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Optical lattice in a trap

The lattice sites are the nodes of the standing wave
Lattice spacing a = λ/2
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The model

The Hamiltonian for bosonic atoms in external trap:

H =

Z

d3x ψ†(x)

„

−
~

2

2m
∇2 + V0(x) + VT (x)

«

ψ(x)

+
1

2

4πas~
2

m

Z

d3x ψ†(x)ψ†(x)ψ(x)ψ(x)

ψ(x) : boson field operator, VT (x) : confining potential

as : scattering length V0(x) : optical lattice potential

Simplest case:

V0(x) =

d
X

j=1

Vj0 sin2(kxj)

k =
2π

λ

a =
λ

2
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The bosonic Hubbard model

Well described by the tight-binding bosonic Hubbard model,1

H = −J
X

〈i,j〉

(b†i bj + b†jbi) +
X

i

VT (xi)n̂i + U
X

i

n̂i(n̂i − 1)

where

[bi, b
†
j ] = δij , n̂i = b†i bi

Model parameters can be tuned.
A great deal is known about this model without trap including its phase diagram

1D. Jaksch et al, Phys. Rev. Lett. 81, 3108 (1998).

0-4



Experiment
Greiner et al, Nature 415 (2002) 39.

Absorption images (in 3D) of multiple matter wave interference patterns. (a) U = 0Er,
(b) U = 3Er, (c) U = 7Er, (d) U = 10Er, (e) U = 13Er, (f) U = 14Er, (g) U = 16Er,

(h) U = 20Er (Er = ~
2k2

2m
)

The claim: Quantum phase transition SF→ Mott Insulator for U ≈ 12Er

Several recent experiments produced MI on 1D optical lattices in traps

Review 1D uniform (VT (x) = 0) model
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One dimensional uniform Hubbard model in the ground state2

H = −J
X

〈i,j〉

(b†i bj + b†jbi) + U
X

i

n̂i(n̂i − 1)−µ
X

i

ni

No hopping limit: J/U = 0

H = U
X

i

n̂i(n̂i − 1)−µ
X

i

n̂i

Ground state is obtained by minimizing the energy,

ǫ(n) = Un(n− 1) − µn

where n ≥ 0 is the occupation of the site. For

2(n− 1) <
µ

U
< 2n

The energy is minimized by having n bosons on each site.
µ can be changed in this interval and n does not change:
Excitation energy gap, incompressible Mott Insulator.
Perturbation shows that this Mott Insulator extends into the finite J/U region.

2G. Batrouni et al. Phys. Rev. Lett. 65 1765 (1990).
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World-Line Quantum Monte Carlo Simulations

Inverse Temperature discretized: β = L∆τ

Z = Tre−βH = Tr[e−∆τH ]L

Checkerboard Decomposition:
Divide Hamiltonian into two mutually commuting pieces

Ha = −J
X

i odd

(b†i bi+1 + b†i+1bi) + U/2
X

i

n̂i(n̂i − 1) − µ/2
X

i

n̂i

Hb = −J
X

i even

(b†i bi+1 + b†i+1bi) + U/2
X

i

n̂i(n̂i − 1) − µ/2
X

i

n̂i

Insert complete sets of occupation number states

Z =
X

nl

〈n0|e
−∆τHa |n1〉〈n1|e

−∆τHb |n2〉〈n2|e
−∆τHa |n3〉〈n3|e

−∆τHb |n4〉

. . .〈n2L−2|e
−∆τHa |n2L−1〉〈n2L−1|e

−∆τHb |n0〉
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State of system represented by occupation number paths ni(τ)
Paths sampled stochastically
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Zero Winding Non-Zero winding
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Measurable quantities

ρs =
〈W 2〉

2dtβ
µ(N) = E(N + 1) − E(N)

j(τ) =

Nb
X

i=1

[x(i, τ + 1) − x(i, τ)] J (τ) = 〈j(τ)j(0)〉

J (ω) =
X

τ

eiωτJ (τ) J (ω → 0) =
1

β
〈W 2〉

S(k) =
X

r

eikr〈n(r0)n(r0 + r)〉
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Stochastic Series Expansion3

Express Hamiltonian as sum of diagonal and non-diagonal operators on bonds of lattice

H =
X

i

(HUi +HJi)

HUi = Uni(ni − 1) − µni

HJi = −J(b†i bi+1 + b†i+1bi)

Expand partition function in powers of H

Z = Tr e−βH =
X

α

X

n

(−β)n

n!
〈α|Hn|α〉.

Insert/remove operators stochastically, satisfying detailed balance.

Considerable similarities with (advanced) world-line algorithms.

Advantages over our (older) world-line implementation:

Loop updates (reduce autocorrelation times).

Greens function measurements possible.

