Charge and Pairing order in the Holstein Hamiltonian

- 1. Holstein Hamiltonian
- 2. Non-Interacting and Strong Coupling Limits
- 3. CDW Order on Square, Honeycomb, and Cubic Lattices
- 4. Superconductivity?
- 5. Phonons with Dispersion
- 6. The Effect of Disorder
- 7. Conclusions

Funding: Department of Energy DE-SC0014671.

“Bringing Coal to Newcastle”

- “Doping dependence of ordered phases and emergent quasiparticles in the doped Hubbard-Holstein model”
 C. B. Mendl, E. A. Nowadnick, E. W. Huang, S. Johnston, B. Moritz, and T. P. Devereaux

- “A bound on the superconducting transition temperature”
 I. Esterlis, S. A. Kivelson and D. J. Scalapino

- “Breakdown of the Migdal-Eliashberg theory: A determinant quantum Monte Carlo study”
 I. Esterlis, B. Nosarzewski, E. W. Huang, B. Moritz, T. P. Devereaux, D. J. Scalapino, and S. A. Kivelson

- “Strong Coupling Limit of the Holstein-Hubbard Model”
 Zhaoyu Han, Steven A. Kivelson, and Hong Yao

- “Spectral properties and enhanced superconductivity in renormalized Migdal-Eliashberg theory”
 Benjamin Nosarzewski, Michael Schüeler, and Thomas P. Devereaux

- “Superconductivity, Charge-Density-Waves, and Bipolarons in the Holstein model”
 B. Nosarzewski, E. W. Huang, Philip M. Dee, I. Esterlis, B. Moritz, S. A. Kivelson, S. Johnston, T. P. Devereaux,
 arXiv:2103.09242

- “Pair-Density-Wave in the Strong Coupling Limit of the Holstein-Hubbard model”
 Kevin S. Huang, Zhaoyu Han, Steven A. Kivelson, Hong Yao
 arXiv:2103.04984
“Studies of polaron motion: Part I. The Molecular-Crystal Model”

“Studies of polaron motion: Part II. The ‘small’ polaron”

Roughly Contemporaneous: “Electron Correlations in Narrow Energy Bands,”

Linear chain of N identical diatomic molecules.
Inter-nuclear separation on each molecule adjusts if electron is present.

Goal: Describe e^- motion in a solid along with accompanying lattice distortion.

“It is felt that the model, although physically different from the cases encountered in practice, corresponds conceptually to them in sufficient degree, so as to merit investigation.”
Holstein: wave function a_i probability amplitude for (single) electron on site i. (Holstein did not use second quantization.)

Modern (many body) notation. Noninteracting electron kinetic energy:

$$\hat{H}_{\text{el-ke}} = -t \sum_{\langle ij \rangle \sigma} \left(\hat{c}_{i \sigma}^\dagger \hat{c}_{j \sigma} + \hat{c}_{j \sigma}^\dagger \hat{c}_{i \sigma} \right)$$

Spin \uparrow, \downarrow electrons interact with boson displacement on site i

$$\hat{H}_{\text{el-ph}} = \lambda \sum_i \hat{X}_i (\hat{n}_{i \uparrow} + \hat{n}_{i \downarrow})$$

$$H_{\text{boson}} = \frac{1}{2} \omega_0^2 \sum_i \hat{X}_i^2 + \frac{1}{2} \sum_i \hat{P}_i^2$$

Bosons local \Rightarrow energy independent of momentum (dispersionless) $\omega(q) = \omega_0$. Similarly, electron-boson coupling is local \Rightarrow independent of momentum.

Dimensionless coupling: $\lambda_D = \lambda^2 / (\omega_0^2 W)$ where $W = \text{electronic bandwidth}$.

Theorists have a reputation for oversimplification:

In that sense the **Holstein** model is an unfortunate name · · ·.

Today: more real ‘cows’?

Holsteins originated in Holland more than 2,000 years ago, and were brought to America in the 1850’s.

