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Holstein Hamiltonian- Polarons and Pairing
Holstein: wave function a; probability amplitude for (single) electron on site 1.

Modern (many body) notation. Noninteracting electron kinetic energy:
Hore=—t Y (ele,,+él,¢,)
(ij)o

Spin T, ] electrons interact with boson displacement on site ¢
3 5 (o A 1 so 1 52
Hel—ph = A ZL: X (nm + nu) Hyoson = SWo ZL: X; + 5 ZJ: P;

Bosons local = energy independent of momentum (dispersionless) w(q) = wo.
Similarly, electron-boson coupling is local = independent of momentum.

Dimensionless coupling: A\p = A\* / (wj W) where W = electronic bandwidth.
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Initial insight from ¢ = 0 (Independent sites)
Complete the square

1 1 A 2 A\
Integrate out the phonon coordinate X.
Effective attraction
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Imagine you are at half-filling. Then turn on ¢ perturbatively.
Attractive interaction (—U Hubbard; Holstein):

Local pairs form.
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Double occupied/empty alternation favored: @
Charge Density Wave.

Repulsive interaction (+U Hubbard):

Local moments form. X
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up/down spin alternation favored by J: @ Qb ¢

Antiferromagnetism.

e
O

=
<



Holstein Hamiltonian- Charge Density Wave Order

Local order can become long ranged if thermal/quantum fluctuations reduced.
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Repulsive (AF) Attractive (CDW)

Holstein Model:
e Charge order at half-filling (bipartite lattice).

e Superconducting order when doped.
CDW transition at finite 7" in 2D (Ising universality class).
Contrast to Hubbard: AF order only at 7' = 0 in 2D (Heisenberg universality).

Quantitative values for T, obtained for square lattice only rerlatively recently!
Weber and Hohenadler, Phys. Rev. B 98, 085405 (2018).



Langevin-Based QMC Algorithm

Many QMC approaches propose local moves.
Inexpensive to evaluate change in action.

In the case of DQMC: o(N?) to update boson coordinate.
N3 boson degrees of freedom: Complete scaling is o(N°3).

Alternate approach in Lattice Gauge Theory QMC:

Update all bosonic field variables at same time via Langevin equation.

In principle complete scaling is o(IN3).

Assumes number of (conjugate gradient) iterations to compute M™%
is independent of system size N and inverse temperature (.

Does not work for Hubbard Model!

Matrix M is much more ill-conditioned than LGT.

Number of conjugate gradient iterations grows catastrophically with £.

Xy (r+AT)— X4 (1)
AT

. 2
Key observation: P? = [ } moderates eigenspectrum of M.

(No such term for auxiliary bosonic field in Hubbard model.)
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10°[" Langevin time step: dt=0.05
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Left: Langevin CPU time is
indeed nearly linear in V.

Below:
Increase in accessible system size

improves scaling collapse.
DQMC (left) vs. Langevin (right).
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Honeycomb Lattice
Dirac spectrum for fermions.

Quantum critical point for Hubbard Model:

Minimal U./t 2 3.87 to induce antiferromagnetic order.

Effect of electron-boson interactions on Dirac fermions and charge order?

Long range real space

charge correlations develop

as [ increases.

Site index



CDW structure o(IN) when charge correlations long range (6 > 5.).

Data collapse/crossing yield critical temperature.
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Phase Diagram of Holstein Model on Honeycomb Lattice
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“Charge Order in the Holstein Model on a Honeycomb Lattice,” Y.-X. Zhang, W.-T. Chiu,
N.C. Costa, G.G. Batrouni, and RTS, Phys. Rev. Lett. 122, 077602 (2019).

“Charge-Density-Wave Transitions of Dirac Fermions Coupled to Phonons,” C. Chen,

X.Y. Xu, Z.Y. Meng, and M. Hohenadler, Phys. Rev. Lett. 122, 077601 (2019).



Cubic Lattice
Thermodynamics

Structure in Energies — peak in specific heat
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Real space density correlations and structure factor.
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Conclusions
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e At half-filling, Holstein model in d > 1 undergoes a finite temperature phase
transition to state with long range charge order K, = (m,m).

e Critical temperature has a maximum at intermediate el-ph coupling \p.

“Langevin Simulations of the Half-Filled Cubic Holstein Model”, B. Cohen-Stead,
K. Barros, Z.Y. Meng, Chuang Chen, and R. Scalettar, Phys. Rev. B102, 161108R
(2020).



Autocorrelations in Langevin Simulations:
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Momentum Dependence of Structure Factor
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CDW Transition in Mean Field Theory
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Spectral Function
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Correlation Length:
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Momentum Dependence of Structure Factor
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