
QUANTUM CRITICALITY

Quantum critical points and the sign problem
R. Mondaini1, S. Tarat1, R. T. Scalettar2

The “sign problem” (SP) is a fundamental limitation to simulations of strongly correlated matter. It is often
argued that the SP is not intrinsic to the physics of particular Hamiltonians because its behavior can be
influenced by the choice of algorithm. By contrast, we show that the SP in determinant quantumMonte Carlo
(QMC) is quantitatively linked to quantum critical behavior. We demonstrate this through simulations
of several models with critical properties that are relatively well understood. We propose a reinterpretation
of the low average sign for the Hubbard model on the square lattice away from half filling in terms of the
onset of pseudogap behavior and exotic superconductivity. Our study charts a path for exploiting the average
sign in QMC simulations to understand quantum critical behavior.

O
ver the past several decades, quantum
Monte Carlo (QMC) simulations have
provided great insight into challenging
strong correlation problems in chem-
istry (1, 2), condensed-matter physics

(3, 4), nuclear physics (5), and high-energy
physics (6). In all of these areas, however, the
sign problem (SP), which occurs when the
probability for specific quantum configura-
tions in the importance sampling becomes
negative, substantially constrains their ap-
plication. Solving, or at least mitigating, the
SP is one of the central endeavors of com-
putational physics. The extent and impor-
tance of the effort is indicated by the many
proposed solutions and their continued de-
velopment over the past three decades [for
an overview, see the supplementary mate-
rials (7) and references therein].
Despite enormous effort, the SP remains

unsolved. In fact, the lack of progress is one
of the main driving forces behind a number
of large-scale research efforts, including the
quest for quantum emulators (8–10) and quan-
tum computing itself (11, 12). One of the most
fundamental mysteries concerns the possible
link between the SP and the underlying phys-
ics of the Hamiltonian being investigated.
Here, instead of challenging this nondeter-

ministic polynomial hard problem (13) or
proposing solutions that can partially ame-
liorate its behavior (14, 15), we show that there
is a clear connection between the behavior
of the average sign hSi in the widely used
determinant quantumMonte Carlo (DQMC)
method and several quantum phase transitions
(QPTs): that of the semimetal to antiferromag-
netic Mott insulator (MI) of Dirac fermions
in the spinful [SU(2)] honeycomb-Hubbard
Hamiltonian (16, 17), the band to correlated
insulator transition (18–20), and charge den-
sity wave (CDW) transitions of spinless [U(1)]
fermions on a honeycomb lattice (21, 22). In

the first example, simulations at half-filling,
where the quantum critical point (QCP) oc-
curs, are SP-free. We introduce a small doping
m and show, in the limit m→ 0+ at temperature
T → 0, that hSi evolves rapidly as we tune
through the QCP.
Our second illustration, the ionic Hubbard

model, has an SP even at half-filling. Here,
the average sign undergoes an abrupt drop
at the band insulator (BI) to correlated metal
(CM) transition. The third example, spinless
fermions on a honeycomb lattice, also features
a semimetal to (charge) insulator transition
but allows for an SP-free approach. Studying it
with a method that contains an “unnecessary”
SP lends insight into the key question of the
influence of different algorithms on the con-
nection between the SP and the physics of
model Hamiltonians.
These three discussions establish a link be-

tween known physics of the models and the
fermion sign. Having made that connection,
we turn to the iconic square lattice Hubbard
model, the physics of which has not been
conclusively established. We find that the
onset of the SP occurs in a dome-shaped re-
gion of the filling-temperature phase space
under that of the pseudogap physics. The SP
is sufficiently well controlled in the pseudo-
gap phase to obtain reliable results for various
observables, including the pairing correla-
tions in various channels, exhibiting domi-
nant enhancement for d-wave symmetry.
Because it behaves exponentially in inverse
temperature, the SP provides a rather sharp
demarcation of the regime, mimicking the
superconducting dome of the cuprates (23).
Although the SP prevents DQMC from re-
solving a signal of a d-wave transition, the
groundwork established for the honeycomb
lattice and BI-CM models suggests that this
SP dome might be linked to the onset of a
superconducting phase.

