

UCDAVIS

Is Perfect Quantum State Transfer Possible?

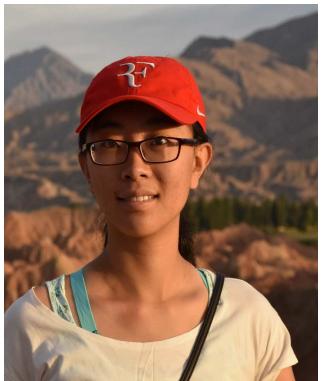
- The spreading of wave packets
- Lattice Models
- Theory of Perfect Quantum State Transfer
(vs. The Real World)
- Recovering high fidelity with Monte Carlo
- Superconducting Qubit Array Results (w. Marina: Cavity-Emitter)
- Conclusions

Funding:

**U.S. DEPARTMENT OF
ENERGY**

Office of
Science

Cast of Characters



Yuxi
Zhang

Marina
Radulaski

Rubem
Mondaini

Amelia
Broman

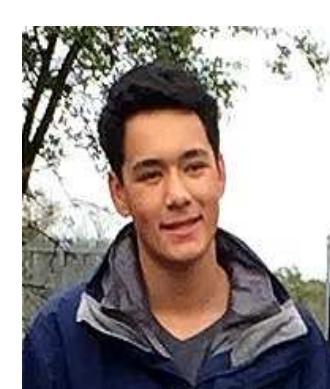
Jesse
Patton

Qiujiang
Guo

Eli
Baum

Victoria
Norman

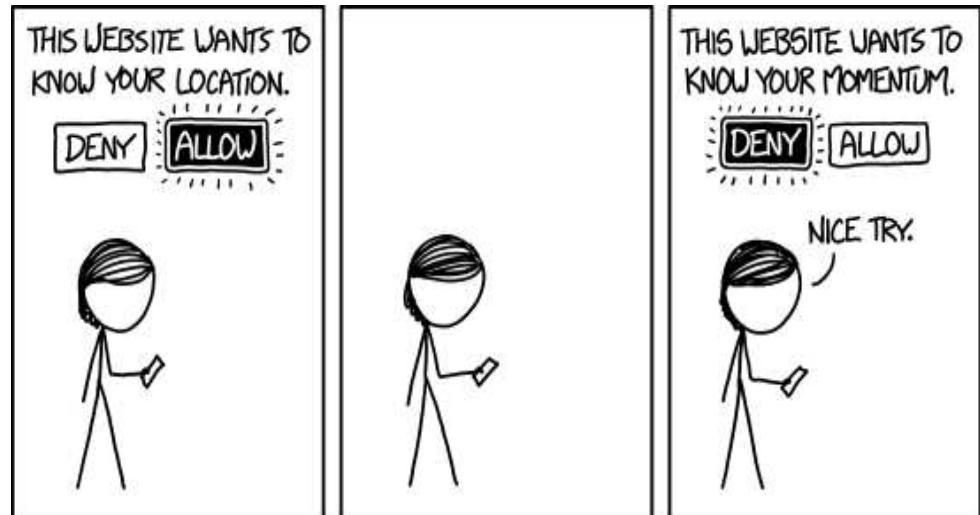
Trevor
Clarke



Alex
Yue

1. The Spreading of Wave Packets

Heisenberg uncertainty principle has become part of popular culture.



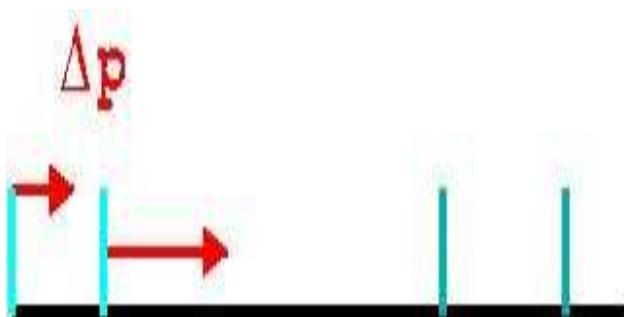
Heisenberg could have prevented your attendance of this talk . . .

Cartoons can get it wrong.

Frank and Ernest

$$\Delta x \Delta t > ?!?$$

Uncertainty $\Delta x \Delta p > \frac{\hbar}{2}$, of static $\Psi(x)$: wavefunction also spreads in time.



This picture useful qualitatively, but, like cartoon, also wrong.
Would imply linear in t growth of Δx .

Doing it right: free-particle Schroedinger Equation

$$i\hbar \frac{\partial \psi(x, t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x, t)}{\partial x^2}$$

‘Imaginary time’ diffusion equation

$$\frac{\partial \rho(x, t)}{\partial t} = D \frac{\partial^2 \rho(x, t)}{\partial x^2}$$

QM probability density spreads as \sqrt{t} .

(This analogy underlies a powerful computational approach to the solution of the Schroedinger equation: “[diffusion Monte Carlo](#)”)

External potential can control spreading: e.g. [Hydrogen atom](#)

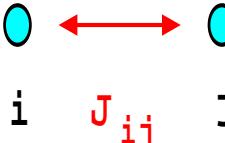
$$\frac{\hbar}{i} \frac{\partial \psi(x, t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x, t)}{\partial x^2} + V(x) \psi(x, t)$$

But in the absence of $V(x)$ we expect [spreading](#).

2. Lattice Models

Diffusion, localization and quantum state transfer often formulated on a **lattice**.

σ_i^\pm raise/lower a qubit state on site i

$$\mathcal{H} = \sum_{\langle ij \rangle} J_{ij} (\sigma_i^+ \sigma_j^- + \sigma_j^+ \sigma_i^-)$$


Little fundamental difference from continuum space.

Diagonalize Hamiltonian: eigenvectors $\phi_\alpha(j)$ eigenvalues λ_α

$$\psi(j, t = 0) = \sum_\alpha c_\alpha \phi_\alpha(j) \quad \psi(j, t) = \sum_\alpha c_\alpha e^{-i\lambda_\alpha t/\hbar} \phi_\alpha(j)$$

to form wave packets which can propagate and spread.

Analog of nuclear potential confining e^- in an atom \Rightarrow **Anderson localization**:

Site energies μ_i **localize** quantum particles on lattice sites i of lowest μ_i .

