
Preface

In Le Bellac’s lectures: Caldeira Leggett Model
* Simple enough to be exactly soluble
* Insight into Brownian Motion, Fluctuation-Dissipation, ...
* But,... spring forces between particles far apart?!

Likewise Batrouni/Hebert: XY Model:
* Simple
* Insight into superfluidity
* But,... pretty distant from 4He!

Ising, Heisenberg Models
* Magnetism arising from local spins.

This Seminar: Hubbard Model
* Itinerant Magnetism (spins sit on electrons which can move)
* Metal-Insulator transitions arising from electron-electron interactions
* High Temperature superconductivity
* But,... Simplicity → significant approximations (for solids)

Are there systems (AMO) for which it might be more realistic?
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Forty Years of the Hubbard Model

From the Solid State to Cold Atoms on Optical Lattices

• Transition Metal Oxides
• The Fermion Hubbard Model
• Transition Metal Oxides - The Whole Story
• High Temperature Superconductors
• Monte Carlo and Quantum Monte Carlo
∗ Disordered Superconductors
• The Boson Hubbard Model
• Conclusions
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Purpose

Brief introduction to the rich history of the Hubbard Model in condensed matter physics

Successes!! and Limitations!!

Make connections to new field of cold atom physics.

Recent suggestion: Cold atom systems will give us insight into physics of solids.

Collaborators

S.R. White (UCI), R.L. Sugar, D.J. Scalapino (UCSB)
G. Batrouni, K. Bouadim, F. Hébert (INLN, Nice), G. Zimanyi (UCD)
M. Rigol (Georgetown), A. Muramatsu (Stuttgart)
P. Sengupta (LANL) V. Rousseau, P.J.H. Denteneer (Leiden)
M. Randeria, N. Trivedi (OSU)

Funding

National Science Foundation
DARPA/Army Research Office
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From Atoms to Solids

Individual atoms: discrete energy levels

Atoms far apart: electrons are localized on single atom

Atoms brought together (solid): degenerate level couple and broaden into a band.

Eigenvectors are delocalized (plane/“Bloch” waves)

“En t
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Band Insulators

Energy band completely filled: Insulator

Finite energy gap to next unoccupied level

Simple counting arguments predict whether many solids are metallic or insulating!!

k eigenstate can be occupied by two electrons (spin ↑, ↓ ).

Solids with an odd number of electrons per unit cell must be metallic.

Alkalis (Li, Na, K): one valence e− (2s1, 3s1, 4s1) per unit cell: Good metal.

Diamond, silicon, and germanium (C, Si, Ge): eight valence electrons per unit cell
(2s22p2, 3s23p2, 4s24p2): insulators.
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Transition Metal Monoxides (MnO, FeO, CoO)

Simplest band structure picture

Mn2+ has 3d5 configuration

half-filled band → metal

Experimentally

∗ insulating

∗ antiferromagnetic (TNeel = 122◦ K)
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Can however make MnO have the expected metallic behavior...

Diamond Anvil Cell

Apply pressure (and lots of it!) to push atoms closer.

∗ Direct measurement of resistance

∗ Probe magnetic moments with synchotron radiation (APS at Argonne)
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Resistance drops to typical metallic values at P ≈ 100 GPa.

J.R. Patterson etal., Phys. Rev. B69, 220101(R) (2004).
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Temperature dependence changes:

insulating (gapped) metallic
R increases as T lowered R decreases as T lowered
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RIXS: Energy of x-rays emitted when core (1s) hole created, and 3p e− decays to fill it.

Magnetic moment on 3d, if present, splits 3p level and induces secondary Kβ′ peak

RESULTS: Kβ′ intensity exhibits step-like structure.