The SP: Model and methodology

The origin of the SP can be understood in
two related classes of algorithms, world-line
QMC (WLQMC) (24) andGreen’s functionQMC

(GFQMC) (25, 26), by considering Feynman’s
path integral approach, which provides amap-
ping of quantum statistical mechanics in D
dimensions to classical statistical mechanics
in D + 1 dimensions. Paralleling Feynman’s
original exposition for the real-time evolution
operator e–iĤt/ħ, the imaginary time evolution
operator e–bĤ is subdivided into Lt incremen-
tal pieces ÛDt = e–DtĤ, where ħ is the reduced
Planck’s constant, Ĥ is the Hamiltonian, and
LtDt = b is the inverse temperature. Complete
sets of states It ¼ SSt Stj i Sth j are introduced
between each ÛDt so that the partition function
Z = Tre–bĤ becomes a sum over the classical
degrees of freedom associated with the
spatial labels of each It and also an additional
imaginary time index denoting the location
t = 1, 2, …, Lt of It in the string of operators
ÛDt. The quantity being summed in the calcu-
lation of Z is the product of matrix elements
hSt|ÛDt|St+1i.
In such WLQMC/GFQMC methods, the SP

arises when PthSt|ÛDt|St+1i< 0. Negative matrix
elements are unavoidable for itinerant fermionic
models in D > 1 because their sign depends
on the number of fermions intervening be-
tween two particles undergoing exchange, and
thus changes as the particle positions are up-
dated. The basis dependence of the SP is ap-
parent by considering intermediate states |Sti
chosen to be eigenstates |fai of Ĥ, with eigen-
values Ea. In that case, the matrix elements
are just e�DtEa and thus are trivially positive
definite. Of course, because the eigenstates of
Ĥ are unknown, this is not a practical choice
in any nontrivial situation. Moreover, the SP
can generally be avoided for bosonic or spin
models as long as the lattice is bipartite. None-
theless, even bosonic and spin Hamiltonians
can have negative matrix elements on frus-
trated geometries (27), especially for antifer-
romagnetic models, emphasizing that the SP
is not solely a consequence of Fermi statistics.
Auxiliary field QMC (AFQMC) algorithms

(28–30) typically have a much less severe SP
than WLQMC (7, 31). They are based on the
observation that the trace of an exponential
of a quadratic form of fermionic operators
can be done analytically, resulting in the de-
terminant of a matrix of dimension set by the
cardinality of fermionic operators. The deter-
minant is the product Pj 1þ e�bej

� �
, where ej

is the noninteracting energy level and is al-
ways positive.
If interactions are present, quartic terms

in Ĥ are reduced to quadratic ones with a
Hubbard-Stratonovich transformation. The
trace of the resulting product of exponen-
tials of quadratic forms can be performed,
but now they each depend on a different, i.e.,
imaginary-time dependent, auxiliary field.
The resulting determinant is no longer guar-
anteed to be positive; the consequence is the
SP given that the Hubbard-Stratonovich field
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needs to be sampled stochastically to compute
operator expectation values.
In AFQMC, the trace over fermionic degrees

of freedom is done for all species (i.e., all spin
and orbital indices a). If there is no hybridiza-
tion between different a’s, each trace gives an
individual determinant. In some situations,
particle-hole, time-reversal, or other symme-
tries (32–34) impose a relation between the
determinants for different a’s, and as a con-
sequence the negative determinants always
come in pairs. Low-temperature (ground-state)
properties can be accessed in such “SP-free”
cases, and a host of interesting quantum phase
transitions has been explored (35–38).
If such a partnering does not occur, then a

reasonable rule of thumb is that the average
sign hSi is sufficiently bounded away from
zero with measurements that exhibit suffi-
ciently small error bars for T ≳W/20 –W/40,
at intermediate interaction strengths (of the
same order as the bandwidth W) (39).
The DQMC methodology (28, 29) that we

used is a specific implementation of AFQMC.
We used the discrete Hubbard-Stratonovich
transformation introduced by Hirsch (40)
and chose the Trotter discretization Dt such
that systematic errors in hSi and other ob-
servables are of the same order as statistical
sampling errors [for additional details, see
the materials and methods (7)].
We mainly consider models in which two