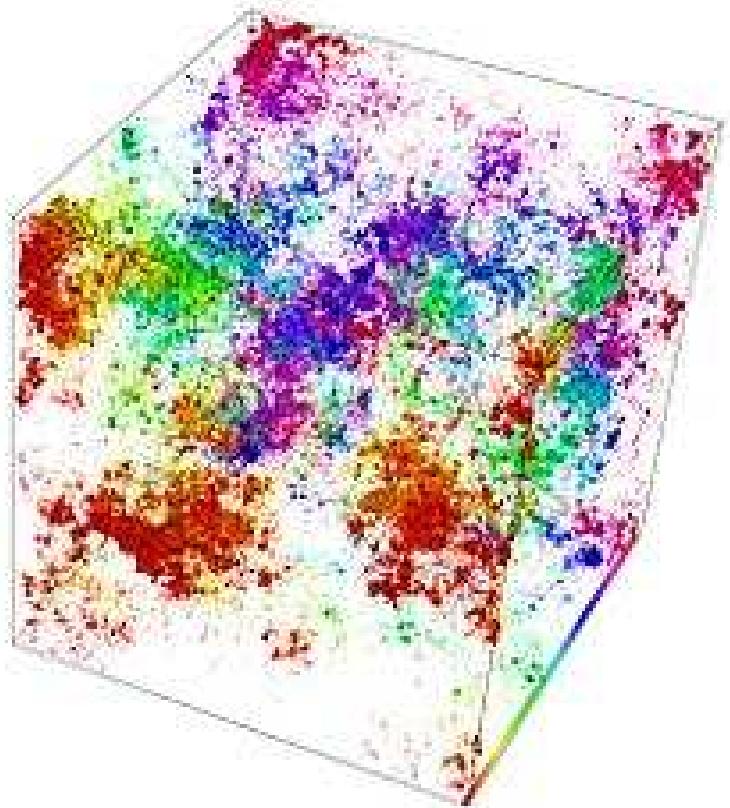
$$\mathcal{H} = -t \sum_{\langle ij \rangle} (\sigma_i^+ \sigma_j^- + \sigma_j^+ \sigma_i^-) + \sum_i \mu_i \sigma_i^+ \sigma_i^-$$

Quantify ‘size’ of ψ via inverse participation ratio: $\mathcal{P}^{-1} \equiv \sum_j |\psi_j|^4$

$$\psi(j) = \delta_{j,j_0} \Rightarrow \mathcal{P}^{-1} = 1$$

$$\psi(j) = \frac{1}{\sqrt{N}} \Rightarrow \mathcal{P}^{-1} = \frac{1}{N}$$

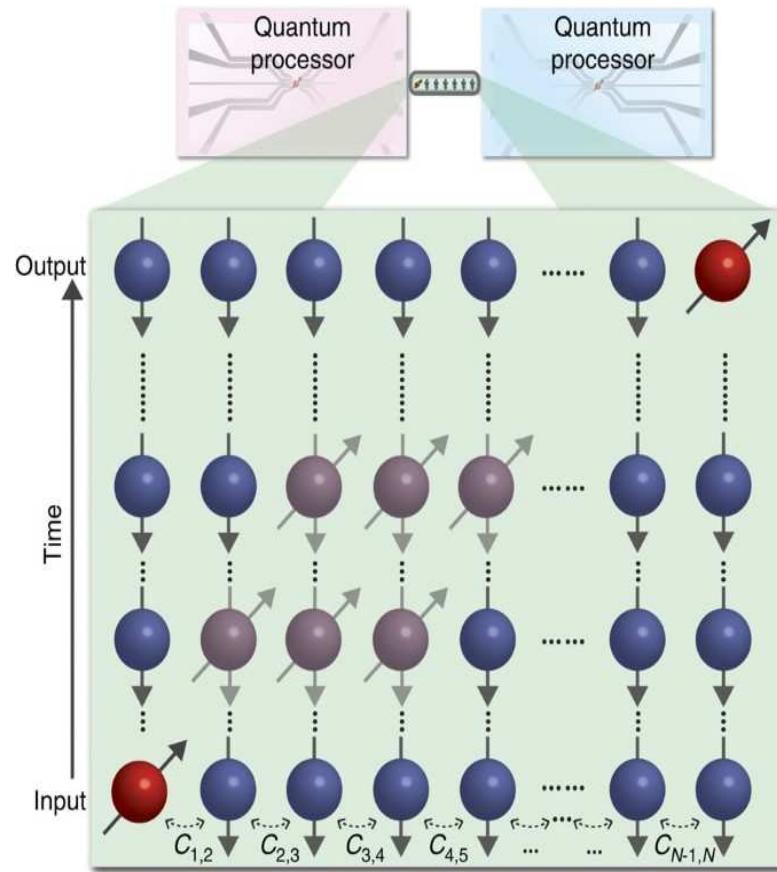
\mathcal{P}^{-1} is inverse of number of sites ‘participating’ in wave function ψ .



Some eigenstates of the Anderson model in 3D.

Marina’s group: generalization of \mathcal{P}^{-1} to cavity-emitter as measure of *polaronicity*.
Do not expect this in translationally invariant system.

3. Perfect Quantum State Transfer



In designing a quantum computer, or other quantum information applications, spreading is very bad news. Would like instead to be able to transport a quantum state precisely from one location to another.

This goal is at variance with our intuition concerning the Schrödinger equation!

After all, imaginary time *diffusion* equation.

Can we *engineer* a lattice Hamiltonian exhibiting *perfect quantum state transfer*?

Revisit:

$$\mathcal{H} = - \sum_{\langle ij \rangle} \mathcal{J}_{ij} (c_i^\dagger c_j + c_j^\dagger c_i) + \sum_i \mu_i c_i^\dagger c_i$$

Tune $\{ J_{ij}, \mu_i \}$ to engineer eigenstates ϕ_α and eigenenergies λ_α of \mathcal{H} .

Goal: At some passage time t_p

$$\psi(j, t=0) = \sum_\alpha c_\alpha \phi_\alpha(j) = \delta_{j,1} \quad \Rightarrow \quad \psi(j, t_p) = \sum_\alpha c_\alpha e^{-i\lambda_\alpha t_p/\hbar} \phi_\alpha(j) = \delta_{j,N}$$

Is this possible?!

Intuition: Eigen-energies λ_α must allow ψ to be ‘in phase’ at later time t .

$\lambda_\alpha - \lambda_\beta$ related as *rational fractions*. Simplest scenario: $\lambda_\alpha - \lambda_\beta = c$.

Do we know any quantum mechanical system with **equi-spaced eigenenergies**?

We sure do! **Quantum harmonic oscillator**.

Crud! That’s a infinite collection \Rightarrow infinite length chain.

Ah-ha. **Angular momentum** J has $J_z = m = \hbar(-j, -j+1, \dots, j)$

$$J_+ |j, m\rangle = \sqrt{j(j+1) - m(m+1)} |j, m+1\rangle$$

$j = 4$ has nine $m = -4, -3, -2, -1, 0, 1, 2, 3, 4$.

$$J_{ij} = \sqrt{1*8} \quad \sqrt{2*7} \quad \sqrt{3*6} \quad \sqrt{4*5} \quad \sqrt{5*4} \quad \sqrt{6*3} \quad \sqrt{7*2} \quad \sqrt{8*1}$$

Spin Chain: ‘engineered’ hoppings (for $N = 9$) which will give perfect QST!

