

UCDAVIS

Phase Diagram and Visibility of Optically Trapped Bosons

- Optically Trapped Atoms and Boson Hubbard Model
- Matter Wave Interference Experiment
- Equilibrium Phase Diagram: Uniform System
- Equilibrium Phase Diagram: Confined System
- Visibility
- "Pause" in Evolution with U
- Conclusions

Collaborators

```
G. Batrouni, F. Hébert (INLN)
M. Rigol, V. Rousseau, R.T.S. (UC Davis)
M. Troyer (ETH Zurich)
A. Muramatsu (Stuttgart)
P. Denteneer (Leiden)
P. Sengupta (UCR)
```

Funding
National Science Foundation

Optical lattice in a trap

The lattice sites are the nodes of the standing wave Lattice spacing $a = \lambda/2$

The model

The Hamiltonian for bosonic atoms in external trap:

$$H = \int d^3x \ \psi^{\dagger}(\mathbf{x}) \left(-\frac{\hbar^2}{2m} \nabla^2 + V_0(\mathbf{x}) + V_T(\mathbf{x}) \right) \psi(\mathbf{x})$$
$$+ \frac{1}{2} \frac{4\pi a_s \hbar^2}{m} \int d^3x \ \psi^{\dagger}(\mathbf{x}) \psi^{\dagger}(\mathbf{x}) \psi(\mathbf{x}) \psi(\mathbf{x})$$

 $\psi(\mathbf{x})$: boson field operator, $V_T(\mathbf{x})$: confining potential

 a_s : scattering length $V_0(\mathbf{x})$: optical lattice potential

Simplest case:

$$V_0(\mathbf{x}) = \sum_{j=1}^d V_{j0} \sin^2(kx_j)$$
$$k = \frac{2\pi}{\lambda}$$
$$a = \frac{\lambda}{2}$$

The bosonic Hubbard model

Well described by the tight-binding bosonic Hubbard model,¹

$$H = -J \sum_{\langle i,j \rangle} (b_i^{\dagger} b_j + b_j^{\dagger} b_i) + \sum_i V_T(\mathbf{x_i}) \hat{n}_i + U \sum_i \hat{n}_i (\hat{n}_i - 1)$$

where

$$[b_i, b_j^{\dagger}] = \delta_{ij}, \quad \hat{n}_i = b_i^{\dagger} b_i$$

Model parameters can be tuned.

A great deal is known about this model without trap including its phase diagram

¹D. Jaksch *et al*, Phys. Rev. Lett. **81**, 3108 (1998).

Experiment Greiner et al, Nature 415 (2002) 39.

Absorption images (in 3D) of multiple matter wave interference patterns. (a) $U = 0E_r$, (b) $U = 3E_r$, (c) $U = 7E_r$, (d) $U = 10E_r$, (e) $U = 13E_r$, (f) $U = 14E_r$, (g) $U = 16E_r$, (h) $U = 20E_r$ ($E_r = \frac{\hbar^2 k^2}{2m}$)

The claim: Quantum phase transition SF \rightarrow Mott Insulator for $U \approx 12E_r$

Several recent experiments produced MI on 1D optical lattices in traps

Review 1D uniform $(V_T(x) = 0)$ model

One dimensional uniform Hubbard model in the ground state²

$$H = -J \sum_{\langle i,j \rangle} (b_i^{\dagger} b_j + b_j^{\dagger} b_i) + U \sum_i \hat{n}_i (\hat{n}_i - 1) - \mu \sum_i n_i$$

No hopping limit: J/U = 0

$$H = U \sum_{i} \hat{n}_{i} (\hat{n}_{i} - 1) - \mu \sum_{i} \hat{n}_{i}$$

Ground state is obtained by minimizing the energy,

$$\epsilon(n) = Un(n-1) - \mu n$$

where $n \geq 0$ is the occupation of the site. For

$$2(n-1) < \frac{\mu}{U} < 2n$$

The energy is minimized by having n bosons on each site. μ can be changed in this interval and n does not change: Excitation energy gap, incompressible Mott Insulator. Perturbation shows that this Mott Insulator extends into the finite J/U region.

²G. Batrouni *et al.* Phys. Rev. Lett. **65** 1765 (1990).