∗ 0 < P < 30 GPa: I(Kβ′)/I(Kβ) ≈ 0.10

∗ 60 < P < 105 GPa: I(Kβ′)/I(Kβ) ≈ 0.05

∗ 105 < P < 130 GPa: I(Kβ′)/I(Kβ) ≈ 0.00 → Moment destroyed
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Temperature-Pressure phase diagram (Yoo etal., PRL, 2005)

[1] P ≈ 30 GPa
Structural phase transition

[2] P ≈ 90 GPa
Antiferromagnetic to paramagnetic transition (moments disordered)

[3] P ≈ 105 GPa
moments destroyed
Insulator to metal phase transition
Isostructural Volume Collapse (∆V ≈ 6.6%)
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The Hubbard Hamiltonian

H = −t
X

〈i,j〉σ

(c†iσcjσ + c†jσciσ) + U
X

i

ni↑ni↓

Operators c†iσ (ciσ) create (destroy) an electron of spin σ on site i.

Includes electron kinetic energy (t) and interaction energy (U).

Ut

Momentum space

H =
X

kσ

ǫk c
†
kσckσ + U

X

k,p,q

c†k+q ↑c
†
p−q ↓ck ↑cp ↓

ǫk = −2t ( coskx + cosky )

In two dimensions, bandwidth W = 8t ≈ 2 eV .

on site repulsion U ≈ 2 − 10 eV

t = 1 ≈ 0.25 eV = 3000◦K is usual choice to set energy scale.

β = t/T = 1/T = 10 means T ≈ 300◦K.
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Mott Insulator

U/t large and 〈n〉 = 1.

All sites occupied by exactly one e−.

Hopping causes double occupancy, costs U .

Chemical potential µ

∗ Cost to add particle

∗ Jumps at ρ = 1
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.

Two ways to destroy Mott Insulator:

∗ Decrease U/t: By applying pressure (MnO)

∗ Shift 〈n〉 6= 1: Dope chemically (cuprate superconductors)

What is optimal spin arrangement?

Hopping of neighboring parallel spins forbidden by Pauli.

Antiparallel arrangement lower in second order perturbation theory.

x t t

∆E(2) = 0 ∆E(2) = −t2/U = −J

In Hubbard model insulating behavior and antiferromagnetism go hand-in-hand.
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Simple “Stoner” Picture of Magnetic Order

E

N(E)

Eδ
δN= N(E  )F δE

Interaction energy lowered by polarizing the spins:

δPE = U(N + δN)(N − δN) − UN2 = −U(δN)2 = −UN(EF ) δNδE

Kinetic energy raised by polarizing the spins:

δKE = +δNδE

Total Energy change:

δE = δKE + δPE = [ 1 − UN(EF ) ]δNδE

Stoner Criterion: UN(EF ) > 1 → magnetism!

Density of states

N(EF ) = δN/δE ∝ 1/t
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Transition Metal Monoxides - The Whole Story ?

Kinetic Energy 3d bandwidth td
Correlation Energy On-site Coulomb Ud

Multiple orbitals Hund’s rule (exchange) JH

Both Mn and O atoms Charge transfer energy E3d − E2p

Mn in cubic environment Crystal field splitting Eeg − Et2g

3d

t 2g

eg

Exchange splitting 

crystal field

>
Exchange splitting 

crystal field
>

t 2g

eg

Loss of moment transition actually a “high-spin to low spin transition”?

Crystal field splitting decreases below exchange splitting as pressure applied.

0-20



High Temperature Superconductor YBa2Cu3O7−δ

Control Mott insulator and antiferromagnetism with δ (electron density).
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Antiferromagnetic when one hole per copper. Neél temperature goes to zero when doped.

Superconductivity when doped and temperature lowered (Hg compound shown)
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As expected from Hubbard: At 1 hole/Cu: antiferromagnetic and insulating
Unexpected from Hubbard?

∗ Superconductivity and, in particular, d-wave symmetry
∗ Charge inhomogeneities
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d−wave (phases alternate)
s−wave s*−wave (phases uniform)

∆†
s = c†j↑c

†
j↓

∆†
s∗ = c†j↑ [ c†j+x ↓ + c†j+y ↓ + c†j−x ↓ + c†j−y ↓ ]

∆†
d = c†j↑ [ c†j+x ↓ − c†j+y ↓ + c†j−x ↓ − c†j−y ↓ ]

Actually, d-wave pairing had been suggested in the Hubbard model before high-Tc in
context of heavy fermion systems.