Passage time: $t_p = \frac{\pi}{2}$.

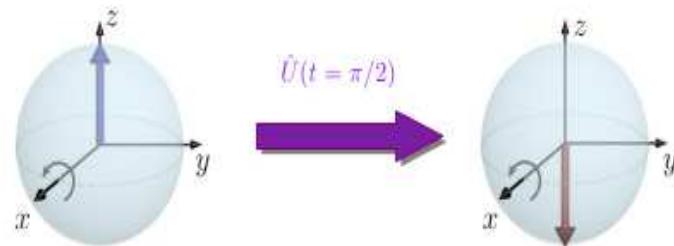
Symmetry $t_i = t_{N-i}$ will be important. Notice too: No μ_i (as yet).

More precisely Christandl says:

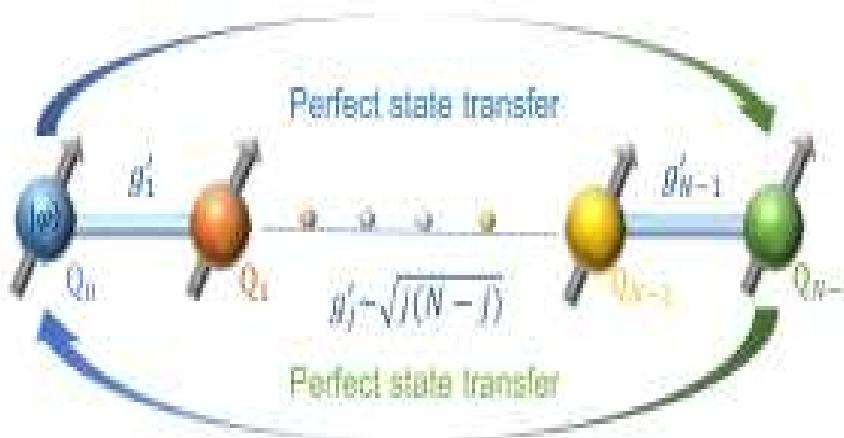
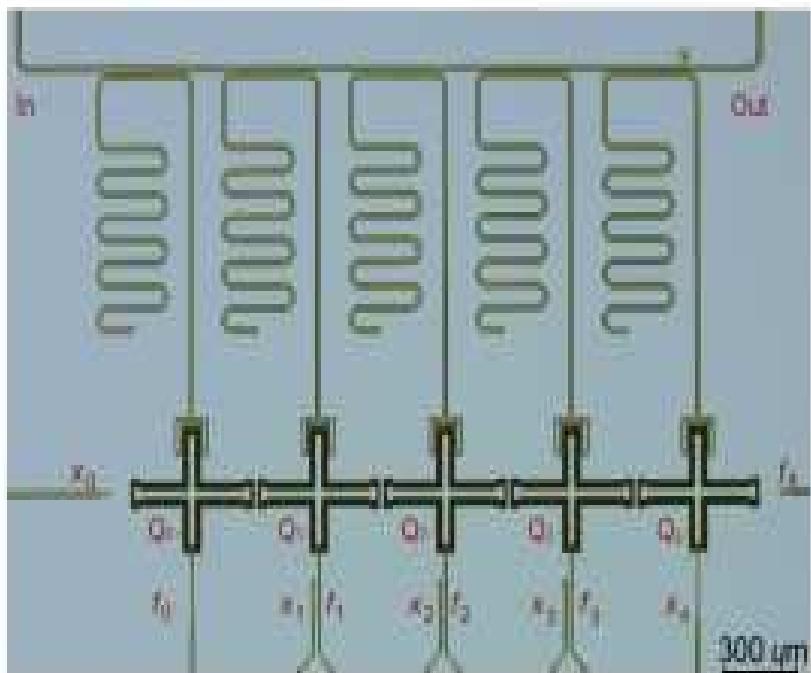
$$\mathcal{H} = \begin{pmatrix} 0 & \sqrt{(N-1) \cdot 1} & 0 & \dots & 0 \\ \sqrt{(N-1) \cdot 1} & 0 & \sqrt{(N-2) \cdot 2} & \dots & 0 \\ 0 & \sqrt{(N-2) \cdot 2} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \sqrt{1 \cdot (N-1)} \\ 0 & 0 & 0 & \sqrt{1 \cdot (N-1)} & 0 \end{pmatrix}$$

$$\hat{\mathcal{H}} = 2 J \hat{S}_x$$

Time evolution corresponds to **rotation** of wave function about \hat{x} -axis.



These ‘quantum spin chain’ perfect state transfer systems are being built!



Well-studied problem.

“Perfect transfer of arbitrary states in quantum spin networks”,
M. Christandl et al,
Phys. Rev. A71 032312 (2005).

\Rightarrow

“Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings”,
X. Li, *et al*,
Phys. Rev. Applied 10, 054009 (2018).

Five Qubits.

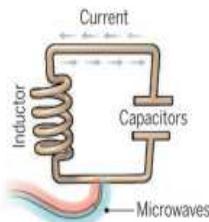
We will be interested in more complex geometries.

3. \Rightarrow 3'. Real World

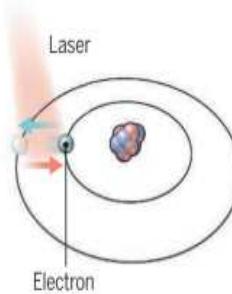
Existing **qubit** platforms

[Science, 354 6316]

Superconducting loops



Trapped ions



Silicon quantum dots

- Resistance-free current oscillates back and forth around a circuit loop
- Injected microwave signal excites the current into superposition states
- Emulates a quantum anharmonic oscillator

Google, IBM, ...
ZJU, UESTC, ...

- Ions, have quantum energies that depend on the location of electrons.
- Tuned lasers cool and trap the ions, and put them in superposition states.

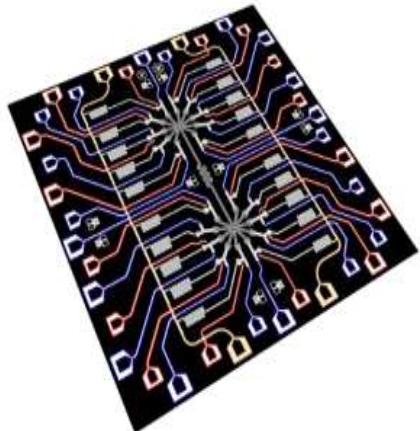
IonQ, Honeywell
Maryland, ...

- "Artificial atoms" made by adding an electron to a small piece of pure silicon.
- Microwaves control the electron's quantum state.

Intel, HRL, QuTech
UNSW, Delft, RIKEN, ...

