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The aim of this book is two-
fold. First, to act as a reference
work on calculations pertain-
ing to hydrogen-like and helium-
like atoms and their compari-
son with experiment. However,
these calculations involve a vast
array of approximate methods,
mathematical tricks, and phys-
ical pictures - - -.

For atoms and ions with two
electrons, such as H™, He, LiT,
etc., exact analytic solutions are
not possible at the present time
(1957, three decades after
the invention of quantum me-
chanics, and still true today!)

What shall we do with solids with 10?3 electrons?!?!



Instructions to Colloquia Speakers: Therefore, an accessible talk which includes a
thorough introduction of the topic of your research is strongly encouraged.
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| think you'll find my test results are a
pretty good indication of your abilities
, as a teacher




1. Origin of Energy Bands in a Solid (noninteracting HM)

Individual atoms: discrete energy levels

Atoms far apart: electrons are localized on single atom

Atoms brought together (solid): degenerate level couple and broaden into a band.
Eigenvectors are delocalized (plane/“Bloch” waves)
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Metals and Band Insulators

Energy band completely filled: Insulator

Finite energy gap to next unoccupied level

Simple counting arguments predict whether many solids are metallic or insulating!!
k eigenstate can be occupied by two electrons (spin 7, | ).

Solids with an odd number of electrons per unit cell must be metallic.

Alkalis (Li, Na, K): : A

one valence e~

Good metals.

(2st,3st,4s") per unit cell: insulator
V7727

Diamond, silicon, germanium (C, Si, Ge): s

eight valence electrons

(25%2p?, 35°3p?, 45°4p?): per unit cell

Insulators. >
separatior




2. Some Examples (graphene, cuprates, flat bands)

e Boils down to diagonalizing a (simple) matrix!

@ A single atom (site) with energy FE,.
E=E,
@ o Two independent atoms (sites). Electron can sit on site 1 or 2.
E:E* E . Two degenerate levels E.

Useful mathematical representation: Matrix H

(52 ] et

1,2: electron localized on site (1,2). Eigenvectors with eigenvalues F..



Allow electrons to move between sites.

C— Two overlapping atoms (sites).

H:{i ;} (B« —E)Y —t°=0 E=E.+t

t is a ‘bridge’ between atoms: the overlap of wavefunctions on the adjacent atoms.

1 1 : 44 29
P = % [ | ] Yo = % [ 1 ] Lowest energy state is “spread out”.

Six atoms (sites) with overlapping orbitals (and periodic boundary conditions):

t t t t t t
e—0—6—0—0—0---
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General rule: N=number of sites.
E, = —2tcos(2mn/N). n=123,---N

1'_I l. ° N=6] 1 Particle moving in
: _ continuous space:
-2— ° ° _ Erx = K2/2m
_ _ On a lattice K <> n
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General rule: N=number of sites.
E, = —2tcos(2mn/N). n=123,---N

_1'_I N=8] 1 Particle moving in

: _ continuous space:
9k i Ex = K*/2m

On a lattice K <> n
w-3- ] K = 2mn/N

-4 . E.=-3

| t=1
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General rule: N=number of sites.
E, = —2tcos(2mn/N). n=123,---N

1'_I N=16 1 Particle moving in
: _ continuous space:
-2— _ Erx = K2/2m
On a lattice K <> n
w-3- ] K = 2mn/N
-4 - E,=-3
j t=1
5l ]
i | | | | | | |




General rule: N=number of sites.
E, = —2tcos(2mn/N ). n=123,---N

T T T T T T T T T N=00] )
o N —_
i | Energy band one dimensional
'2__ | chain of atoms.
_ __._ _ E(K)=FE,—2tcos(K)
-3 —_ oubes | = —3 — 2cos( K)
4_ N large — K continuous.

-5_74 High DOS \

—

0 L 2 3 4 5 6

Density of States: Count number of energy levels (k values) in given energy window.



All the associated eigenvectors are “delocalized”. “Bloch’s Theorem”

The electron has an equal probability to live on any site!

+1 +1 7 [ 41 ]
+1 —1 —1
+1 —1 +1
1 1 - 1 _
¢N — \/—N +1 ¢3N/4 — \/—N ¢ ¢N/2 — \/—N 1
+1 —1 +1
L +1 7] | —1 ]

Very similar to plane wave solutions of Schroedinger Eq. in continuous space!

