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Holstein Hamiltonian- Polarons and Pairing

Holstein: wave function ai probability amplitude for (single) electron on site i.

Modern (many body) notation. Noninteracting electron kinetic energy:

Ĥel−ke = −t
∑

〈ij〉σ

(

ĉ†iσ ĉjσ + ĉ†jσ ĉiσ
)

Spin ↑, ↓ electrons interact with boson displacement on site i

Ĥel−ph = λ
∑

i

X̂i

(
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Bosons local ⇒ energy independent of momentum (dispersionless) ω(q) = ω0.

Similarly, electron-boson coupling is local ⇒ independent of momentum.

Dimensionless coupling: λD = λ2 / (ω2
0 W ) where W = electronic bandwidth.
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Initial insight from t = 0 (Independent sites)
Complete the square
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Integrate out the phonon coordinate X.
Effective attraction
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Imagine you are at half-filling. Then turn on t perturbatively.

Attractive interaction (−U Hubbard; Holstein):

Local pairs form.

Double occupied/empty alternation favored:

Charge Density Wave.

Repulsive interaction (+U Hubbard):

Local moments form.

up/down spin alternation favored by J :

Antiferromagnetism.
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Holstein Hamiltonian- Charge Density Wave Order

Local order can become long ranged if thermal/quantum fluctuations reduced.

Repulsive (AF) Attractive (CDW)

Holstein Model:

• Charge order at half-filling (bipartite lattice).

• Superconducting order when doped.

CDW transition at finite T in 2D (Ising universality class).

Contrast to Hubbard: AF order only at T = 0 in 2D (Heisenberg universality).

Quantitative values for Tc obtained for square lattice only rerlatively recently!

Weber and Hohenadler, Phys. Rev. B 98, 085405 (2018).



Langevin-Based QMC Algorithm

Many QMC approaches propose local moves.

Inexpensive to evaluate change in action.

In the case of DQMC: o(N2) to update boson coordinate.

Nβ boson degrees of freedom: Complete scaling is o(N3β).

Alternate approach in Lattice Gauge Theory QMC:

Update all bosonic field variables at same time via Langevin equation.

In principle complete scaling is o(Nβ).

Assumes number of (conjugate gradient) iterations to compute M−1~v

is independent of system size N and inverse temperature β.

Does not work for Hubbard Model!

Matrix M is much more ill-conditioned than LGT.

Number of conjugate gradient iterations grows catastrophically with β.

Key observation: P̂ 2
i ⇒

[

Xi(τ+∆τ)−Xi(τ)
∆τ

]2

moderates eigenspectrum of M.

(No such term for auxiliary bosonic field in Hubbard model.)
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DQMC, β=4, CPU  ∼  N
3

Langevin, β=4, CPU ∼ N
1.2

Langevin, β=8, CPU ∼ N
1.1

∆τ=1/8    λ=2
1/2 ω=2    µ=-1

Langevin time step: dt=0.05
Left: Langevin CPU time is

indeed nearly linear in N .

Below:

Increase in accessible system size

improves scaling collapse.

DQMC (left) vs. Langevin (right).

-40 -20 0 20 40
(β-β

c
)L

0

0.1

0.2

0.3

0.4

0.5

0.6

S
(π

,π
)/

L
7

/4

6X6
8X8
10X10
12X12
14X14

DQMC, ω=1, λ=2
1/2

, β
c
=6 (0.1)

-40 -20 0 20 40
(β-β

c
)L

0

0.1

0.2

0.3

0.4

0.5

0.6

S
(π

,π
)/

L
7

/4

12X12
14X14
16X16
18X18
20X20
24X24

Langevin, ω=1, λ=2
1/2

, β
c
=6



Honeycomb Lattice

Dirac spectrum for fermions.

Quantum critical point for Hubbard Model:

Minimal Uc/t & 3.87 to induce antiferromagnetic order.

Effect of electron-boson interactions on Dirac fermions and charge order?
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charge correlations develop

as β increases.



CDW structure o(N) when charge correlations long range (β > βc).

Data collapse/crossing yield critical temperature.
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Phase Diagram of Holstein Model on Honeycomb Lattice
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Quantum critical point from T = 0

Invariant correlation length crossing

Rc ≡ 1 −

S(Q + δq)

S(Q)

“Charge Order in the Holstein Model on a Honeycomb Lattice,” Y.-X. Zhang, W.-T. Chiu,
N.C. Costa, G.G. Batrouni, and RTS, Phys. Rev. Lett. 122, 077602 (2019).

“Charge-Density-Wave Transitions of Dirac Fermions Coupled to Phonons,” C. Chen,

X.Y. Xu, Z.Y. Meng, and M. Hohenadler, Phys. Rev. Lett. 122, 077601 (2019).



Cubic Lattice
Thermodynamics

Structure in Energies → peak in specific heat



Real space density correlations and structure factor.



Conclusions

• At half-filling, Holstein model in d > 1 undergoes a finite temperature phase

transition to state with long range charge order K∗ = (π, π).

• Critical temperature has a maximum at intermediate el-ph coupling λD.

“Langevin Simulations of the Half-Filled Cubic Holstein Model”, B. Cohen-Stead,
K. Barros, Z.Y. Meng, Chuang Chen, and R. Scalettar, Phys. Rev. B102, 161108R
(2020).



Autocorrelations in Langevin Simulations:



Momentum Dependence of Structure Factor



CDW Transition in Mean Field Theory

Overestimates transition temperature: Tc = β−1
c ∼ (2− 5)t



Spectral Function

Gap opens below Tc



Correlation Length:



Momentum Dependence of Structure Factor