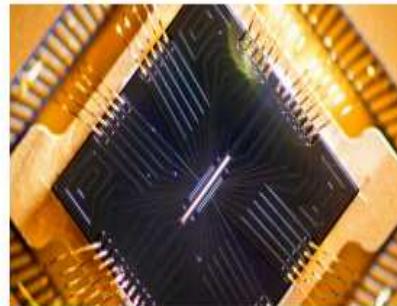
Building many of them – **Noisy intermediate quantum devices**

Superconducting quantum circuits



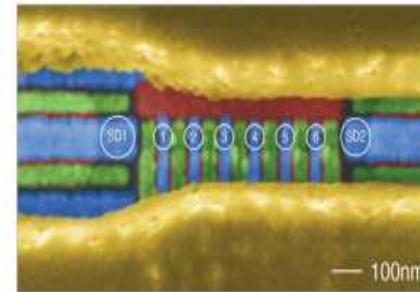
[IOP, ZJU]

Trapped ions



[Maryland, IonQ]

Silicon quantum dots

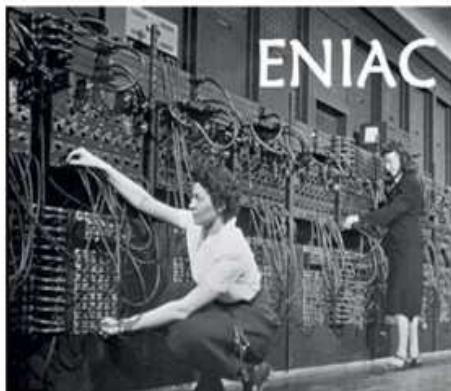


[Qutech 2022]

These are not laptop computers or cell phones . . .

The more things change, the more they stay the same...

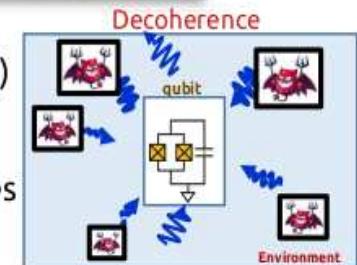
First general-purpose digital computer



- 30 tons
- 18,000 vacuum tubes
- 1,500 relays
- +100,000 of resistors, capacitors and inductors,
= add or subtract 5,000 times per second!

SC quantum circuit @ZJU

- 36-qubits (121 available)
- Fully programmable
- Emulates dynamics of \hat{H} with dim = 9B states
- Operates at 20mK...



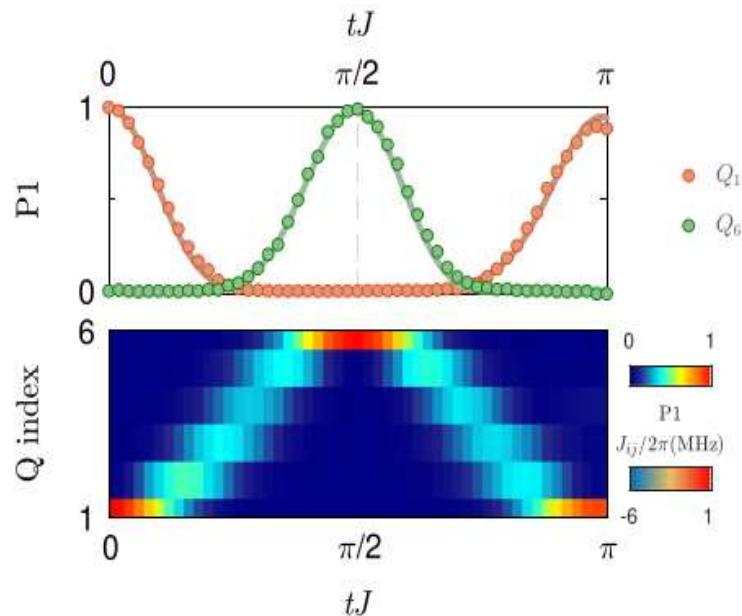
It really works in 1D:

Quantum state transfer: Experimental results

..., RM*, Guo*, Scalettar*
(in preparation)

1d chain of qubits:

Emulated Hamiltonian (NN couplings are tunable)



$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} [\hat{\sigma}_i^+ \hat{\sigma}_j^- + \hat{\sigma}_i^- \hat{\sigma}_j^+]$$

$$J_{n,n+1} = J\sqrt{n(6-n)}$$

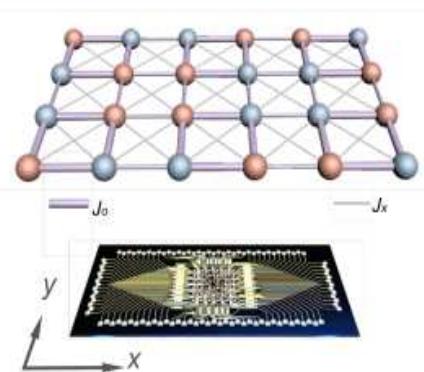
$$J/2\pi = -1 \text{ MHz}$$

- Transfer of one-excitation states with remarkable fidelity

How about different geometries?

3'. Real World Problems

2d quantum state transfer - 3x3

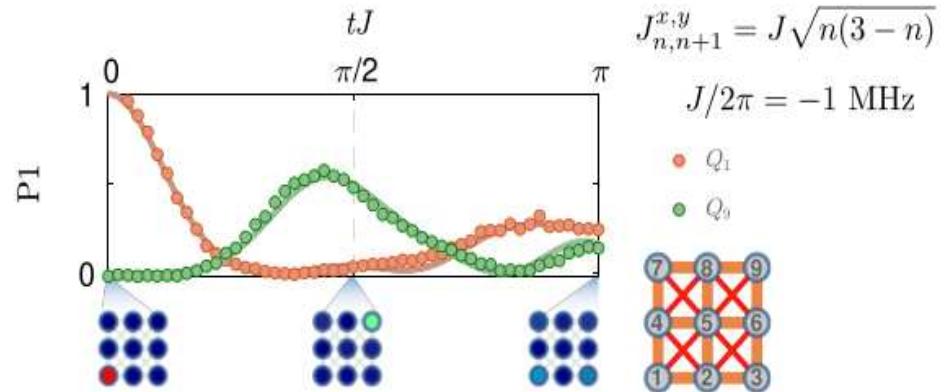


Fabricated @ ZJU

→ spoils “Christandl’s prescription”

- Parasitic cross couplings J_x naturally occur in current devices

$$\begin{aligned}\hat{H}_{\text{tot}} &= 2J(\hat{S}_{1,x} + \hat{S}_{2,x}) + \\ &\quad J_x(\hat{S}_{1-}\hat{S}_{2+} + \hat{S}_{1+}\hat{S}_{2-} + \hat{S}_{1+}\hat{S}_{2+} + \hat{S}_{1-}\hat{S}_{2-}) \\ &= 2J(\hat{S}_{1,x} + \hat{S}_{2,x}) + 4J_x\hat{S}_{1x}\hat{S}_{2x}\end{aligned}$$



4. Monte Carlo and the “QST Inverse Problem”

Proceed via Monte Carlo.