_h_d_ (:U) — E¢($) ¢(x) ~ ein

2m dx?

1 (K=0)x

(Compare ¥n with e .) Motivates identification n < K.

In fact, in finite box, K = 7n/L gets discretized, just as in our 1D lattice.



In higher dimension:

Label sites in lattice. If two sites ¢, 5 adjacent: corresponding H;; = H,;; = —t.
31 32 33 34 35 36
25 26 27 28 29 30 Hy 15 = His9 = —t
19 20 2|1 22 23 24 Hia15 = Hisna = —1
H = H = —1
13 14—15—16 17 18 16,15 15,16
| Ho115 = His21 = —1
07 08 09 10 11 12
ky
01 02 03 04 05 06 +T1

2D band structure <+ diagonalize H.
E(k) = —2t (coskq + cosky )
N(w) = [ dkg dk, 5(w — E(k))

Fermi Surface: trajectory of constant F(k).
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Simplest picture of cuprate (high temperature) superconductors. (Nobel Prize 1987)

Focus on square array of copper atoms in CuO2 sheets.
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VanHove singularity of DOS: N(w = 0) diverges.
Early theory of high Tc
T. ~ e 1/AN(w=0) = T. is high.

Previous superconductors: AN(w =0) ~ 1/4.



Graphene (Nobel Prize 2010)
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A CRYSTALLINE ALLOTROPE OF LARBOK 4

Density of states vanishes linearly at w — 0.

Tied to ‘Dirac cones’ FE(k) = v |k|.

(Zhe Fei, graphene nonribbons, etc)




RECAP:

e Understand Na,Li,K (metal) versus C,Si,Ge (insulator)
Partially versus completely filled bands.

No electron-electron interactions!

e Initial insight into strongly correlated materials.
[1] Non-interacting DOS on square lattice (Cu atoms in cuprates)
van Hove singularity = high T
2] Non-interacting DOS on honeycomb lattice (graphene)

Dirac fermions.
[3] Topological insulators:
Interconversion (spin-orbit) terms between spin up and spin down.

Hopping between ‘spin up sites’ and ‘spin down sites’.
g

e Band structure: diagonalizing a matrix!
(non-interacting Hubbard Model)



Trouble in Paradise - - -

Parent compounds of cuprate superconductors:
e 1 hole/Cu

e Fermi level cuts middle of band.

e Why are they antiferromagnetic insulators?!

Transition metal monoxides (MnO, FeO, CoO):

(Many oxides in earth’s interior.)
MnO: Mn** d band half-filled (d°: odd # electrons)

e Why are they antiferromagnetic insulators?!

(Jigang Wang: Insulating AF Manganites)
(Rebecca Flint: AF in Heavy Fermions)

(John Van Dyke: CeColns)

(Yuriy Sizyuk: AF in NaglIrOs)

(Paul Canfield: Correlated Electron Materials)




3. Mott Insulators and Antiferromagnetism- The Hubbard Hamiltonian
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(A different type of Insulator)

Consider a lattice of sites with
“commensurate filling”:

The average number of particles
1S one per site.

Kinetic energy and entropy both

favor particles moving around lattice.

Metal: odd number (one) particle per cell/site.
(Like cuprate superconductors.)



But what if there were a large
repulsive interaction U between
particles on the same site?

A Mott Insulator forms.
Basic physics of parent compounds

of cuprate superconductors!
(Also other solids: FeO, CoO, MnO.)



Two ways to destroy Mott Insulator:
+ Decrease U/t: By applying pressure (MnO)
* Shift (n) # 1: Dope chemically (cuprate superconductors)

What is optimal spin arrangement?
Hopping of neighboring parallel spins forbidden by Pauli.

Antiparallel arrangement lower in second order perturbation theory.

t t

$ b 4y

AE® =0 AE® o —t? /U = —J

Mott insulating behavior and antiferromagnetism go hand-in-hand.
Qualitative picture of cuprate physics before doping.

Still do not really understand why cuprates become superconducting after doping.