(spin) species of itinerant electrons hop on a

lattice with an on-site repulsion, i.e., variants
of the Hubbard Hamiltonian,

Ĥ ¼ �
X
ijs

tij ĉ†isĉjs
� �

þ ĉ†jsĉis
� �

�
X
is

min̂is

þU
X
i

n̂i↑ � 1

2

� �
n̂i↓ � 1

2

� �
ð1Þ

Here, ĉ†js ĉjsð Þ are creation (destruction) op-
erators at site i with spin s and n̂is ¼ ĉ†isĉis is
the number operator. In the first model, i and
j are near-neighbor (NN) sites on a honeycomb
lattice, with tij = t. As a consequence of particle
hole symmetry, mi = 0 corresponds to half-
filling and r = hn̂isi = 1/2, for arbitrary U and
temperature T. For the second model, we
consider a tij = t square lattice with mi = +D
on one sublattice and mi = –D on the other, a
situation that has an SP even at half-filling,
but which is mild enough to allow its phase
diagram to be established with reasonable
reliability. The third model concerns a single
species model with interactions between fer-
mions on neighboring sites, notable because
an SP-free QMC formulation exists (22, 41).
All of these models have QCPs that have

been located to fairly high precision and so
serve as testbeds for demonstrating that the
average sign can be used as an alternative
means to study the onset of quantum critical-
ity. In our final investigation, we consider the
doped, spinful, square lattice Hubbard model,
much of the low-temperature physics of which

remains shrouded in mystery. We correlate
the behavior of the SP with some of the model’s
properties at intermediate temperature and
then describe what might be inferred con-
cerning the presence of a low-temperature
superconducting dome.

Semimetal to antiferromagnetic MI on a
honeycomb lattice

On a honeycomb lattice (Fig. 1A), the U = 0
Hubbard Hamiltonian has a semimetallic
density of states that vanishes linearly at E= 0.
Its dispersion relation E(k) has Dirac points in
the vicinity of which the kinetic energy varies
linearly with momentum. Unlike the square
lattice that displays AF order for all U ≠ 0, the
honeycombHubbardmodel at T→ 0 remains
a semimetal for small nonzeroU, turning to an
AF insulator only forU exceeding a criticalUc.
Early DQMC and series expansion calcula-
tions estimated Uc ~ 4t (42), with subsequent
studies (16, 17) yielding the more precise value
Uc/t = 3.869.
The upper panel of Fig. 1B gives hSi in the

U–T plane. By introducing a small, nonzero
m = 0.1, we can induce a SP that begins to
develop at T/t ~ 0.1. As T is lowered further,
the average sign deviates from hSi = 1 in a
relatively narrow window of U/t close to the
known Uc. In turn, we show the hSi on the
U–m plane at fixed T/t = 0.05 in the lower
panel of Fig. 1B. For large m, the sign is small
for a broad swath of interaction values. As m
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Fig. 1. The SU(2) Hubbard model on the honeycomb lattice. (A) Diagram
depicting a honeycomb lattice with N = 2L2 sites (L = 6 here), accompanied by
the relevant terms in Ĥ. (B) Contour plot of the average hSi in the T/t (m/t)
versus U/t in the upper (lower) panel. Here L = 9 and m/t = 0.1 (T/t = 1/20)
in the upper (lower) panel. (C) Average sign extrapolated with the linear
system size L using T/t = 1/20 and m/t = 0.1. (D) Similar extrapolation as in

(C) but displaying a local quantity (the derivative of the double occupancy),
which is an indicator of the QCP. In all panels with data, the prediction for the
ground-state phase transition occurring at Uc/t = 3.869 (17) is depicted by
a star marker. In all data, Trotter discretization is chosen as tDt = 0.1. See
fig. S1 for additional observables and fig. S2 for the fermionic flavor-dependent
average sign.
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decreases, this region pinches down until it
terminates close to Uc; the dashed white line
displays theminimum hSi in the relevant range.
In both panels, the behavior of the average
sign outlines the quantum critical fan that ex-
tends above the QCP.
Figure 1C shows a finite size extrapolation