Engineer $\{ J_{ij} \}$ to achieve ‘Target’ time evolution operator

$$\mathcal{U}^* = e^{-i\mathcal{H}^* t}$$

Define an **action**:

$$\mathcal{S} = \sum_{i,j} (\mathcal{U}_{ij} - \mathcal{U}_{ij}^*)^2$$

Begin with a random set of $\{ J_{ij} \}$.

Propose ‘moves’ which change $\{ J_{ij} \}$.

Accept with the ‘heat bath’ probability $e^{-\beta \Delta \mathcal{S}} (1 + e^{-\beta \Delta \mathcal{S}})^{-1}$.

$\Delta \mathcal{S} \equiv$ the change in action from Monte Carlo move.

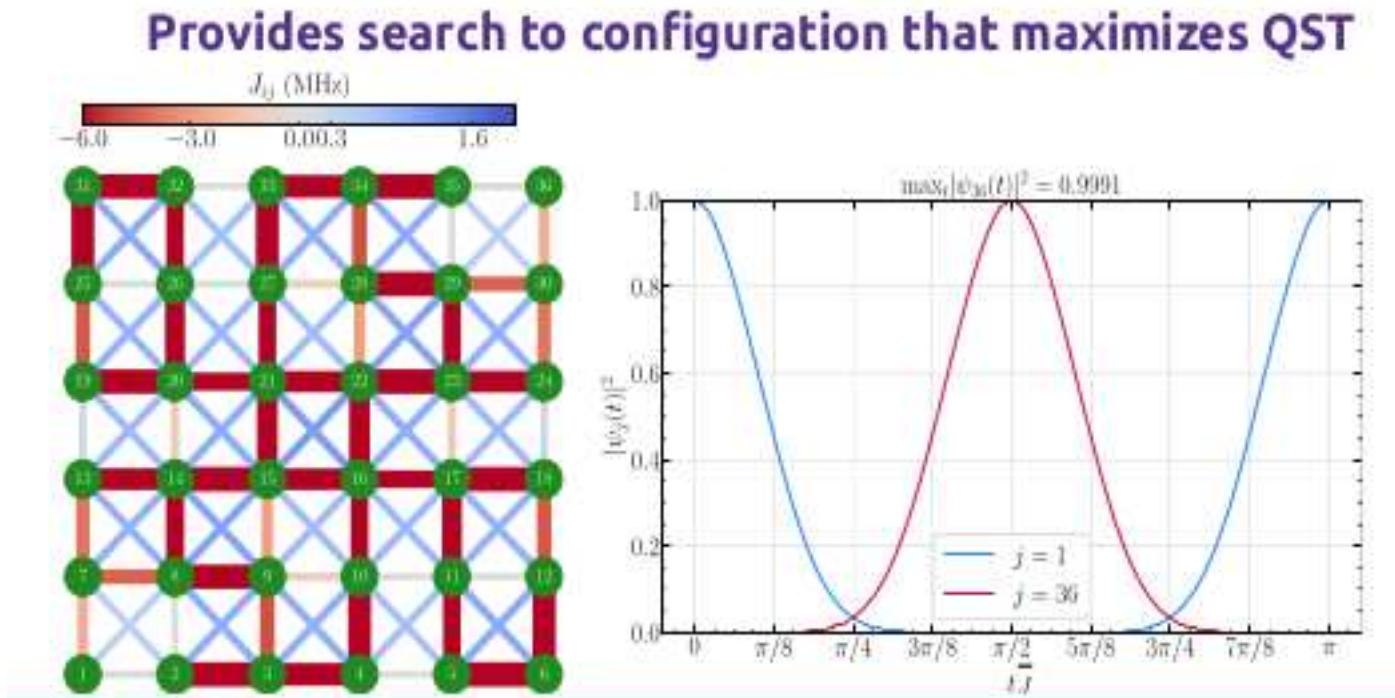
‘Annealing:’ β starts at a small value (e.g. $\beta_i \sim 0.1$).

Do Monte Carlo, then increase β . After K steps $\beta_f = \alpha^K \beta_i$ (typical $\beta_f = 10^4$.)

Statistical mechanics language: $\beta = 1/T$ is the [inverse temperature](#).

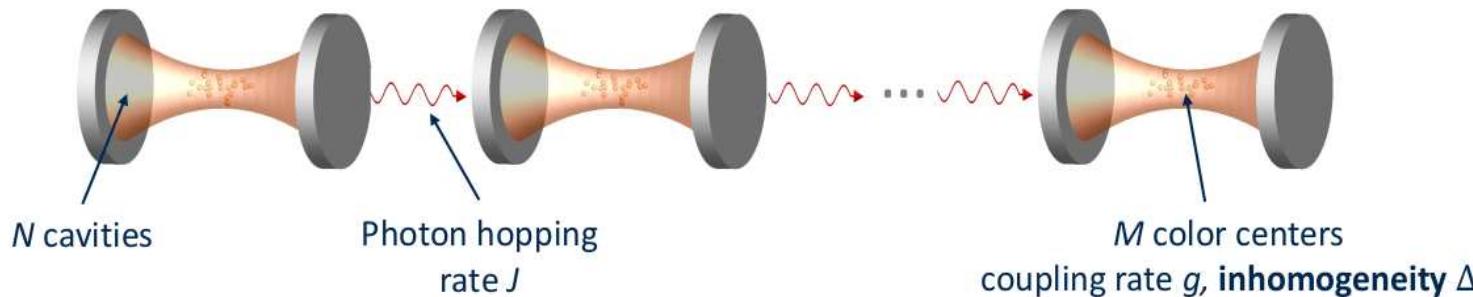
$\beta_i = 0.1$: [high temperature](#). $\beta_f = 10^4$: [low temperature](#). Escape [metastable states](#).

$\{J_i, g_i\}$ give target \mathcal{U}^* high accuracy.



Similar protocol for coupled cavity-emitter arrays (**Radulaski group**).

Phys. Rev. B105, 195429 (2022).