World-Line Quantum Monte Carlo Simulations

Inverse Temperature discretized: $\beta = L\Delta \tau$

$$Z = \text{Tr}e^{-\beta H} = \text{Tr}[e^{-\Delta \tau H}]^L$$

Checkerboard Decomposition:

Divide Hamiltonian into two mutually commuting pieces

$$H_{a} = -J \sum_{i \text{ odd}} (b_{i}^{\dagger} b_{i+1} + b_{i+1}^{\dagger} b_{i}) + U/2 \sum_{i} \hat{n}_{i} (\hat{n}_{i} - 1) - \mu/2 \sum_{i} \hat{n}_{i}$$

$$H_{b} = -J \sum_{i \text{ even}} (b_{i}^{\dagger} b_{i+1} + b_{i+1}^{\dagger} b_{i}) + U/2 \sum_{i} \hat{n}_{i} (\hat{n}_{i} - 1) - \mu/2 \sum_{i} \hat{n}_{i}$$

Insert complete sets of occupation number states

$$Z = \sum_{n_l} \langle n_0 | e^{-\Delta \tau H_a} | n_1 \rangle \langle n_1 | e^{-\Delta \tau H_b} | n_2 \rangle \langle n_2 | e^{-\Delta \tau H_a} | n_3 \rangle \langle n_3 | e^{-\Delta \tau H_b} | n_4 \rangle$$
$$\dots \langle n_{2L-2} | e^{-\Delta \tau H_a} | n_{2L-1} \rangle \langle n_{2L-1} | e^{-\Delta \tau H_b} | n_0 \rangle$$

State of system represented by occupation number paths $n_i(\tau)$ Paths sampled stochastically

Zero Winding

Non-Zero winding

Measurable quantities

$$\rho_s = \frac{\langle W^2 \rangle}{2dt\beta} \qquad \qquad \mu(N) = E(N+1) - E(N)$$

$$j(\tau) = \sum_{i=1}^{N_b} [x(i, \tau + 1) - x(i, \tau)] \qquad \mathcal{J}(\tau) = \langle j(\tau) j(0) \rangle$$

$$\mathcal{J}(\omega) = \sum_{\tau} e^{i\omega\tau} \mathcal{J}(\tau) \qquad \qquad \mathcal{J}(\omega \to 0) = \frac{1}{\beta} \langle W^2 \rangle$$

$$S(k) = \sum_{r} e^{ikr} \langle n(r_0)n(r_0+r) \rangle$$

Stochastic Series Expansion³

Express Hamiltonian as sum of diagonal and non-diagonal operators on bonds of lattice

$$H = \sum_{i} (H_{Ui} + H_{Ji})$$

$$H_{Ui} = Un_{i}(n_{i} - 1) - \mu n_{i}$$

$$H_{Ji} = -J(b_{i}^{\dagger}b_{i+1} + b_{i+1}^{\dagger}b_{i})$$

Expand partition function in powers of H

$$Z = \operatorname{Tr} e^{-\beta H} = \sum_{\alpha} \sum_{n} \frac{(-\beta)^{n}}{n!} \langle \alpha | H^{n} | \alpha \rangle.$$

Insert/remove operators stochastically, satisfying detailed balance.

Considerable similarities with (advanced) world-line algorithms.

Advantages over our (older) world-line implementation:

Loop updates (reduce autocorrelation times).

Greens function measurements possible.

³A. W. Sandvik and J. Kurkijarvi, Phys. Rev. B **43**, 5950 (1991).

Phase diagram

Quantum Phase Transition

$$\kappa = \frac{\partial \rho}{\partial \mu} \to |\mu - \mu_c|^{-\nu/2} \text{ as } \mu \to \mu_c \quad \rho_s \sim |\rho - \rho_{Mott}|^{z-d}$$

System sizes ranging from

$$L = 16 \text{ to } L = 256$$

Quantum phase transition!

$$z=2, \quad \nu=1$$

One dimensional trapped Boson Hubbard model

G. G. Batrouni et al, Phys. Rev. Lett. 89 117203 (2002).

Local compressibility

Several possible definitions of local compressibility. Simplest:

$$\kappa_i = \frac{\partial n_i}{\partial \mu_i}$$

No evidence of κ diverging: No quantum phase transition

ρ and κ profiles: Fixed U=4.5

Mott regions always co-exist with SF

 ρ and κ profiles: Fixed $N_b = 50$

As U is increased, the system **gradually** crosses over to Mott:

No quantum phase transition.

