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1. Introduction

Powerful array of existing tools to quantify phase transitions in Monte Carlo:

• Identification of appropriate order parameters.

• Identification of appropriate response functions.

• Finite size scaling.

• Dynamics.

Can require a degree of creativity (even for known order parameter):

• Binder ratio 1− 〈M4〉/〈M2〉2

• Pairing Vertex, Γ = P−1 − P̄−1

Forefront of condensed matter physics today

• Competing types of order

Cuprates: superconductivity, antiferromagnetism, stripes, nematic, · · ·

• More subtle (eg topological) phases.

Develop methods which are useful if the order parameter is not known.

• Recognize novel phases hidden in vast dance of degrees of freedom simulated.



2. Classical Models of Magnetism

Principal Component Analysis

Basic technical data analysis method of many of the results presented here.

• P simulations at different parameter values (T , U , ρ).

• L configurations (N degrees of freedom Sj) from each simulation.

• Arrange configurations Sj as row j of a matrix X.

• X is rectangular: PL rows and N columns.

• Construct M = XT X (square, dimension N).

• Diagonalize M. Eigenvalues λi, “relative variance” λ̃i = λi /
∑
i λi

• Inner product of eigenvectors vi with configurations: pij = vi · Sj
“principal components”

• Topology of { (p1j , p2j) } through transition (v1, v2: two largest λ1, λ2).

• Quantified principal components: Pi = 〈 | pi | 〉 =
∑
j | pij |



Ising Model E = −J
∑
〈ij〉 SiSj Si = ±1

Order parameter M = 〈
∑
i Si〉 magnetization

Energy E favors parallel Entropy S favors random
spin configurations: spin configurations:

M 6= 0 M = 0

Minimize Free Energy F = E − TS
Temperature T controls whether E or S wins.



Ising Model E = −J
∑
〈ij〉 SiSj Si = ±1

Magnetic susceptibility

χ = 1
T ( 〈M2〉 − 〈M〉2 )



Ising Model E = −J
∑
〈ij〉 SiSj Si = ±1

Binder Ratio provides very accurate Tc

Single spin flip Metropolis → cluster algorithms (Wolfe, etc)



Ising Model E = −J
∑
〈ij〉 SiSj Si = ±1

[See also L. Wang, PRB94, 195105 (2016);

J. Liu, Y. Qi, Z.Y. Meng and L. Fu, PRB95, 041101 (2017)]
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2D Regular Ising Model at fixed J = -1.0

(a) Relative variances λ̃i
drop rapidly with i

(b) { (p1j , p2j) } changes

topology at Tc ∼ 2.269.

bifurcates → 2 clusters.

(c) P1 mimics 〈 |M | 〉.

(d) P2 mimics χ.
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2D Regular Ising Model at fixed J = -1.0

(a) Leading eigenvector v1

uniform (ferromagnetic).

(b) Subleading eigenvector v2

domain walls.

(c) Compare to v′2 =(
cos(r1k1), cos(r2k1), · · ·

)
+(

cos(r1k2), cos(r2k2), · · ·
)

k1 = (2π/L, 0), k1 = (0, 2π/L)

(d) Extrapolate peaks T ∗

of P2(T ) with 1/L.



Blume-Capel Model E = −J
∑
〈ij〉 SiSj + ∆

∑
i S

2
i Si = 0,±1

∆ is “Impurity potential”

∆ < 0 favors Si = ±1 ∆ > 0 favors Si = 0

Ising Model in limit ∆→ −∞

Tricritical point:

(T/J,∆/J) ∼ (0.61, 1.97)



Blume-Capel Model in second order regime, T = 1.0.
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Blume Caple at fixed J=1.0, T=1.0

(a) Relative variances λ̃i
drop rapidly with i

(b) { (p1j , p2j) } changes

topology at ∆c ∼ 1.7.

2 cluster bifurcation.

(c) P1 mimics 〈 |M | 〉.

(d) P2 mimics χ.



Blume-Capel Model in first order regime, T = 0.3.
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Blume Caple at fixed J=1.0, T=0.3

(a) Relative variances λ̃i
drop rapidly with i

(b) { (p1j , p2j) } changes

topology at ∆c ∼ 2.0.

(c) P1 mimics 〈 |M | 〉.

(d) P2 mimics χ.

First order character

is evident!



.
Autoencoder

Artificial Neural Network (unsupervised learning)

Like PCA: dimensional reduction

Unlike PCA: nonlinear

Compressed representation:

Reproduce original spin configuration despite

reduced hidden layer information storage

(a) Spin configuration (top) N = 40× 40

Reconstruction (below) 200 hidden neurons

(b) Two hidden neurons activations (h1, h2)

Similar to PCA.

(c) Single hidden neuron

average over 10000 samples at each T .



3. Quantum Models of Magnetism and Charge Order

Methodology is determinant Quantum Monte Carlo (DQMC).

Electron-electron interactions decoupled via introduction of

discrete ‘Hubbard-Stratonovich’ field Siτ .

Siτ has spatial i = 1, 2, · · ·N ; imaginary time τ = 1, 2, · · ·L indices.

L = β/∆τ : number of divisions of inverse temperature.