Can however make MnO have the expected metallic behavior...
Diamond Anvil Cell
Apply pressure (and lots of it!) to push atoms closer.
x Direct measurement of resistance
*x Probe magnetic moments with synchotron radiation (APS at Argonne)




Resistance drops to typical metallic values at P ~ 100 GPa.

Resistance (Q2)

J.R. Patterson etal., Phys. Rev. B69, 220101(R) (2004).
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(Single band) Hubbard Hamiltonian

_tz o JO'_|_CJO'CIO' —I—UZ(niT—% ,uZ’n, +ny,

(ij)o

e T'wo spin species o =7, |.
e Kinetic energy t describes hopping between near-neighbor sites (ij).
e On-site repulsion U discourages double occupancy

e Chemical potential u controls filling.

e Half-filling (p = 1) at u = 0.

Cuprate materials (LaSrCuO, YBaCuO, ...) drive interest in 2D square lattice:
Cu atoms in CuQOs2 sheets are in that geometry.
Ignore bridging O atoms.
Ignore La, Sr, Y, Ba between layers.

Graphene — honeycomb lattice.



IMlustration: The Square Lattice

Electron spins on two neighboring sites like to be antiparallel.

Bipartite lattices are a natural for long range antiferromagnetic order

where this up-down pattern extends over entire lattice.

But does it really happen?!
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Quantum Monte Carlo Simulations

Antiferromagnetic spin correlations

C(lq;, ly) = < ('n/la:,ly,T — ’n/la:,ly,i) (noaoaT o n0,0,i) >
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There is long range antiferromagnetic order!

“Quantum Monte Carlo Study of the 2D Fermion Hubbard Model at Half-Filling”, C.N. Varney, C.R. Lee, Z.J. Bai,

S. Chiesa, M. Jarrell, and RTS, Phys. Rev. B80, 075116 (2009).



DQMC results- Fermi distribution n(kz, ky)

U = 2 Fermi function:
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Transition Metal Monoxides - The Whole Story 7

Kinetic Energy 3d bandwidth tq
Correlation Energy On-site Coulomb Uq
Multiple orbitals Hund’s rule (exchange) Jr

Both Mn and O atoms Charge transfer energy  Es3q — Fop
Mn in cubic environment  Crystal field splitting Ee, — Eit,,

g
€g
3d
t2g AT ta
Exchange splitting crystal field
> >
crystal field Exchange splitting

Loss of moment transition actually a “high-spin to low spin transition”?
Crystal field splitting decreases below exchange splitting as pressure applied.



Cuprate Superconductors - The Whole Story ?
Again, many ‘real life’ complications

Like TMOs: Oxygen orbitals. 3-band (‘Emery’) model.
Charge transfer versus Mott-Hubbard Insulator

Ep gy
A

Role of number of layers and interlayer atoms
Lal_xSeruOQ: TC ~ 35OK.
YlBaQCU.3O7_5: Tc ~ QOOK.

Hubbard Hamiltonian ‘particle-hole’ symmetry.
Cuprate superconductors: electron doped # hole doped.

Role of phonons



Quantum Monte Carlo
Conpl ex Materials requires sinple nodels.
VO YBaCuQ etc Hubbard Ham |t oni an

?

The direct simulation of quantum systems on classical computers is very difficult
because of the huge amount of memory required to store the explicit state of the
quantum system. This is due to the fact that quantum states are described by a
number of parameters that grows exponentially with the system size.

Iulia Buluta and Franco Nori, Quantum Simulators Science 326 pp.108-111, (2009). DOI: 10.1126/science.1177838



Quantum Monte Carlo

Compl ex Materials requires sinmple nodels.
VO YBaCQuO, etc Hubbard Ham | tonian
Simple Materials

"Quant um Si nul at or s"

Quantum simulators are controllable quantum systems that can be used to simulate
other quantum systems.

Tulia Buluta and Franco Nori, Quantum Simulators Science 326 pp.108-111, (2009). DOI: 10.1126/science.1177838



5. Simplified Materials i: Optical Lattices (Peter Orth)

Lattice formed by interference of counterpropagating laser beams.
Atoms (0(105)) trapped by Stark shift. Cool evaporatively - - -.