* Higher dimension
* Many electrons: CDW and SC
* Phonon dispersion
* Disorder

If I fail:

circa 1970 Stanford Seminar Notice:
Speaker and Title to be **renounced**.
Initial insight from $t = 0$ (Independent sites)

Complete the square

$$\frac{1}{2} \omega_0^2 X^2 + \lambda X (n_{\uparrow} + n_{\downarrow}) = \frac{1}{2} \omega_0^2 \left(X + \frac{\lambda}{\omega^2} (n_{\uparrow} + n_{\downarrow}) \right)^2 - \frac{\lambda^2}{2\omega_0^2} (n_{\uparrow} + n_{\downarrow})^2$$

Integrate out the phonon coordinate X.

Effective attraction

$$-\frac{\lambda^2}{\omega_0^2} n_{\uparrow} n_{\downarrow} = U_{\text{eff}} n_{\uparrow} n_{\downarrow} \quad U_{\text{eff}} = -\frac{\lambda^2}{\omega_0^2}$$

Imagine you are at half-filling. Then turn on t perturbatively.

Attractive interaction ($-U$ Hubbard; Holstein):

- Local pairs form.
- Double occupied/empty alternation favored:
 - Charge Density Wave.

Repulsive interaction ($+U$ Hubbard):

- Local moments form.
- up/down spin alternation favored by J:
 - Antiferromagnetism.
The effect of ‘band structure’ (lattice geometry)

Noninteracting $\lambda = 0$ fermions on a lattice (same as Hubbard $U = 0$...)

Square lattice has several interesting features:

- ‘van Hove singularity’ in density of states $N(E = 0)$ at half-filling.
- Perfect ‘nesting’ of Fermi surface, also at half-filling.

Both lead to enhanced ordering tendency when λ (or U) nonzero.

Stoner criterion: $UN(0) = 1$ (Hubbard model language)
Stoner criterion: \(UN(0) = 1 \) (Hubbard model language)
On a square lattice \(N(0) \) diverges \(\Rightarrow \) long range order at low \(T \) for any \(\lambda \) or \(U \).
A graduate student enjoys the Stoner Enhancement.

(Courtesy of Dan Arovas.)
Local order can become long ranged if thermal/quantum fluctuations reduced.

\[\begin{array}{c}
\downarrow \uparrow \downarrow \uparrow \\
\uparrow \downarrow \uparrow \downarrow \\
\downarrow \uparrow \downarrow \uparrow \\
\uparrow \downarrow \uparrow \downarrow \\
\end{array} \quad \begin{array}{c}
\uparrow \downarrow \uparrow \downarrow \\
\downarrow \uparrow \downarrow \uparrow \\
\uparrow \downarrow \uparrow \downarrow \\
\downarrow \uparrow \downarrow \uparrow \\
\end{array} \]

Repulsive (AF) \quad \text{Attractive (CDW)}

Holstein Model:
- Charge order at half-filling (bipartite lattice).
- Superconducting order when doped.

CDW transition at finite T in 2D (Ising universality class).
Contrast to Hubbard: AF order only at $T = 0$ in 2D (Heisenberg universality).

Quantitative values for T_c obtained for square lattice only recently!

In contrast, for honeycomb lattice:

Determine \(\lambda_c = \text{??} \) for charge ordering in the Holstein model on a honeycomb lattice. The Hubbard model \(U_c = 3.87t \) for AF order was determined \(\sim 5 \) years ago.

Methodology:

- Determinant Quantum Monte Carlo simulations
- Langevin Algorithm (similar to approaches used in lattice gauge theory).
3. CDW Order on Square, Honeycomb, and Cubic Lattices

Structure factor

\[
S_{\text{cdw}}(\pi, \pi) = \frac{1}{N} \sum_{i,j} \langle n_i n_j \rangle (-1)^{i+j} \quad \leftrightarrow \quad S_{\text{af}}(\pi, \pi) = \frac{1}{N} \sum_{i,j} \langle S_i^z S_j^z \rangle (-1)^{i+j}
\]

High \(T\): \(\langle n_i n_j \rangle \sim e^{-|i-j|/\xi} \Rightarrow S(\pi, \pi) \) independent of \(N\).

Low \(T\): \(\langle n_i n_j \rangle \sim \text{constant} \Rightarrow S(\pi, \pi) \propto N\).

Square Lattice

Finite size scaling collapse determines \(T_c = 1/\beta_c\).
Honeycomb Lattice:

Dirac spectrum for fermions.

Quantum critical point for Hubbard Model:
Minimal $U_c/t \gtrapprox 3.87$ to induce antiferromagnetic order.