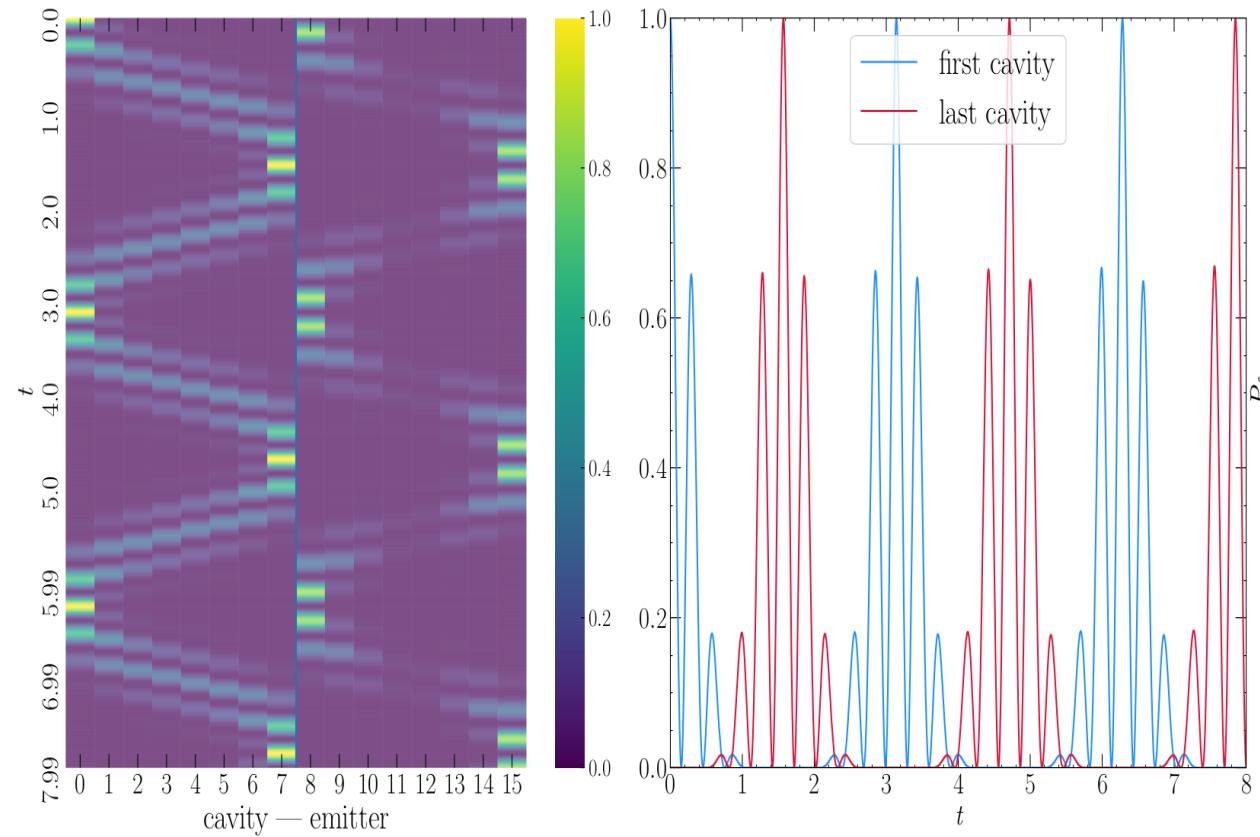


$$\mathcal{H} = \begin{pmatrix} \Omega_1 & J_{1,2} & 0 & 0 & g_1 & 0 & 0 & 0 \\ J_{1,2} & \Omega_2 & J_{2,3} & 0 & 0 & g_2 & 0 & 0 \\ 0 & J_{2,3} & \Omega_3 & J_{3,4} & 0 & 0 & g_3 & 0 \\ 0 & 0 & J_{3,4} & \Omega_4 & 0 & 0 & 0 & g_4 \\ g_1 & 0 & 0 & 0 & \omega_1 & 0 & 0 & 0 \\ 0 & g_2 & 0 & 0 & 0 & \omega_2 & 0 & 0 \\ 0 & 0 & g_3 & 0 & 0 & 0 & \omega_3 & 0 \\ 0 & 0 & 0 & g_4 & 0 & 0 & 0 & \omega_4 \end{pmatrix}$$

Explored ‘imperfections’ about optimized $\mathcal{H}.$)

- Randomness in J_{ij}, g_i
- Randomness in Ω_i

Perfect Quantum State Transfer for the CCA geometry:

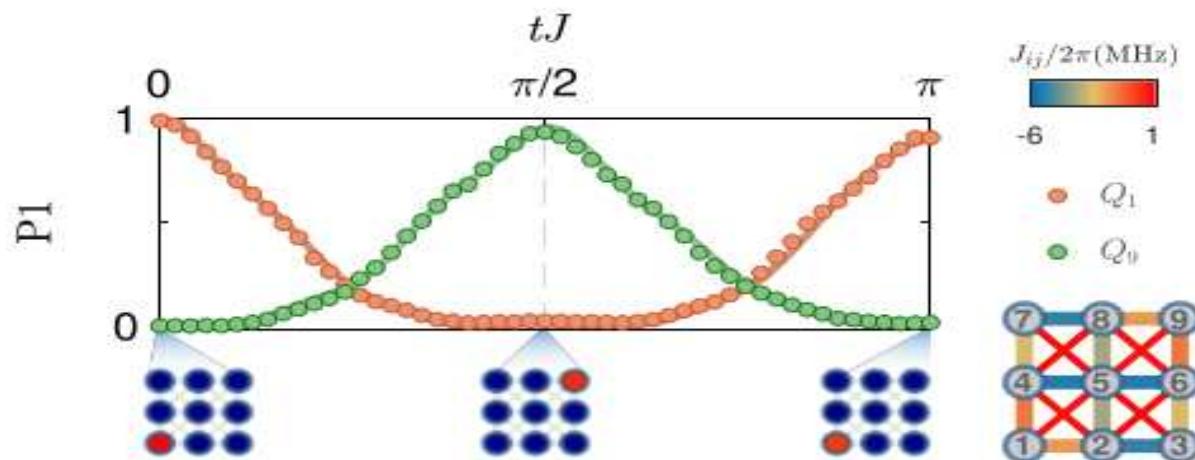


Monte Carlo works! Transfer with **perfect fidelity** from site $i = 1$ to site $i = N$.
Small/negligible deviation from fidelity $f = 1$ due to finite MC simulation time.
Can achieve arbitrary accuracy by lengthening run.

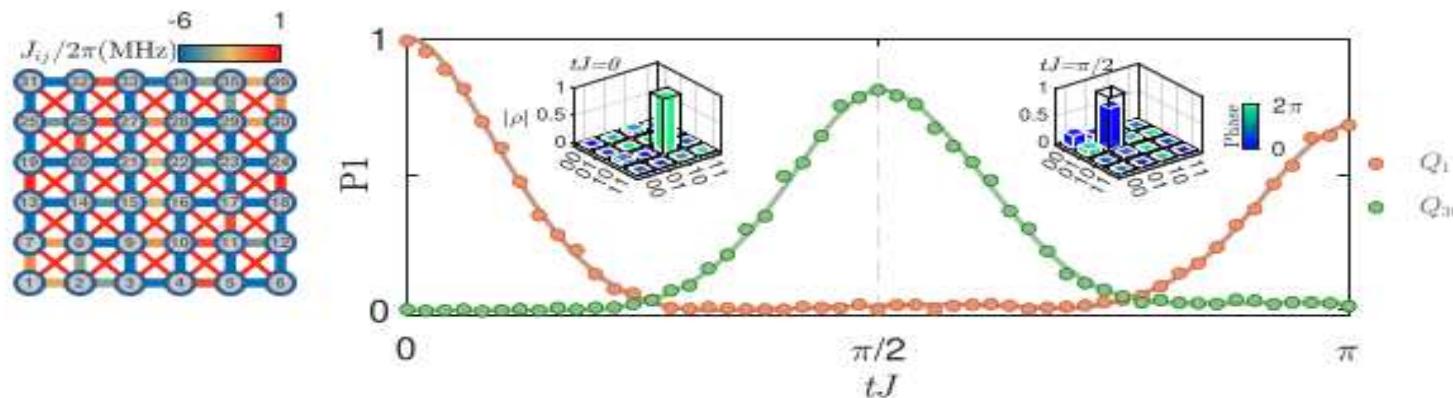
Can rectify the “real world problems” cross coupling (and defective coupler).