Mechanism of conventional superconductivity:
Attractive interaction between e− mediated by exchange of phonons (lattice vibrations).

Possible mechanism of (un)conventional superconductivity:
Attractive interaction between e− mediated by exchange of magnons (vibrations of lattice
of antiferromagnetically aligned spins).
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“Stripes”: Doped holes are not uniformly distributed.

Are stripes in the Hubbard Hamiltonian?!

Yes! Inhomogeneous Hartree-Fock (Zaanen); Density Matrix Renormalization Group
(White).
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Again, many ‘real life’ complications

Like TMOs: Oxygen orbitals. 3-band (‘Emery’) model.
Charge transfer versus Mott-Hubbard Insulator

Cu 3d lhb

Cu 3d uhb

O 2p

−

−p εdε

Ud

Cu 3d lhb

−

εp−εd

U d

O 2p

Cu 3d uhb

Role of number of layers and interlayer atoms
La1−xSrxCuO2: Tc ≈ 35◦K.
Y1Ba2Cu3O7−δ: Tc ≈ 90◦K.

Hubbard Hamiltonian ‘particle-hole’ symmetry.
Cuprate superconductors: electron doped 6= hole doped.

Role of phonons
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Classical Monte Carlo

Energy of set of degrees of freedom xi:

E =

N
X

i

xi

X

j ∈N (i)

κij xj

E is often local: xi couples only to xj only in some neighborhood N (i).

Suggest change xi → x ′
i .

Throw a random number 0 < r < 1. If

r < e−∆E/T ,

then accept the change.

If N (i) is independent of system size,

so is time to update xi.

0-26



Quantum Monte Carlo

Classical Boltzmann weight, an exponential of a number, E, becomes the exponential of
an operator, Ĥ which can be expressed as a path integral:

e−βE → e−βĤ = e−τĤe−τĤe−τĤ . . . e−τĤ

Extra “imaginary time” dimension of extent β = 1/T .

If Ĥ is local, time is still

linear in spatial lattice size.

Cost is only extra dimension

of lattice, a factor ∝ 1/T .

This works for quantum spins

and bosons (unfrustrated lattices).
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.

But, “sign problem” for fermions.

If electron world lines exchange,

the contribution to partition

function is negative !!!

(Partial) solution: “Determinant” Quantum Monte Carlo.

Still have simulation in space and imaginary time,

but algorithm scales as cube of spatial size. Worse: Lingering sign problem.

Peter Reynolds, QMC and sign problem for continuum models, eg nodes of He atom
wavefunction [PRL 95, 110201 (2005)].
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Determinant Quantum Monte Carlo
Magnetic moment formation with T and U

〈m2
z 〉 = 〈 (nj↑ − nj↓)

2 〉
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Spin Correlations (8x8 lattice)

〈 c(l) 〉 = 〈 (nj+l↑ − nj+l↓)(nj↑ − nj↓) 〉

Local moment 〈m2
z 〉 is just c(l = 0).
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Density of States
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T

All of the preceding data at “half-filling” (one electron per lattice site).

This is a density where a special “particle-hole” symmetry of the Hubbard Hamiltonian
prevents the sign problem.
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s∗- and d-wave pairing vertices when doped away from half-filling

Γ → −1 signals superconductivity.

∗ d-wave is dominant superconducting instability

∗ But cannot reach low enough T (sign problem)
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d 
Γ

sx 

N=8x8 lattice N=2x2 lattice
< S >→ 0 exponentially

with N, 1/T
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Disordered Superconductors

Bi, Pb, Sn, In1−xOx films
Superconductor-Insulator Transition
Tune with:

Film thickness
O concentration
Magnetic field strength

High disorder/field: metal dR/dT > 0
Low disorder/field: superconductor dR/dT < 0

Is resistance universal at transition??
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Mechanism?

Complex superconducting order parameter ∆j = |∆j |eiφj

• Magnitude of pairing gap vanishes: |∆j | → 0.

• Phase fluctuations: φj uncorrelated.