of hSi in the 1/L–U plane, where L is the linear

lattice size. Just as hSiworsenswith increasing
b, it is also known to deviate increasingly from
hSi = 1 with growing L (29). The extrapolation
L → ∞ clearly reveals Uc in the presence of a
small chemical potential. So far, we have ex-
clusively used hSi in locating Uc. Original in-
vestigations used more “traditional” (and
more physical) correlation functions such as

the AF structure factor and conductivity. For
comparison with the evolution of hSi, Fig. 1D
shows one example, the rate of change of the
double occupancy hn↑↓i, again in the 1/L–U
plane. A peak in −dhn↑↓i/dU indicates where
local moments hm2i are growingmost rapidly.
The similarity between Fig. 1, C and D, em-
phasizes how hSi is tracking the physics of the
model in a way markedly similar to hm2i. The
combination of the three limits, m, b, and L,
unequivocally points out the QCP location;
the supplementary materials (7) contain fur-
ther discussion and other observables. Two
of these limits can be simultaneously ap-
proached by fixing the ratio Lt/L

z with z, the
dynamical critical exponent (43).

Ionic Hubbard BI to AF transition

Among the different types of nonconducting
states are BIs, in which the chemical potential
lies in a gap in the noninteracting density of
states, and MIs, in which strong repulsive
interactions prevent hopping at commensu-
rate filling. The evolution from BI to MI is a
fascinating issue in condensed-matter physics
(18–20, 44–46). In the ionic Hubbard model
that we investigated here, a staggered site
energy mi = ±D on the two sublattices of a
square lattice (Fig. 2A) leads to a dispersion
relation E kð Þ ¼ T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðkÞ2 þ D2

p
with e kð Þ ¼

�2t coskx þ coskyð Þ . The resulting density
of states vanishes in the range –D < E < +D in
which the lattice is half-filled, resulting in a BI.
The occupation of the “low-energy” sites mi =
–D is greater than that of the “high-energy”
sites mi = +D, so that there is a trivial CDW
order associated with an explicit breaking of
the sublattice symmetry in the Hamiltonian.
An onsite repulsion U disfavors this density

modulation: The potential energy Uhn↑↓i is
higher than that for a uniformoccupation. Thus,
the driving physics of the BI, the staggered
site energyD, and that of theMI, the repulsion
U, are in competition. Although the simplest
scenario is a direct BI to MI transition with
increasing U, one of the more exotic possible
outcomes is the emergence of a metallic
phase when these two energy scales are in
balance and neither type of insulator can
dominate the behavior. Past DQMC simu-
lations suggest that this less trivial case occurs
and have used the temperature dependence of
the DC conductivity to bound the metallic
phase (46, 47).
Here, we investigated how this physics

might be reflected in the average sign. Figure
2B shows hSi in the U/t–T/t plane at D = 0.5t.
As T is lowered, hSi deviates from unity for a
range of intermediate U values. Figure 2C
gives the behavior in the U/t–D/t plane at
fixed low T = t/24. The central result is that
hSi is small in a region that maps well with
the previously determined boundaries of the
metallic phase (46, 47). This is emphasized
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Fig. 2. The SU(2) ionic Hubbard model on the square lattice. (A) Diagram depicting a square lattice with
N = L2 sites (L = 4 here), accompanied by the relevant terms in Ĥ. (B) Contour plot of the average hSi
in the U/t versus T/t plane, with staggered potential D/t = 0.5. (C) Contour plot of hSi as a function of
the competing parameters U/t and D/t at a temperature T/t = 1/24. (D) The corresponding derivative of the
double occupancy on the +D sites at the same parameters as in (C). In all data, Trotter discretization is
chosen as tDt = 0.1 and the lattice size is L = 12. Finite-size analyses are shown in figs. S3 and S4.
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by comparison with Fig. 2D, which uses one of
the “traditional” methods for phase bound-
ary location, namely the behavior of the dou-
ble occupancy. The BI has a low occupancy
and thus very low double occupancy on the
+D sites. Increasing U smooths out the den-
sity so that the double occupancy on the +D
sites increases: dhn̂↑↓,+Di/dU > 0. By contrast,
in the MI region, U ≳ D, the physics is
that of the usual Hubbard Hamiltonian
and double occupancy decreases as U grows:
dhn̂↑↓,+Di/dU < 0.
In the CM region between BI and MI, how-

