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1. The Spreading of Wave Packets

Heisenberg uncertainty principle has become part of popular culture.

Heisenberg could have prevented your attendence of this talk · · ·



Cartoons can get it wrong.

∆x∆t > ?!?!

Uncertainty ∆x∆p > ~

2
, of static Ψ(x): wavefunction also spreads in time.

This picture useful qualitatively,

but, like cartoon, also wrong.

Would imply linear in t growth of ∆x.



Doing it right: free-particle Schroedinger Equation
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∂2ψ(x, t)

∂x2

‘Imaginary time’ diffusion equation

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2

QM probability density spreads as
√
t.

(This analogy underlies a powerful computational approach to the solution

of the Schroedinger equation: “diffusion Monte Carlo”)

External potential can control spreading: e.g. Hydrogen atom
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But in the absence of V (x) we expect spreading.



2. Lattice Models

Diffusion, localization and quantum state transfer often formulated on a lattice.

σ±
i raise/lower a qubit state on site i

H =
∑

〈ij〉

Jij
(

σ+
i σ

−
j + σ+

j σ
−
i

)

i jJ ij

Little fundamental difference from continuum space.

Diagonalize Hamiltonian: eigenvectors φα(j) eigenvalues λα

ψ(j, t = 0) =
∑

α

cα φα(j) ψ(j, t) =
∑

α

cα e
−iλαt/~ φα(j)

to form wave packets which can propagate and spread.

Analog of nuclear potential confining e− in an atom ⇒ Anderson localization:

Site energies µi localize quantum particles on lattice sites i of lowest µi.

H = −t
∑

〈ij〉

(

σ+
i σ

−
j + σ+

j σ
−
i

)

+
∑

i

µi σ
+
i σ

−
i



Quantify ‘size’ of ψ via inverse participation ratio: P−1 ≡
∑

j |ψj |4

ψ(j) = δj,j0 ⇒ P−1 = 1 ψ(j) =
1√
N

⇒ P−1 =
1

N

P−1 is inverse of number of sites ‘participating’ in wave function ψ.

Some eigenstates of the

Anderson model in 3D.

Marina’s group: generalization

of P−1 to cavity-emitter

as measure of polaronicity.

Do not expect this in

translationallty invariant system.



3. Perfect Quantum State Transfer

In designing a quantum computer,

or other quantum information

applications, spreading is very bad news.

Would like instead to be able

to transport a quantum state

precisely from one location to another.



This goal is at variance with our intuition concerning the Schroedinger equation!

After all, imaginary time diffusion equation.

Can we engineer a lattice Hamiltonian exhibiting perfect quantum state transfer?

Revisit:

H = −
∑

〈ij〉

Jij
(

c†i cj + c†jci
)

+
∑

i

µi c
†
i ci

Tune { Jij , µi } to engineer eigenstates φα and eigenenergies λα of H.

Goal: At some passage time tp

ψ(j, t = 0) =
∑

α

cα φα(j) = δj,1 ⇒ ψ(j, tp) =
∑

α

cα e
−iλαtp/~ φα(j) = δj,N

Is this possible?!



Intuition: Eigen-energies λα must allow ψ to be ‘in phase’ at later time t.

λα − λβ related as rational fractions. Simplest scenario: λα − λβ = c.

Do we know any quantum mechanical system with equi-spaced eigenenergies?

We sure do! Quantum harmonic oscillator.

Crud! That’s a infinite collection ⇒ infinite length chain.

Ah-ha. Angular momentum J has Jz = m = ~(−j,−j + 1, · · · j)

J+ |j,m〉 =
√

j(j + 1)−m(m+ 1) |j,m+ 1〉

j = 4 has nine m = −4,−3,−2,−1, 0, 1, 2, 3, 4.

2*7 3*61*8 8*17*26*35*44*5J   =ij

Spin Chain: ‘engineered’ hoppings (for N = 9) which will give perfect QST!

Passage time: tp = π
2
.

Symmetry ti = tN−i will be important. Notice too: No µi (as yet).



More precisely Christandl says:
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Ĥ = 2 J Ŝx

Time evolution corresponds to rotation of wave function about x̂-axis.



These ‘quantum spin chain’ perfect state transfer systems are being built!

Well-studied problem.

“Perfect transfer of arbitrary states in

quantum spin networks”,

M. Christandl etal,

Phys. Rev. A71 032312 (2005).

⇒
“Perfect quantum state transfer in

a superconducting qubit chain with

parametrically tunable couplings”,

X. Li, etal,

Phys. Rev. Applied 10, 054009 (2018).

Five Qubits.

We will be interested in more

complex geometries.



3. ⇒ 3’. Real World



.



These are not laptop computers or cell phones · · ·



It really works in 1D:



3’. Real World Problems



4. Monte Carlo and the “QST Inverse Problem”

Proceed via Monte Carlo.

Engineer { Jij } to achieve ‘Target’ time evolution operator

U∗ = e−iH∗t

Define an action:

S =
∑

i,j

(

Uij − U∗
ij

)2

Begin with a random set of { Ji,j }.
Propose ‘moves’ which change { Ji,j }.

Accept with the ‘heat bath’ probability e−β∆S
(

1 + e−β∆S
)−1

.

∆S ≡ the change in action from Monte Carlo move.



‘Annealing:’ β starts at a small value (e.g. βi ∼ 0.1).

Do Monte Carlo, then increase β. After K steps βf = αKβi (typical βf = 104.)

Statistical mechanics language: β = 1/T is the inverse temperature.

βi = 0.1: high temperature. βf = 104: low temperature. Escape metastable states.

{Ji, gi} give target U∗ high accuracy.



Similar protocol for coupled cavity-emitter arrays (Radulaski group).

Phys. Rev. B105, 195429 (2022).
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Explored ‘imperfections’ about optimized H.)

• Randomness in Jij , gi

• Randomness in Ωi



Perfect Quantum State Transfer for the CCA geometry:

Monte Carlo works! Transfer with perfect fidelity from site i = 1 to site i = N .

Small/negligible deviation from fidelity f = 1 due to finite MC simulation time.

Can achieve arbitrary accuracy by lengthening run.



Can rectify the “real world problems” cross coupling (and defective coupler).



Generalization of Christandl to 2D:

Ŝx and Ŝy.

Christandl prescription (top) misses propagation to target qubit.

Monte Carlo optimized H recovers high fidelity (through intricate path).



Preceding: Can compensate for cross-couplings and defective coupler.

What about multiple excitations?



Can get high fidelity QST in theory (left).

But experimental implementation of theory-guided Jij not quite there yet.



This all seems a black box!

Adjust H in some (strange) way to get good QST.

Is any insight possible into what’s happening?



6. Conclusions

• Usual diffusion of wave function can be circumvented by ‘engineering’.

• Monte Carlo method used in achieving target time evolution operator.

• Generalize Christandl prescription in 1D.

• High fidelity quantum state transfer achievable.

Cavity-Emitter Arrays (with disorder).

2D with ‘real world’ effects (cross coupling, dead coupler).

Multiple excitation (physical insight into where H evolves.