State diagram

A: $\rho = 1$ Mott

B: SF in center $+ \rho = 1$ Mott

C: $\rho = 2 \text{ Mott} + \text{SF} + \rho = 1 \text{ Mott}$

D: SF in center $+ \rho = 2$ Mott + SF $+ \rho = 1$ Mott

E: SF

The trapped one dimensional bosonic Hubbard model does not exhibit quantum critical behavior like the uniform system.

Visibility Experiments

$$\mathcal{V} = \frac{S_{\text{max}} - S_{\text{min}}}{S_{\text{max}} + S_{\text{min}}}.$$

 $S_{\text{max}}(S_{\text{min}})$ are max(min) of momentum distribution,

$$S(\mathbf{k}) = \frac{1}{L} \sum_{j,l} e^{i\mathbf{k}.(\mathbf{r_j} - \mathbf{r_l})} \langle a_j^{\dagger} a_l \rangle.$$

- Optical lattice depth (U) increases: visibility decreases.
- Special values of U: \mathcal{V} displays "kinks" then decreases again.
- Reflects density redistribution: SF shells transform to MI regions.⁴

⁴F. Gerbier *et al.*, Phys. Rev. Lett. **95**, 050404 (2005).

QMC Simulations in d=1 Density Profiles and Visibility

Simplest case: density n < 2. Only Mott domains with n = 1.

First kink: MI plateau emerge at sides of central SF, U = 6.3t. Second kink: full MI domain in middle of trap, U = 7.1t. Experimental control parameter: (lattice depth)/(recoil energy). U/t depends exponentially on this quantity.

Unexpected feature: freezing of the density profiles.

Visibility For Unconfined System

Comparatively Featureless.

Does Exhibit signature of Mott Transition at $U \approx 4.5t$. Visibility begins to decrease from $\nu = 1$.

Further Signatures of Pause in Density

Difference in densities between U and $U + \delta U$ $6.40 \gtrsim U$: $d\rho(x)/dx < 0$ center; $d\rho(x)/dx > 0$ shoulders. $6.80 \gtrsim U \gtrsim 6.40$: $d\rho(x)/dx \sim 0$ everywhere. $U \gtrsim 6.80$: $d\rho(x)/dx < 0$ center; $d\rho(x)/dx > 0$ shoulders.

"Central Density" and Visibility

Pause in the "central density" $\sum_{i=28}^{52} \rho(i)$. Coincides with the plateau-like behavior of \mathcal{V} .

6.3 < U < 6.8: bosons no longer pushed out of central regions even though center is compressible SF!

Explanation: Emerging MI domains at the sides trap SF. U/t must increase finite amount before particle transfer.

Signatures of Pause in Energetics

In interval U/t = 6.3–6.8 different pieces of energy pause:

- Total trapping energy E_T .
- Interaction energy E_P .
- Chemical potential μ .
- Ratio of potential to kinetic energy, $\gamma = |E_P/E_K|$.

Total energy (not shown) increases continuously.

Decrease in magnitude of the (negative) kinetic energy.

Visibility for System with $\rho = 2$ Mott Lobe

Up to $U/t \sim 13$, ν is similar to lower density Above U/t = 13, additional structure.

Visibility kinks from redistribution between n=2 and n=1 MI (Not from the formation of new SF or MI regions.) Redistribution occurs discontinuously in U.

Density Profiles for System with $\rho = 2$ Mott Lobe

Visibility structures at U=(11-12)t associated with $\rho=1$ MI shoulder development, and appearance of $\rho=2$ MI at trap center. Further features in ν for $U\gtrsim 20$ upon breakup of $\rho=2$ MI.

Energetics for System with $\rho = 2$ Mott Lobe

Trap center density larger than one (large double occupancy):

- γ and E_P increase with U/t.
- \bullet γ reflects the jumps produced by particle redistribution.
- Total energy of the system (E_S) increases continuously.

CONCLUSIONS

Equilibrium Phase Diagram of Confined Bosons

- Mott regions always coexist with SF.
- No quantum phase transition, in contrast to uniform case.

"Pause" in Evolution with On-Site Repulsion U

- Density distribution constant even when U increases by t/2.
- Emergence of static behavior caused by formation of MI "shoulders" Transfer of bosons to outer parts of system blocked.

Visibility

- Visibility behaves similar to experiment.
- Kinks: Redistribution of density between MI and SF regions.