And providing guide to **experiments!**

3x3:



6x6:

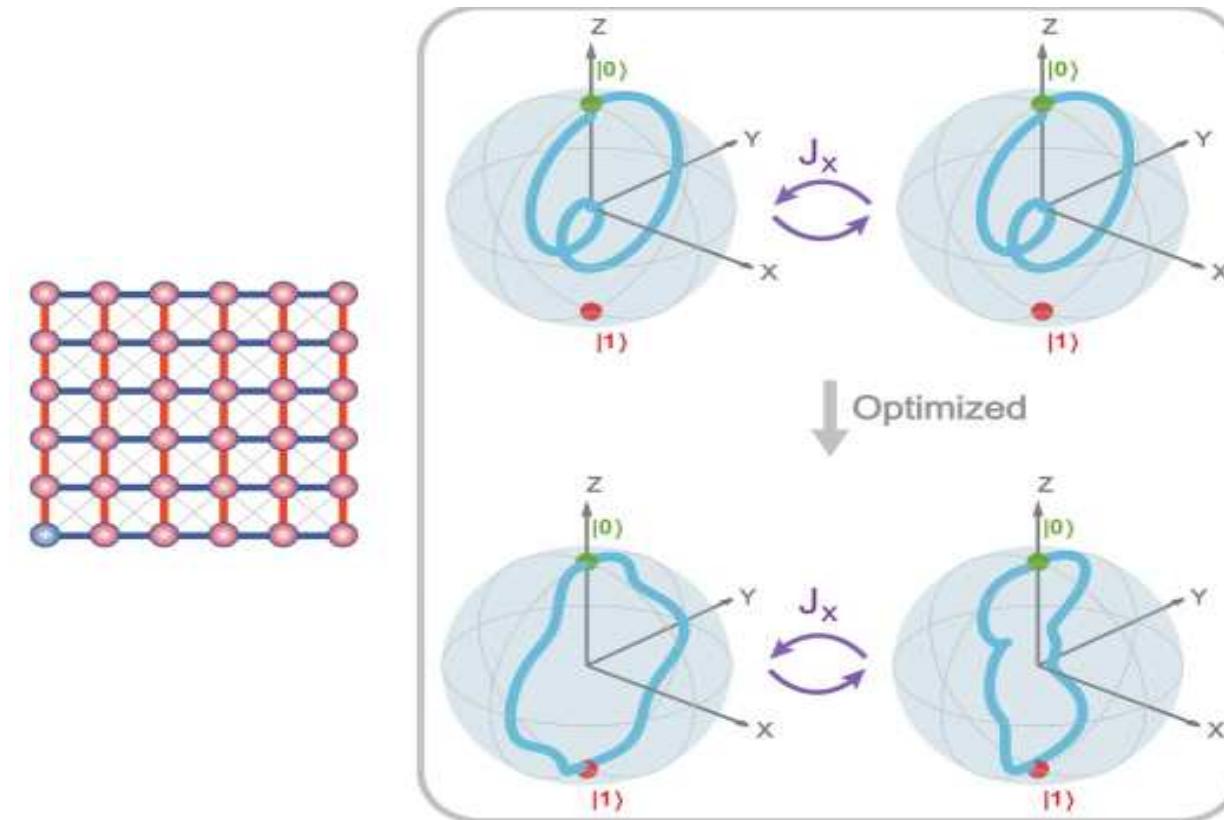


Generalization of Christandl to 2D:

\hat{S}_x and \hat{S}_y .

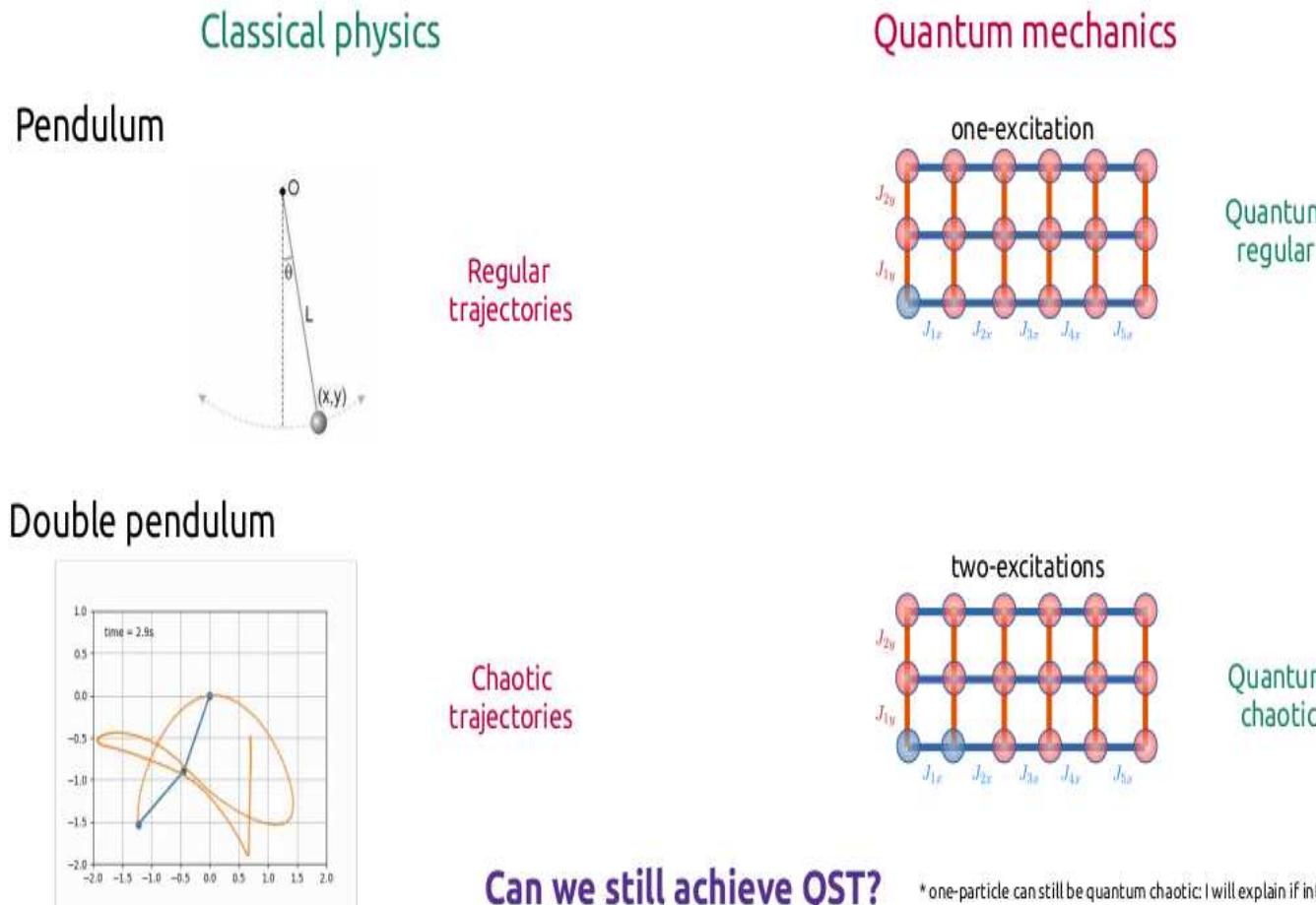
Christandl prescription (top) misses propagation to target qubit.