3A. W. Sandvik and J. Kurkijarvi, Phys. Rev. B 43, 5950 (1991).
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Phase diagram
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Quantum Phase Transition

κ =
∂ρ

∂µ
→ |µ− µc|

−ν/2 as µ→ µc ρs ∼ |ρ− ρMott|
z−d

0.00 0.01 0.10 1.00
|ρ−ρc|

0.001

0.010

0.100

1.000

ρ s

β=2, t=1, V0=20

slope= 1.02

System sizes ranging from

L = 16 to L = 256

Quantum phase transition!

z = 2, ν = 1

(1)
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One dimensional trapped Boson Hubbard model

0 2 4 6 8
µ/U

0

1

2

3

4

ρ

0 5 10 15
µ

0

50

100

150

N
b

U = 20J

U = 4.5J

No globally incompressible Mott

plateau in the trapped system!

As a whole, the system

is always compressible.
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G. G. Batrouni et al, Phys. Rev. Lett. 89 117203 (2002).
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Local compressibility

Several possible definitions of local compressibility. Simplest:

κi =
∂ni

∂µi
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No evidence of κ diverging: No quantum phase transition
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ρ and κ profiles: Fixed U=4.5

Mott regions always co-exist with SF
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ρ and κ profiles: Fixed Nb = 50
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As U is increased, the system gradually crosses over to Mott:

No quantum phase transition.
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State diagram
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A: ρ = 1 Mott
B: SF in center + ρ = 1 Mott
C: ρ = 2 Mott + SF + ρ = 1 Mott
D: SF in center + ρ = 2 Mott + SF + ρ = 1 Mott
E: SF
The trapped one dimensional bosonic Hubbard model does not exhibit quantum critical
behavior like the uniform system.
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Visibility Experiments

V =
Smax − Smin

Smax + Smin

.

Smax(Smin) are max(min)
of momentum distribution,

S(k) =
1

L

∑

j,l

eik.(rj−rl)〈a†
jal〉.

• Optical lattice depth (U) increases: visibility decreases.
• Special values of U : V displays “kinks” then decreases again.
• Reflects density redistribution: SF shells transform to MI regions.4

4F. Gerbier et al., Phys. Rev. Lett. 95, 050404 (2005).
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QMC Simulations in d=1
Density Profiles and Visibility

Simplest case: density n < 2. Only Mott domains with n = 1.
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First kink: MI plateau emerge at sides of central SF, U = 6.3t.
Second kink: full MI domain in middle of trap, U = 7.1t.
Experimental control parameter: (lattice depth)/(recoil energy).

U/t depends exponentially on this quantity.
Unexpected feature: freezing of the density profiles.
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Visibility For Unconfined System
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Comparatively Featureless.

Does Exhibit signature of Mott Transition at U ≈ 4.5t.

Visibility begins to decrease from ν = 1.
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Further Signatures of Pause in Density
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Difference in densities between U and U + δU
6.40 & U : dρ(x)/dx < 0 center; dρ(x)/dx > 0 shoulders.
6.80 & U & 6.40: dρ(x)/dx ∼ 0 everywhere.

U & 6.80: dρ(x)/dx < 0 center; dρ(x)/dx > 0 shoulders.
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“Central Density” and Visibility

Pause in the “central density”
∑52

i=28 ρ(i).
Coincides with the plateau-like behavior of V .
6.3 < U < 6.8: bosons no longer pushed out of central regions

even though center is compressible SF!
Explanation: Emerging MI domains at the sides trap SF.

U/t must increase finite amount before particle transfer.
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Signatures of Pause in Energetics
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In interval U/t = 6.3–6.8 different pieces of energy pause:
• Total trapping energy ET .
• Interaction energy EP .
• Chemical potential µ.
• Ratio of potential to kinetic energy, γ = |EP /EK |.
Total energy (not shown) increases continuously.
Decrease in magnitude of the (negative) kinetic energy.
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Visibility for System with ρ = 2 Mott Lobe
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Up to U/t ∼ 13, ν is similar to lower density
Above U/t = 13, additional structure.
Visibility kinks from redistribution between n = 2 and n = 1 MI

(Not from the formation of new SF or MI regions.)
Redistribution occurs discontinuously in U .
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Density Profiles for System with ρ = 2 Mott Lobe

Visibility structures at U = (11 − 12)t associated with
ρ = 1 MI shoulder development, and
appearance of ρ = 2 MI at trap center.

Further features in ν for U & 20 upon breakup of ρ = 2 MI.
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Energetics for System with ρ = 2 Mott Lobe

Trap center density larger than one (large double occupancy):

• γ and EP increase with U/t.

• γ reflects the jumps produced by particle redistribution.

• Total energy of the system (ES) increases continuously.
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CONCLUSIONS

Equilibrium Phase Diagram of Confined Bosons

• Mott regions always coexist with SF.

• No quantum phase transition, in contrast to uniform case.

“Pause” in Evolution with On-Site Repulsion U

• Density distribution constant even when U increases by t/2.

• Emergence of static behavior caused by formation of MI “shoulders”
Transfer of bosons to outer parts of system blocked.

Visibility

• Visibility behaves similar to experiment.

• Kinks: Redistribution of density between MI and SF regions.
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