M.P.A. Fisher etal suggest bosonic Hubbard model

Alternately, “attractive” (−|U |) fermion Hubbard model

Allows interpolation (with |U |) between

• Large |U |: Short coherence length/bosons/BEC

• Small |U |: Large coherence length/fermions/BCS

Particle-hole mapping between attractive and repulsive fermion Hubbard model

ci↓ (−1)ic†i↓

−t ( c†j↓ci↓ + c†i↓cj↓ ) −t ( c†j↓ci↓ + c†i↓cj↓ ) (for bipartite lattice)

U(ni↑ − 1
2
)(ni↓ − 1

2
) −U(ni↑ − 1

2
)(ni↓ − 1

2
) (p-h symmetric)

S+
j = c†j↑cj↓ ∆†

j = (−1)jc†j↑c
†
j↓ SC correlations

Sz
j = nj↑ − nj↓ nj = nj↑ + nj↓ CDW correlations
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Site disorder term in Hamiltonian

X

i

vini − V

2
< vi < +

V

2
.

(s-wave) pair correlations Ps(l) = 〈∆j+l∆
†
j 〉 driven to zero.

As are Drude-weight D and superfluid stiffness Ds.

N. Trivedi etal, PRB 54, 3756 (1996).
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Resistivity ρ(T ) also signals the transition

Value of resistance at separatrices is non-universal?

ρ is difficult to obtain from QMC (real time dynamics).
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Application of (non-disordered) attractive Hubbard Model to cuprates.

Cuprates exhibit “spin gap”:
Preformed Cooper pairs (bosons) exist above Tc

Spin up and down cancel: magnetic susceptibility χ suppressed

Sharp Fermi surface remains.

Left panel: µ(U, T ) indicates system is degenerate. µ is much higher than T from the
bottom of the band (−4t) including Hartree shift.

µ(T, U) + 4t+ 〈n〉U/2) > T

Right panel: Yet spin susceptibility χ is sharply suppressed.
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The bosonic Hubbard model

H = −J
X

〈i,j〉

(b†i bj + b†jbi) + U
X

i

n̂i(n̂i − 1)

Again, disordered site energies:

+
X

i

vini − V

2
< vi < +

V

2
.

Extreme limit of attractive fermion Hubbard model.

M.P.A. Fisher etal, PRB40, 546 (1989).

or with a confining potential:

+
X

i

vini vi = V i2
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Phase diagram: Translationally Invariant Case
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G.G. Batrouni etal, PRL 65, 1765 (1990).
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Quantum Phase Transition

κ =
∂ρ

∂µ
→ |µ− µc|−ν/2 as µ→ µc ρs ∼ |ρ− ρMott|z−d

0.00 0.01 0.10 1.00
|ρ−ρc|

0.001

0.010

0.100

1.000

ρ s

β=2, t=1, V0=20

slope= 1.02

System sizes ranging from

L = 16 to L = 256

Quantum phase transition!

z = 2, ν = 1

(1)
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Turn on disorder
New bose glass phase!
ρs = 0 but no Mott gap (incommensurate density).
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One dimensional trapped Boson Hubbard model
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No globally incompressible Mott

plateau in the trapped system!

As a whole, the system

is always compressible.
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G. G. Batrouni et al, Phys. Rev. Lett. 89 117203 (2002).
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ρ and κ profiles: Fixed Nb = 50
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As U is increased, the system gradually crosses over to Mott:

No quantum phase transition.
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State diagram
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D: SF in center + ρ = 2 Mott + SF + ρ = 1 Mott
E: SF
The trapped one dimensional bosonic Hubbard model does not exhibit quantum critical
behavior like the uniform system.
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CONCLUSIONS

Hubbard Model provides (quite amazing) insight into qualitative physics of strongly in-
teracting solids
• Metal-Insulator Transitions
• Magnetism
• d-wave Superconductivity
• Charge inhomogeneities

No real solid is precisely represented by the Hubbard model.

In general, you can’t solve the fermion Hubbard model with QMC
• Boson Hubbard model is okay
• Fermion Hubbard model at half-filling is okay
• Fermion Hubbard model with U < 0 is okay

Challenge/Opportunity for AMO community
• Provide precise realization of Hubbard Model!
• Solve it!
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