ever, obtaining a relevant signal-to-noise ratio
for the traditional observables is exponentially
challenging precisely because the average sign
vanishes in this region. The “phase diagram”
obtained by using hSi (Fig. 2C) is very similar
to that given by the physical observable, the
rate of change of double occupancy with U
(Fig. 2D)
As in the determination of the QCP for the

spinful Hubbard model on a honeycomb lat-
tice, hSi emerges asmore than amere nuisance,
but also as a harbinger of the physics. An in-
depth similarity between these two situations
is discussed in the supplementary materials
(7), where we show that the BI-metal QCP is
again uniquely identified by the 1/L scaling
of hSi, in precise analogy with the honeycomb
case. These results suggest the existence of a
quantum critical region associated with the
CM phase and the vanishing hSi.
An “unnecessary” SP

We now consider spinless fermions, in which
the on-site Hubbard interaction U, made ir-
relevant by the Pauli principle, is replaced by
an intersite repulsion V,

Ĥ ¼ �t
X
ijh i

ĉ†i ĉj þ ĉ†j ĉi
� �

þ V
X
ijh i

n̂in̂j ð2Þ

Equation 2 provides an example of a model
in which the SP can be completely solved by
using special techniques such as the fermion
bag in the continuous time QMC approach
(35) or by going to a different basis using a
Majorana representation of the fermions in
the AFQMC method (41), as long as the sys-
tem is on a bipartite lattice and V > 0. The
standard Blankenbecler, Scalapino, and Sugar
approach (28), on the other hand, manifestly
displays a SP in the low-temperature regime.
Nevertheless, to study the sign and its connec-
tion with the underlying physics, we used a
Blankenbecler, Scalapino, and Sugar–based
algorithm to investigate the system on a
honeycomb lattice (Fig. 3A). Consideration
of this “unnecessary” SP allows us to address
fundamental issues related to the influence
of different algorithms on the connection
between the SP and the physics of model
Hamiltonians.

At T = 0, the model displays a QPT between
a Dirac semimetal and an insulating staggered
CDW state as the interaction is tuned through
a critical value Vc (22). At large V, the repulsive
interaction favors a CDW state, distinguished
from that of the ionic Hubbard model by the
fact that there is no staggered external field
here; the CDWphase is a result of spontaneous
symmetry breaking. As V is reduced, increas-
ing quantum fluctuations caused by hopping
finally destroy the CDW state, resulting in a
Dirac semimetal forV <Vc. Accurate estimates
based on SP-free methods yield Vc ~ 1.35t (41).
In Fig. 3B, we show a map of the temper-

ature extrapolation of hSi as a function of V.
The sign shows a clear reduction around the
known Vc (denoted by the star). Figure 3D
shows the spatial lattice size dependence of
the sign, and Fig. 3C, once again, a more “tra-
ditional” local variable, the derivative of the
nearest-neighbor (NN) density-density correla-
tion hn̂in̂jiNN with respect to V. In the CDW
phase, increasing V strengthens the staggered
order, reducing the NN density correlations,
and thus –dhn̂ i n̂ jiNN/dV is positive. Conversely,
the effect is much smaller in the semimetal
state, where the derivative is close to zero.
The transition Vc is characterized by a clear
downturn in this quantity, which becomes

progressively sharper as L increases, as Fig. 3C
shows. This variable thus serves as a physical
indicator of the QPT, allowing a comparison of
Fig. 3, C and D, to demonstrate the connection
between the QCP and the behavior of hSi. In
this model, hSi is sufficiently well behaved
that a study of the finite-temperature CDW
transition with DQMC is feasible (7) without
having to resort to SP-free approaches (48).

