✣

✤

✥✦✧✦★ ✩ ✪

✥✦✧✦★ ✩ ✪✫✪✬

✥✦✧✦★ ✩ ✪✫✪✭

✥✦✧✦★ ✩ ✮✪✫✪✭

✯ ✰ ✱

✲ ✳ ✴✵✶✷✸✲✹

✺

✻ ✼ ✽

✾✿❀❁❂❃

❃❄❅✿❆❂❅❄❇❈

❉
❊

❋●❍●■

❏❇❀❈❀❁❂❃

❃❄❅✿❆❂❅❄❇❈
Plateau in ρ(µ) shrinks/expands

with boson dispersion.

�✁ �✂ �✄ ☎ ✄ ✂ ✁

☎✆☎☎

☎✆☎✝

☎✆✞☎

☎✆✞✝

☎✆✄☎

✟

✠

✡ ☛ ☞

✌ ☛ ✍✎

✏
✑
☛ ✎✒✓✔

✕
✖
✗✘☛ ✍

✙✕ ☛ ✎

Density of states

has a gap at Fermi Energy.

Like AF-Slater gap

in +U Hubbard.



�✁�� �✁�✂ �✁✄� �✁✄✂

�
✂

✄�
✄✂

☎�
☎✂

✆✝
✞✟✠✡✠☛

☞✌✍✎

☞✌✏

✑
✒

✓✔✕✔
✖

✗ ✘ ✙✚

✛✜ ✢✣ ✘ ✤

✥✦ ✘ ✧★✩✪

✫ ✘ ✙

☞✌✬

Suppress checkerboard CDW without

replacing it with stripes.

Superconducting phase at

commensurate filling.

� ✁✂ ✁✄ ✂☎ ✂✆ ✂� ✝✂ ✝✄

☎
✂☎

✆☎
✄☎

�☎

✞ ✟ ✠ ✡

✞☛☞
✟☛✞

✌
✍✎
✏✑

✒
✓

✔ ✕✖✗✘✙✚✛✜✢✙✢✣✤
✥✦✧

★

✩✪☎✫✂

✬✭✪✁✮✂✄

✯✰✱✰✲✪ ☎✫✁

✳✴ ✪ ☎✫✂✵

✰✲✮✶ ✪ ✆

✷ ✪ ✁

✸ ✹ ✺

✸ ✹ ✻

✸ ✹ ✼✽

✸ ✹ ✼✾

✿

❀

2D superconducting transition

(Kosterlitz-Thouless universality).

Again, Tc = β−1
c ∼ t/26 = W/208:



6. Effect of Disorder
Random site energies

H∆ =
∑

i σ

µini σ −∆ ≤ µi ≤ +∆
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Left: ω0 = 1: ∆ suppresses CDW, no SC signature.

Right: ω0 = 4: ∆ suppresses CDW, large χpairing.



7. Conclusions

• Holstein Hamiltonian hosts finite-T CDW at half-filling.

Four bipartite lattices: square, Lieb, honeycomb, cubic.

Honeycomb lattice quantum phase transition λc.

• Introduce phonon dispersion: ‘Non-Peierls’ CDW Mechanism

Order at Q = (π, 0) decoupled from Fermi surface nesting at Q = (π, π).

• Superconductivity away from half-filling is difficult to establish: βc & 25/t.

Suppression of CDW by phonon dispersion ⇒ pairing.

Suppression of CDW by disorder ⇒ pairing.