Effect of electron-boson interactions on Dirac fermions and charge order?

(a)

Long range real space charge correlations develop as β increases.
CDW structure $o(N)$ when charge correlations long range ($\beta > \beta_c$).

Data collapse/crossing yield critical temperature.
Quantum critical point from $T = 0$

Invariant correlation length crossing

$$R_c \equiv 1 - \frac{S(Q + \delta q)}{S(Q)}$$

Cubic Holstein

Above Left: Structure factor scaling and Right: Opening of the CDW gap.

Comparison of Charge Density Wave T_c
Square, cubic, honeycomb, Lieb
4. Superconductivity?

Pairing structure factor \(P_s = \frac{1}{N} \sum_{i,j} \langle \Delta_i \Delta_j^\dagger \rangle \)

CDW structure factor \(S(\pi, \pi) \) suppressed rapidly with doping away from half-filling.

\(\omega_0/t = 1 \): \(P_s \) remains small.

\(\omega_0/t = 4 \): \(P_s \sim \times 10 \) larger.

(Quasi-)long range pairing? (KT universality class)
Finite size scaling

Left: Raw Data
Right: Scaling collapse (not super great...)

\[T - T_{\text{sc}} / (\lambda_0 \rho \omega) \]

\[L_{\text{exp}} \approx 12 \]

\[L_{\text{exp}} \approx 10 \]

\[L_{\text{exp}} \approx 8 \]

\[L_{\text{exp}} \approx 6 \]

\[L_{\text{exp}} \approx 0.85 \]

\[L_{\text{exp}} \approx 0.7 \]

\[L_{\text{exp}} \approx 0.6 \]

\[L_{\text{exp}} \approx 0.25 \]

\[L_{\text{exp}} \approx 0.25 \]

\[\beta_{\text{sc}} \approx 27.5 \]

\[\beta_{\text{sc}} \approx 28.5 \]

\[\beta_{\text{sc}} \approx 22.5 \]

\[\beta_{\text{sc}} \approx 23.5 \]

\[\lambda_0 = 0.25, \omega_0 = 1, \rho = 0.6 \]

\[\lambda_0 = 0.25, \omega_0 = 4, \rho = 0.6 \]

\[\lambda_0 = 0.25, \omega_0 = 4, \rho = 0.85 \]

\[\lambda_0 = 0.25, \omega_0 = 1, \rho = 0.25, \lambda = 6 \]

\[\lambda_0 = 0.25, \omega_0 = 1, \rho = 0.7, \lambda = 4 \]

\[\lambda_0 = 0.25, \omega_0 = 1, \rho = 0.25, \lambda = 4 \]

\[\lambda_0 = 0.25, \omega_0 = 1, \rho = 0.25, \lambda = 1 \]

\[\lambda_0 = 0.25, \omega_0 = 1, \rho = 0.25, \lambda = 1 \]

\[\lambda_0 = 0.25, \omega_0 = 1, \rho = 0.25, \lambda = 4 \]

\[\lambda_0 = 0.25, \omega_0 = 1, \rho = 0.7, \lambda = 4 \]

\[\lambda_0 = 0.25, \omega_0 = 1, \rho = 0.7, \lambda = 4 \]
Contour plot of best fit to A and β_c.

$\omega_0/ = t$: $T_c = \beta_c^{-1} \sim t/28 = W/224$:

An unexpected feature.
First order phase transition?
Density ρ takes a discontinuous jump with chemical potential μ.
5. Phonons with Dispersion

We explored momentum dependence of **boson dispersion**.
Easy to implement in Determinant QMC.
A ‘close cousin’ of momentum dependent coupling $g = \lambda / \sqrt{2\omega_0}$.