Square lattice Hubbard model

The essential elements of the physics of the
cuprate superconductors include antiferro-
magnetic order at and near one hole per CuO2

cell, a superconducting dome upon doping,
which typically extends to densities 0.6 ≲ r ≲ 0.9,
and a “pseudogap”/“strange metal” phase
above the dome (23, 49). There are many quan-
titative, experimentally based phase diagrams
of different materials that determine the re-
gions occupied by these phases (50). Likewise,
there are computational studies of individual
(r, T, U) points establishing magnetic/charge
order (51), linear resistivity (52), a reduction
in the spectral weight for spin excitations
(53, 54), and d-wave pairing (55, 56).
Here, we reveal an “SP phase diagram” that

bears notable resemblance to the experimental
phase diagram. As iswell known, the severity of
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Fig. 3. The U(1) Hubbard model on the honeycomb lattice. (A) Schematics of the spinless fermion
Hamiltonian (Eq. 2) with NN interaction on a lattice with L = 3. (B) Temperature extrapolation of the average
hSi as a function of the NN interaction V/t for a lattice with L = 9. (C) Extrapolation of the derivative of
the NN correlation with respect to V, with the inverse of the linear size L for a range of interactions at a
temperature T that scales with the system size T/t = 0.0375/LDt. (D) Same as (C) but showing the average
sign. Here, hSi marginally increases when tackling larger sizes, indicating that the dynamical critical exponent
z in the scaling with Lt/L

z is > 1 (7, 43); we used z = 1 above. In all data, Trotter discretization is chosen
as tDt = 0.1. As for the SU(2) case, the star marker depicts the best known value of the interactions that
trigger the Mott insulating phase, here with CDW order at the ground state (41). Figure S5 reports a
finite-temperature analysis of physical quantities, and fig. S6 analyzes the Dt influence on hSi.
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the SP itself precludes determination of d-wave
order in DQMC through “traditional” observ-
ables such as the associated correlation func-
tions. However, Fig. 4, which is based on the
behavior of the sign itself, is suggestive. We
report the average sign (Fig. 4A), the enhance-
ment of the d-wave pairing susceptibility over
its value in the absence of the pairing vertex
(57) (Fig. 4B), and the uniform, static spin
susceptibility c(q = 0) (Fig. 4C) in the T/t–m/t
plane. Figure 4, D to F, shows analogous plots
for the T/t–r plane (7).
The most salient features of this “sign phase

diagram” are (i) the “dome” of vanishing hSi
that occurs in a range of densities 0.4 ≲ r ≲ 1 as
T is lowered (Fig. 4D), (ii) the enhancement of
d-wave pairing (Fig. 4E) surrounding the sign
dome, and (iii) the magnetic properties being
also linked to the hSi dome: The trajectory
tracing the peak value of c(q = 0) as T is de-
creased terminates precisely at the top of the
dome (Fig. 4F). In isolation, the comparisons
of the behavior of the sign and the pairing
and magnetic responses in the square lattice
Hubbard model appear likely to be coinci-
dental. Indeed, the fact that the sign is worse
precisely for optimal dopings has been pre-
viously discussed, but thought to be just “bad
luck” (32, 57–59). However, that the known
QCPs of the three models discussed in the
preceding three sections can be quantita-

tively linked to the behavior of hSi suggests
that the sign domemight actually be indicative
of the presence of d-wave superconductivity.

Discussion and outlook

Early in the history of the study of the SP, a
simple connection was noted between the
fermionic physics and negative weights in
AFQMC: If one artificially constructs two
Hubbard-Stratonovich field configurations,
one associated with two particle exchanging
as they propagate in imaginary time and
another with no exchange, one finds that the
associated fermion determinants are nega-
tive in the former case and positive in the
latter. This interesting observation, however,
pertains to low density, that is, to the prop-
agation of just two electrons. Another key
observation is that the SP can be viewed as
being proportional to the exponential of the
difference of free energy densities of the orig-
inal fermionic problem and the one usedwith
the weights in the Monte Carlo sampling
taken to be positive, akin to a bosonic for-
mulation of the problem (13, 32). It highlights
how intrinsic the SP is in QMCmethods. A last
important remark is that ordered phases are
often associated with a reduction in the im-
portance of configurations that scramble the
sign. This is graphically illustrated in the snap-
shots of (24). Although less crisp, similar ef-

fects are seen in AFQMC, for example, in
considering the evolution from the attractive
Hubbard model to the Holstein model with
decreasing phonon frequency w0. Reducing w0

acts to increase the effect of the phonon po-
tential energy term P̂

2
in Ĥ, thereby straight-

ening the auxiliary field in imaginary time.
Here, we have shown that the behavior of