Sign Problem except in special cases like half-filling (one fermion per site)

*** Can machine learning help with sign problem?! ***

Different Options for PCA:

• Provide Siτ for all i at single τ , or all τ at single i.

• Provide Siτ for all i, τ .

• Provide a ‘derived quantity’: e.g. Greens function.

Prior work (very partial list!):
Xiao Yan Xu, Yang Qi, Junwei Liu, Liang Fu, Zi Yang Meng, Phys. Rev. B96 041119R (2017).
K. Ch’ng, J. Carrasquilla, R.G. Melko, and E. Khatami, Phys. Rev. X7 031038 (2017).
P. Broecker, J. Carrasquilla, R.G. Melko, and S. Trebst, Nature Sci. Rep. 7, 8823 (2017).
S. Li, P.M. Dee, E. Khatami, and S. Johnston, Phys. Rev. B100, 020302 (2019).



Hubbard Model on honeycomb lattice (graphene).

Ĥ = −t
∑
〈ij〉σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

ni↑ni↓

Semimetallic density of states at half-filling (one electron per site).

Antiferromagnetic order (at T = 0) only if U > Uc ∼ 3.8.



Hubbard Model on honeycomb lattice.

Ĥ = −t
∑
〈ij〉σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

ni↑ni↓

Honeycomb lattice, half-filling: AF order if U > Uc ∼ 3.8.
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At left: U = 6.0 > Uc:



Hubbard Model on honeycomb lattice.

Ĥ = −t
∑
〈ij〉σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i ni↑ni↓

Honeycomb lattice, half-filling: AF order if U > Uc ∼ 3.8.
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(a) Dominant variance λ̃i

(b) Central (P1,P2) peak

expands as U increases.

(c) Principal component

(d) AF pattern.



Hubbard Model on Lieb Lattice

Three bands: two dispersing, bracket flat band.

Ferrimagnetic order at half-filling of whole lattice.
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Hubbard Model on Lieb Lattice

Positive site energy to depopulate ‘bridging sites’

(oxygen atoms in CuO2 planes of cuprate superconductors).

Remaining population of square lattice

(copper atoms in CuO2 planes of cuprate superconductors).

!! Sign Problem !!



Hubbard Model on Lieb Lattice

Three bands: two dispersing, bracket flat band.

Half-filling of lowest band only (ρ = 1/3) AF order.
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(f)

(a) Dominant variance λ̃i

(b,d) Central (P1,P2) peak

(c) expanded ρ ∼ 1/3.

(e) P1 peak at ρ = 1/3.

(f) AF pattern (“copper” sites).

PCA for doped system

(weak sign problem).



Holstein model: e− coupled to phonons: Siτ → xiτ .

Ĥ = −t
∑
〈ij〉σ

(
c†iσcjσ + c†jσciσ

)
+ 1

2

∑
i

(
p2
i + ω2x2

i

)
+ g

∑
i xi
(
a†i + ai

)
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Half-filling: Simultaneous

CDW and SC order at T = 0.

Doped: SC transition of KT type

(these results). βc ∼ 8.

(a) Dominant variance λ̃i

(b) (P1,P2) divides at low T .

(c) P1 order onset β ∼ 6.

(d) Remnant CDW order.

P.M. Dee, J. Coulter, K.G Kleiner, and S. Johnston, Comm. Phys. 3, 1 (2020).

S. Li and S. Johnston, Nature Quantum Mat. 5, 1 (2020).



.

4. Self Learning Monte Carlo, Role of Symmetry

Train local effective model Seff

Reduce o(N3) fermion determinant evaluation

Seff captures ‘polaron’ minima X − g2

ω2 = ± g2

ω2

couples phonons in space and imaginary time

Autocorrelation time reduced

FSS captures Tc



5. Challenges Posed by Non-Diagonal Order

“Visualizing strange metallic correlations in the two-dimensional Fermi-Hubbard model with
artificial intelligence,” E. Khatami, E. Guardado-Sanchez, B.M. Spar, J.F. Carrasquilla,

W.S. Bakr, R. Scalettar, Phys. Rev. A102, 033326 (2020).

An older example: Extended Hubbard Model

Ĥ = −t
∑
〈ij〉σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

ni↑ni↓ + V
∑
〈ij〉

ninj

U > 2V : Spin density wave (AF)

up/down spin alternates

U < 2V : Charge density wave

empty, double occupation alternates

U ∼ 2V : “Bond Ordered Wave”

High/low kinetic energy alternates

Order not in density operators.

⇒ Khatami talk



6. Conclusions

Machine learning method can accurately discern phase transitions.

Magnetism: Classical Ising and Blume-Capel

• Dominant principle component ↔ order parameter;

• Recognizes symmetry breaking; first vs second order transitions.

• Sub-dominant principle components: small q behavior (domain walls).

Magnetic and Charge Order: Quantum Hubbard and Holstein Models

• Similar to classical: principal component bifurcation → transition

• Effective even in doped case (sign problem!)

Configurational snapshots: ML does not require 〈SO〉〈S〉 !!

⇒ Johnston talk

** Use ML for doing more effective simulations, not just data analysis **

What about more “subtle” situations?

• Bond Ordered Wave phase of extended Hubbard model.

• Strange Metal phase of square lattice Hubbard model (and cuprates)

⇒ Khatami talk


