UCDAVIS Reoies

Machine Learning of Magnetic,
Charge, and Bond Order Phase Transitions

1. Introduction

2. Classical Models of Magnetism

3. Quantum Models of Itinerant Magnetism
4. Role of Symmetry

5. Challenges Posed by Non-Diagonal Order

6. Conclusions

Work supported by NNSA SSAA Program, grant DE-NA0002908; and
grant DE-SC0014671 of the U.S. Department of Energy, Office of Science.



ZiYang
Meng

Wenjian Natanael
Hu Costa

George
Batrouni X1ia0 Khatami Liu Moreno

Ehsan JunWei Javier



1. Introduction

Powerful array of existing tools to quantify phase transitions in Monte Carlo:
e Identification of appropriate order parameters.

e Identification of appropriate response functions.

e Finite size scaling.

e Dynamics.

Can require a degree of creativity (even for known order parameter):
e Binder ratio 1 — (M*)/{M?)?
e Pairing Vertex, r=p*'—p

Forefront of condensed matter physics today
e Competing types of order
Cuprates: superconductivity, antiferromagnetism, stripes, nematic, - - -

e More subtle (eg topological) phases.

Develop methods which are useful if the order parameter is not known.

e Recognize novel phases hidden in vast dance of degrees of freedom simulated.



2. Classical Models of Magnetism
Principal Component Analysis
Basic technical data analysis method of many of the results presented here.

e P simulations at different parameter values (T, U, p).

e L configurations (N degrees of freedom §;) from each simulation.

e Arrange configurations S; as row j of a matrix X.

e X is rectangular: PL rows and N columns.

e Construct M = X' X (square, dimension ).

e Diagonalize M. Eigenvalues \;, “relative variance” X =\ /DY

e Inner product of eigenvectors v; with configurations: p;; = v; - S
“principal components”

e Topology of { (p1;,p2;) } through transition  (v1,wva: two largest A1, A2).

e Quantified principal components:  P; = ([p;|) = >_; [ pij |



Ising Model FE=-—J Z(m‘) SiS; S; = +1

Order parameter M = (> .S;)  magnetization

Energy E favors parallel Entropy S favors random
spin configurations: spin configurations:
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Minimize Free Energy F =FE TS5

Temperature 7' controls whether E or S wins.



ISing Model E=—-J Z<U> SZSJ S@ = +1

Magnetic susceptibility

X = H((M2) = (M1)?)
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Ising Model E=—-J Z(@ SiS; S; = +1

Binder Ratio provides very accurate T,
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Single spin flip Metropolis — cluster algorithms (Wolfe, etc)



Ising Model E=—-J Z<ij> SiS; S; = +1

[See also L.. Wang, PRB94, 195105 (2016);
J. Liu, Y. Qi, Z.Y. Meng and L. Fu, PRB95, 041101 (2017)]
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T.=2.278+0.015
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(a) Leading eigenvector vq
uniform (ferromagnetic).

(b) Subleading eigenvector vs
domain walls.

(c) Compare to vh =
(cos(riki), cos(rak1), -+ )+
(cos(rikz), cos(raka), -« )
ki = (2n/L,0), k1 = (0,27 /L)

(d) Extrapolate peaks T
of PQ(T) with 1/L



Blume-Capel Model E = —J ), 55 +A)_, Sz S, =0,+1

A is “Impurity potential”

A < 0 favors S; = +1

- first order

Paramagnetic |
second order :

Ferromagnetic

-0 Ref. 33 (Beale et al.)

-0 Our Data
B Ref. 38 (daSilvaetal.)

05 1 15 2 =25

A > 0 favors S; =0

Ising Model in limit A — —oc¢
Tricritical point:

(T/J,A/J) ~ (0.61,1.97)



Blume-Capel Model in second order regime, T = 1.0.
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Blume-Capel Model in first order regime, T' = 0.3.
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First order character
is evident!



Autoencoder

e | Artificial Neural Network (unsupervised learning)
s T 7 | | Like PCA: dimensional reduction
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e Newons | N Reproduce original spin configuration despite
“input Output reduced hidden layer information storage

(a) Spin configuration (top) N = 40 x 40
Reconstruction (below) 200 hidden neurons

(b) Two hidden neurons activations (h1, hs)
Similar to PCA.

(¢) Single hidden neuron
average over 10000 samples at each T'.




3. Quantum Models of Magnetism and Charge Order
Methodology is determinant Quantum Monte Carlo (DQMC).

Electron-electron interactions decoupled via introduction of
discrete ‘Hubbard-Stratonovich’ field ;.