Monte Carlo optimized \mathcal{H} recovers high fidelity (through intricate path).



Preceding: Can compensate for [cross-couplings](#) and [defective coupler](#).

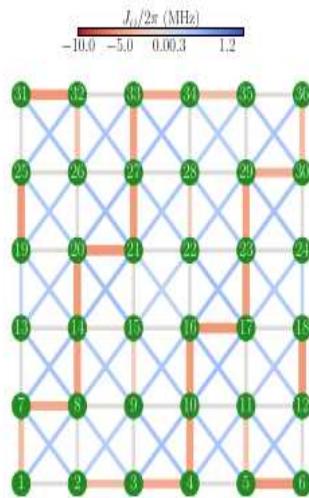
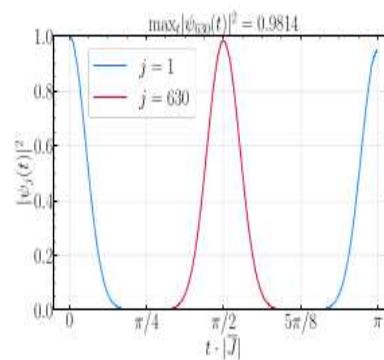
What about [multiple excitations](#)?



Can get high fidelity QST in theory (left).

But experimental implementation of theory-guided J_{ij} not quite there yet.

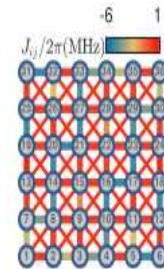
Numerical solutions



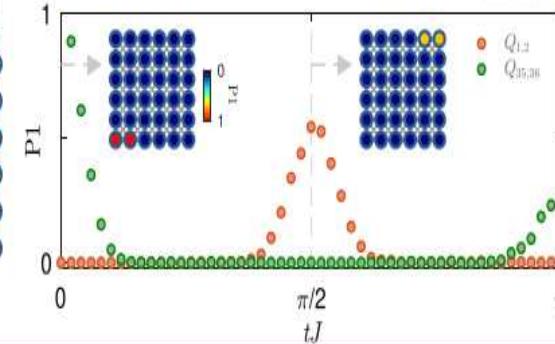
→ Problem is exponentially harder:

$$\mathcal{D}_H = \binom{36}{2} = 630$$

Sensitivity of fine-tuning of the qubit couplings ←



Preliminary experimental results



This all seems a black box!

Adjust \mathcal{H} in some (strange) way to get good QST.

Is any insight possible into what's happening?

How? By "curing" quantum chaos!

- Adjacent gap analysis (eigenenergy repulsion):

$$r_n = \frac{\min(\delta_n, \delta_{n+1})}{\max(\delta_n, \delta_{n+1})} \quad \text{where} \quad \delta_n = E_{n+1} - E_n$$

$$\begin{array}{c} E_n \\ \uparrow \\ \delta_n \{ \quad \} \delta_{n+1} \quad \left. \begin{array}{l} P_{GOE} = \frac{27}{4} \frac{r+r^2}{(1+r+r^2)^{5/2}} \Theta(1-r) \\ P_P = \frac{2}{1+r^2} \Theta(1-r) \end{array} \right\} \end{array}$$

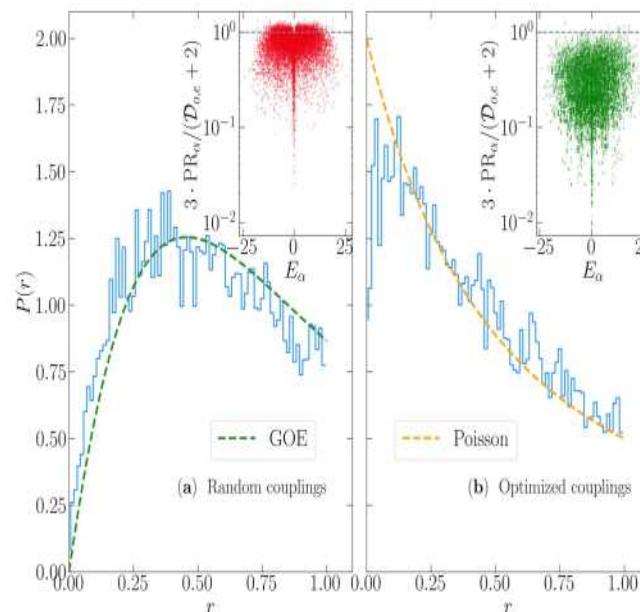
- Participation ratio (eigenstate spread in the basis)

$$PR_\alpha = \frac{1}{\sum_{n=1}^{\mathcal{D}_{o,e}} |c_\alpha^n|^4} \quad PR^{GOE} = \frac{\mathcal{D} + 2}{3}$$

- The key is that the system with two excitations is weakly chaotic... and can be "fixed" → **But with a large number of excitations quantum chaos kicks in!**

Original random
couplings

MC optimized
couplings



6. Conclusions

- Usual diffusion of wave function can be circumvented by ‘engineering’.
- Monte Carlo method used in achieving target time evolution operator.
- Generalize Christandl prescription in 1D.
- High fidelity quantum state transfer achievable.

Cavity-Emitter Arrays (with disorder).

2D with ‘real world’ effects (cross coupling, dead coupler).

Multiple excitation (physical insight into where \mathcal{H} evolves).