Different geometries accessable (e.g. cubic, honeycomb, - - )

% - o

)

Control hopping t, interactions U Tune laser wavelength

much more easily than solids. or Feshbach resonance.

Use, e.g. to drive Mott insulator.




Quantum Monte Carlo Simulations of Hubbard Model with Confining potential.

Uit=8 a
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[llustrates first challenge: Confining potential leads to inhomogeneous density.
Local Mott/AF regions coexist with paramagnetic metal.

How to disentangle?

“Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms”, R.A. Hart, P.M.
Duarte, T. Yang, X. Liu, T. Paiva, E. Khatami, RTS, N. Trivedi, D.A. Huse and R.G. Hulet, Nature 519, 211

(2015).

“Compressibility of a fermionic Mott insulator of ultracold atoms,” P.M. Duarte, R.A. Hart, T-L. Yang, X. Liu,
T. Paiva, E. Khatami, RTS, N. Trivedi, and R.G. Hulet, Phys. Rev. Lett. 114, 070403 (2015).



Comparison of experiment and Quantum Monte Carlo

s (o)
a0 200 290 380 470 560
i _.-"--_{L‘h. o ﬂ — o7 Tl
ey 83| =
..'. - -.-._ﬂ____ ﬂ-"‘--..l:._,{th i o .47
o o = B, 0.48
SR,
- i W 01 -l "'\-\.ﬁ_:“:-.,,_l - D.EE'
Tt T s
‘_H_'d—-—h.c____u_:_::;- 2 .
5 |==060
b___a___g,_ e S - e A e e | T ﬂ?ﬂ
. :=____'-\.... '{:l' L ] |
88 o~ 168
12 16 20
Ua /o

[llustrates second challenge:

Limitations on ability to cool.

Temperatures: nanoKelvins, but so are hopping ¢t and interaction U:
Comparison with QMC provides thermometer.

= T/t is not small!



6. Simplified Materials ii: Engineered Silicon

Arrays of dopants in semiconductors,
placed with atomic precision.

Procedure:

e Silicon surface terminated with
atomically-ordered layer of H.

e STM tip selectively removes surface H:
patterned chemically active sites.

e Dopants chemisorb to
lithographically patterned regions.

e Silicon is overgrown to protect
atomically-patterned layer.

Like optical lattices:
e Control over array symmetry, spacing, carrier density, bandwidth and filling.

e Manipulation of the number of dopants in a node controls interaction strength.

= Basic ingredients for a tunable Fermi-Hubbard system.

Temperatures (much) lower than optical lattice systems!



Long-range Antiferromagnet | Fermi-Hubbard in Li
SNPATLN Ult ~ 7 (strongly interacting)
B it Tit~0.25 (moderate temperature)

F e
i !
- ARliiiil 1]
W
.

Cold atoms in optical lattice

Mott

Strange metal

Donor array
Donors

» Strongly interacting
Ult ~ 5-100

Temperatupe

+ Low temperature
Tht~0.02

Despite ‘precision,’” the disorder can be pronounced.
(Unclear, as yet, what other obstacles will arise.)



Quantum Monte Carlo tests of effect of disorder on AF.

Left: Disorder in interaction strength U

Right: Disorder in hopping ¢

8x8 lattice OBC p=12 8x8 lattice OBC =12

8 realizations 8 realizations




7. Summary/Whither the Field?

e Band Structure: qualitative pictures of weakly interacting electrons.

e Interactions: Essential to understand strongly correlated materials

e Hubbard Model: quantitative picture of role of interactions. Oversimplified!
e Beyond (present) numeric capabilities to solve more complex Hubbard models.
e Search for simpler materials!

e Optical lattices. Enormous successes, but limitations on temperature.

e [ingineered silicon might be a new frontier.

“Quantum simulators may become a reality in the near future as the required tech-
nologies are now within reach. Quantum simulators, relying on the coherent control
of neutral atoms, ions, photons, or electrons, would allow studying problems in vari-
ous fields including condensed-matter physics, high-energy physics, cosmology, atomic
physics, and quantum chemistry.

Iulia Buluta and Franco Nori, Quantum Simulators Science 326 pp.108-111, (2009). DOI: 10.1126/science.1177838