![Diagram](image)

\[
\Sigma^g(k, \omega) \sim \int dq \, d\nu \, |g(q)|^2 \frac{1}{\omega - \nu - \epsilon(k-q)} \frac{2\omega_0}{\nu^2 - \omega^2}
\]

\[
\Sigma^\omega(k, \omega) \sim \int dq \, d\nu \, |g_0|^2 \frac{1}{\omega - \nu - \epsilon(k-q)} \frac{2\omega(q)}{\nu^2 - \omega(q)^2}
\]

\(\Sigma^g\): momentum dependent **electron-boson coupling**.
\(\Sigma^\omega\): momentum dependent **boson dispersion**.
\(\nu \to 0\) (boson carries no energy): \(\Sigma^g = \Sigma^\omega\) if \(|g(q)|^2 / \omega_0 = |g|^2 / \omega(q)|.
(For nonzero \(\nu\) the two self-energies are not equal.)
Conventional Holstein Model:

\[
\hat{H} = -t \sum_{\langle ij \rangle \sigma} \left(\hat{c}^\dagger_{i\sigma} \hat{c}_{j\sigma} + \hat{c}^\dagger_{j\sigma} \hat{c}_{i\sigma} \right) + \lambda \sum_i \hat{X}_i (\hat{n}_{i\uparrow} + \hat{n}_{i\downarrow}) + \frac{1}{2} \omega_0^2 \sum_i \hat{X}^2_i + \frac{1}{2} \sum_i \hat{P}_i^2
\]

An intersite boson coupling introduces \(q \) dependence in boson energy.

\[
\hat{H}_2 = \frac{1}{2} \omega_2^2 \sum_{\langle i,j \rangle} (\hat{X}_i \pm \hat{X}_j)^2
\]

a. \(\hat{X}_i + \hat{X}_j \): lowers \(\omega(q = (\pi, \pi)) \) (Checkerboard CDW).

b. Mixed signs in \(x, y \) directions: lowers \(\omega(q = (0, \pi)) \) (Stripe CDW).

c. \(\hat{X}_i - \hat{X}_j \): raises \(\omega(q = (\pi, \pi)) \) (no CDW, superconductivity?)

Phonon bandwidth: \(\Delta \omega \equiv \omega_{\text{max}} - \omega_{\text{min}} \).
No dispersion \((H_2 = 0)\) we found \(\beta_c = 6.0 \pm 0.1\).

Initial effect of \(H_2\), checkerboard CDW still dominant, but shifted \(T_c\).

Top: \(\hat{X}_i - \hat{X}_j\): lowers \(\omega(q = (0,0))\)

\(\beta_c\) for checkerboard CDW increases.

Bottom: \(\hat{X}_i + \hat{X}_j\): lowers \(\omega(q = (\pi,\pi))\)

\(\beta_c\) for checkerboard CDW decreases.
For sufficiently large ‘mixed’ H_2, which favors **stripe CDW**,

Checkerboard to stripe transition:

![Graph](image1)

Key observation here:

No alteration to electron band structure. Half-filled square lattice.

**Fermi surface nesting remains at (π, π).

But CDW ordering vector can be elsewhere.

CDW transition outside of canonical Peierls picture.
Can also examine these phenomena via CDW gap.

Plateau in $\rho(\mu)$ shrinks/expands with boson dispersion.

Density of states has a gap at Fermi Energy. Like AF-Slater gap in $+U$ Hubbard.
Suppress checkerboard CDW without replacing it with stripes.

Superconducting phase at commensurate filling.

2D superconducting transition (Kosterlitz-Thouless universality). Again, $T_c = \frac{\beta_c^{-1}}{t} \sim \frac{t}{26} = \frac{W}{208}$:
6. Effect of Disorder

Random site energies

\[\mathcal{H}_\Delta = \sum_{i \sigma} \mu_i n_i \sigma \]

\[-\Delta \leq \mu_i \leq +\Delta \]

Left: \(\omega_0 = 1 \): \(\Delta \) suppresses CDW, no SC signature.

Right: \(\omega_0 = 4 \): \(\Delta \) suppresses CDW, large \(\chi_{\text{pairing}} \).
7. Conclusions

- Holstein Hamiltonian hosts finite-T CDW at half-filling.
 Four bipartite lattices: square, Lieb, honeycomb, cubic.
 Honeycomb lattice quantum phase transition λ_c.

- Introduce phonon dispersion: ‘Non-Peierls’ CDW Mechanism
 Order at $Q = (\pi, 0)$ decoupled from Fermi surface nesting at $Q = (\pi, \pi)$.

- Superconductivity away from half-filling is difficult to establish: $\beta_c \gtrsim 25/t$.
 Suppression of CDW by phonon dispersion \Rightarrow pairing.
 Suppression of CDW by disorder \Rightarrow pairing.