the average sign hSi in DQMC simulations
holds information concerning finite density
thermodynamic phases and transitions be-
tween them: the QCPs in the semimetal to
antiferromagnetic MI transition of Dirac
fermions, the BI to CM to correlated insu-
lator evolution of the ionic Hubbard Hamil-
tonian, and the QCP of spinless fermions
(even though a sign-problem free formula-
tion exists). Specifically, a rapid evolution of
hSi marks the positions of QCPs. We have
chosen these models as representative ex-
amples of QCP physics of itinerant electrons
that have been extensively studied in the
condensed-matter physics community but
speculate that the result is general. In fact,
in a model for frustrated spins in a ladder
using a completely different QMC method
(stochastic series expansion), similar con-
clusions can be inferred (60), further cor-
roborating this generality. Likewise, in the
square lattice version of the U(1) Hubbard
model that we studied here, with an added
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Fig. 4. Square lattice Hubbard model. (A) Temperature dependence of the
average hSi as a function of the chemical potential m/t for a lattice with L = 16,
U/t = 6, and next-NN hopping t′/t = –0.2, values chosen to be close to
those in cuprate materials. (B) d-wave pair susceptibility (with the non-vertex
contribution subtracted) for the same parameters. (C) Corresponding static
spin susceptibility c(q = 0). The white markers describe its peak for values at
which the average sign is large enough to allow a reliable calculation, which
encompasses the pseudogap regime. See the supplementary materials (7)

for a perspective on the onset of this regime. (D to F) Corresponding diagrams
when converting to the calculated average density. The black markers depict
the actual average density extracted from the regular mesh of m used in the
upper panels and where an interpolation of the data is performed. In all
data, Trotter discretization is chosen as tDt = 0.0625. A finite-size analysis
(fig. S7), different pairing channels (fig. S8), and the behavior of the spectral
weight (figs. S9 and S10) is given in the supplementary materials (7). Equivalent
results for t′ = 0 are reported in fig. S11.
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p flux, it can be shown that in the sign-
problem free formulation, the QMC weights,
when expressed in terms of the square of
Pfaffians (Pf), holds similar information, name-
ly that hsgn(Pf )i departs from 1 close to the
QCP for this model (61). These results pro-
vide further evidence that the average sign of
the QMC weights is inherently connected to
the physics of the model in many mutually
unrelated models and methods, but an even
broader study is necessary to establish this
conclusively.
Having established this connection in

Hamiltonians with known physics, we have
also presented a careful study of the SP for the
Hubbard model on a 2D square lattice, which
is of central interest to cuprate d-wave super-
conductivity. The intriguing “coincidence”
that the SP is the worst at a density r ~ 0.87,
which corresponds to the highest values of the
superconducting transition temperature, has
been noted previously (32, 57–59). It is worth
emphasizing that we have not here presented
any solution to the SP. However, our work
does establish the surprising fact that hSi can
be used as an “observable” that can quite ac-
curately locate QCPs in models such as the
spinful and spinless Hubbard Hamiltonians
on a honeycomb lattice and the ionic Hubbard
model and also provides a clearer connection
between the evolution of the fermion sign and
the strange metal/pseudogap and supercon-
ducting phases of the iconic square lattice
Hubbard model.
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Unexpected benefits of the sign problem
Solving challenging problems in quantum many-body physics often involves using numerical Monte Carlo methods.
However, in the most interesting regime of strong interactions and low temperatures, the so-called sign problem
can make calculations intractable. Mondaini et al. studied the severity of the sign problem quantitatively in several
representative models. The researchers found that quantum critical behavior in these models correlated with the
regions in the phase diagram where the sign problem was most pronounced. Viewed as a diagnostic for quantum
criticality, the sign problem then becomes a tool (in addition to being a nuisance). —JS

View the article online
https://www.science.org/doi/10.1126/science.abg9299
Permissions
https://www.science.org/help/reprints-and-permissions

D
ow

nloaded from
 https://w

w
w

.science.org at B
eijing C

om
putational Science R

esearch C
enter on January 27, 2022

https://www.science.org/about/terms-service