S;+ has spatial ¢ = 1,2,--- N; imaginary time 7 = 1, 2, - - - L indices.

L = B/A7: number of divisions of inverse temperature.

Sign Problem except in special cases like half-filling (one fermion per site)

*#% Can machine learning help with sign problem?! ***

Different Options for PCA:
e Provide S;, for all ¢ at single 7, or all 7 at single 2.
e Provide S;, for all 7, 7.

e Provide a ‘derived quantity’: e.g. Greens function.

Prior work (very partial list!):

Xiao Yan Xu, Yang Qi, Junwei Liu, Liang Fu, Zi Yang Meng, Phys. Rev. B96 041119R (2017).
K. Ch’ng, J. Carrasquilla, R.G. Melko, and E. Khatami, Phys. Rev. X7 031038 (2017).

P. Broecker, J. Carrasquilla, R.G. Melko, and S. Trebst, Nature Sci. Rep. 7, 8823 (2017).

S. Li, P.M. Dee, E. Khatami, and S. Johnston, Phys. Rev. B100, 020302 (2019).



Hubbard Model on honeycomb lattice (graphene).

H = —1 Z CioCio + Cjacza + Uzn”n’ii

(ig)o

Semimetallic density of states at half-filling (one electron per site).
Antiferromagnetic order (at 7'=0) only if U > U, ~ 3.8.
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Hubbard Model on honeycomb lattice.

H = —1 Z Cio jO‘ + Cjacza + UZ’R@?%i

(ig)o

Honeycomb lattice, half-filling: AF order if U > U, ~ 3.8.
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Hubbard Model on honeycomb lattice.

[:I = —t Z(ij)a (C;'racja + C}ocia) +U Zz A
Honeycomb lattice, half-filling: AF order if U > U, ~ 3.8.
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Hubbard Model on Lieb Lattice

Three bands: two dispersing, bracket flat band.

Ferrimagnetic order at half-filling of whole lattice.
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Hubbard Model on Lieb Lattice
Positive site energy to depopulate ‘bridging sites’
(oxygen atoms in CuOq planes of cuprate superconductors).

Remaining population of square lattice

(copper atoms in CuOs planes of cuprate superconductors).
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Hubbard Model on Lieb Lattice

Three bands: two dispersing, bracket flat band.
Half-filling of lowest band only (p = 1/3) AF order.
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PCA for doped system
(weak sign problem).



Holstein model: e~ coupled to phonons: S;; — x;,.

H= _tz<ij>a (C}L'Lacja + C;L'acz'a) + % Zz (p’? + WQZE%) T gz’i Li (a;f T ai)
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P.M. Dee, J. Coulter, K.G Kleiner, and S. Johnston, Comm. Phys. 3, 1 (2020).
S. Li and S. Johnston, Nature Quantum Mat. 5, 1 (2020).



4. Self Learning Monte Carlo, Role of Symmetry

Train local effective model S.g

Reduce o(N?) fermion determinant evaluation

Se captures ‘polaron’” minima X — 5—22 — :I:fJ—Q2
couples phonons in space and imaginary time
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5. Challenges Posed by Non-Diagonal Order

“Visualizing strange metallic correlations in the two-dimensional Fermi-Hubbard model with
artificial intelligence,” E. Khatami, E. Guardado-Sanchez, B.M. Spar, J.F. Carrasquilla,

W.S. Bakr, R. Scalettar, Phys. Rev. A102, 033326 (2020).
An older example: Extended Hubbard Model

H——tz C; JU—I-CTC —I—Uanan—l—VZmn]

jo 1o
(ij)o (5)
[J > 2V: Spin density wave (AF)
up/down spin alternates

[/ < 2V: Charge density wave
empty, double occupation alternates

[~ 2V: “Bond Ordered Wave”
High /low kinetic energy alternates

Order not in density operators.

Vit

unt = Khatami talk




6. Conclusions

Machine learning method can accurately discern phase transitions.

Magnetism: Classical Ising and Blume-Capel
e Dominant principle component <+ order parameter;
e Recognizes symmetry breaking; first vs second order transitions.
e Sub-dominant principle components: small ¢ behavior (domain walls).

Magnetic and Charge Order: Quantum Hubbard and Holstein Models
e Similar to classical: principal component bifurcation — transition
e Effective even in doped case (sign problem!)

Configurational snapshots: ML does not require %—? !

= Johnston talk

** Use ML for doing more effective simulations, not just data analysis **

What about more “subtle” situations?
e Bond Ordered Wave phase of extended Hubbard model.
e Strange Metal phase of square lattice Hubbard model (and cuprates)
= Khatami talk



