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Geometrical frustration in strongly correlated systems can give rise to a plethora of
novel ordered states and intriguing magnetic phases, such as quantum spin liquids'™.
Promising candidate materials for such phases*® can be described by the Hubbard
model on an anisotropic triangular lattice, a paradigmatic model capturing the
interplay between strong correlations and magnetic frustration’ . However, the fate
of frustrated magnetismin the presence of itinerant dopants remains unclear, as well
asits connection to the doped phases of the square Hubbard model. Here we
investigate the local spin order of a Hubbard model with controllable frustration and
doping, using ultracold fermions in anisotropic optical lattices continuously tunable
fromasquare to atriangular geometry. At half-filling and strong interactions U/t = 9,
we observe at the single-site level how frustration reduces the range of magnetic
correlations and drives a transition from a collinear Néel antiferromagnet to a short-
range correlated 120° spiral phase. Away from half-filling, the triangular limit shows
enhanced antiferromagnetic correlations on the hole-doped side and areversal to
ferromagnetic correlations at particle dopings above 20%, hinting at the role of kinetic
magnetismin frustrated systems. This work paves the way towards exploring possible
chiral ordered or superconducting phasesin triangular lattices®” and realizing t-t/
square lattice Hubbard models that may be essential to describe superconductivity in
cuprate materials™.

The collective properties of spins with antiferromagneticinteractions
crucially depend on the geometry of the lattice they inhabit". Onaa
square lattice, spins formaNéel order with antialigned neighbours; by
contrast, their mutual antiparallel alignment cannot be satisfied on a
triangular lattice, which is the simplest model for geometric frustra-
tion and features non-trivial spin order. This frustrated spin order is
associated with a massive ground-state degeneracy with enhanced
quantum fluctuations and may lead to exotic phases of matter, such
as quantum spin liquids****?,

The Hubbard Hamiltonian is one of the most fundamental mod-
els describing the emergence of quantum magnetism among spin-
1/2 electrons with kinetic energy ¢ and interaction energy U. On the
non-frustrated square lattice, it is thought to capture the essential phys-
icsof the strongly correlated electrons inthe doped high-temperature
superconducting cuprate materials'. Interpolating the Hubbard model
between square and triangular lattices has important practical value
to accurately describe a broader class of correlated materials with
structural anisotropy, including layered organic compounds believed
to host quantum spin liquid phases®. Anisotropic triangular Hubbard
models would furthermore provide aminimal model to understand the
competition between charge dopants and magnetism with frustration
away from half-filling, for which much lessis known, as numerical calcu-
lations are challenging owing to the absence of particle-hole symmetry.

Ultracold fermions in optical lattices form a pristine realization of
the Hubbard model. They can be used for the quantum simulation

of frustrated systems'®"’, shedding light on both its half-filled and
doped phases with site-resolved observables. In this work, we realize
a Fermi-Hubbard system with tunable frustration and investigate its
magnetic order as a function of doping with single-site resolution in
theregime of intermediate to stronginteractions U/t = 9. We explicitly
implement tunable tunnelling anisotropy and investigate the combined
effect of frustration and doping on magnetic order at temperatures
T/t < 0.4 comparable with or lower than the spin exchange energy.
This is in contrast to concurrent work analysing nearest-neighbour
antiferromagnetic correlations onanisotropic triangular lattice” and
to previous studies focusing on frustrated classical magnetism with
ultracold bosons®™.

Our system relies on a lattice formed by the interference of two
orthogonalretro-reflected laser beams whose relative phaseis actively
stabilized®?2. With equal beam intensities, this interference realizes a
non-separable square lattice rotated by 45°. Tunable frustration is intro-
duced by an extra tunnelling term ¢’ along one diagonal of this square
lattice (Fig.1a) and controlled by the intensity imbalance between the
twobeams (Fig. 1b), in contrast to previous realizations of lattices with
three beams and a 120° rotational invariance'®*°**%, As a result, our
geometry can be smoothly changed fromasquare lattice for ¢/t =0to
anisotropic triangular lattice at ¢/t =1 and undergoes a dimensional
crossover to weakly coupled one-dimensional chainsin the limit¢’/¢ > 1.

We prepare a balanced mixture of fermionic °Li atoms in the two
lowest hyperfine states into this tunable optical lattice by adiabatically
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Fig.1|Investigating frustrationon a tunable triangular lattice witha
quantum gas microscope. a, Asquare lattice with coupling tcanbe
continuously transformed into a triangular lattice with an extra tunable coupling
t’ alongonediagonal. Frustration is parameterized by the anisotropy ratio t’/t
andleadstoachangeinthe magnetic ground state from an antiferromagnetic
Néelorderinthe squarelattice (¢/t = 0) toa120° spiral order in the isotropic
triangularlattice (¢//t =1),in both the classical and quantum Heisenberg limits.
b, Weimplement this tunable lattice with two orthogonal retro-reflected
lattice beams actively phase-locked to each other?. Theirinterference results
inanon-separable square lattice potential rotated by 45°. Adjusting the
intensity balance between the lattice beams Xand Y (/yand/,) reduces the

rampingthelattice powers within160 ms. We set the s-wave scattering
lengthto values a, = 358a, — 432a, by tuning the magnetic bias field in
the vicinity of the Feshbach resonance at 832 G, for which a, denotes
the Bohrradius. The systemis well described by a single-band Hubbard
model with nearest-neighbour tunnelling ¢ = 355(11)-426(21) Hzand a
tunable diagonal tunnellingt’ = 9.5(4)-370(6) Hz. Owing to the under-
lying harmonic confinement of the laser beams, atoms are subject to
atrapping potential and show a spatially varying density n (Fig. 1d;
see Methods).

Néel to spiral order transition

In the strong coupling limit at which Uis greater than the bandwidth,
the Hubbard Hamiltonian at half-filling can be approximated by an
antiferromagnetic Heisenberg model with anisotropic spin exchange
couplings J(") = 4t(")*/U. This anisotropic spin model already features
rich magnetic properties. In the bipartite square lattice /= 0, the
ground state is an antiferromagnetic Néel state?. By contrast, frus-
trationintheisotropictriangular lattice gives rise toa120° spiral Néel
order” %, Classical spin-wave theory predicts a transition between
antiferromagnetic Néel order to an incommensurate spin spiral
phase at)’// = 0.5, which smoothly evolves into 120° order at)’// =1
(refs. 31,32).Inthe quantumspin-1/2 Heisenberg model, the location of
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potential barrier between a pair of diagonal neighbours and enhances
tunnelling. ¢, We realize a frustrated Fermi-Hubbard magnet by preparing a
Mottinsulator of about 500 fermionic atomsin the tunable lattice. Doublon—
hole pairsappear owing to quantum fluctuations at our finite interaction
energy U/t =9 and areimaged as pairs of empty sites connected by tunnellings
t(’)>0inatypical fluorescence picture owingto parity-projected imaging
(with anisotropy t’/t = 0.26(1)).d, Atomic density varies across the sample
owingtothepresence of aradial confining potential, allowing ustolocally
investigate the effect of doping on magnetic order. With increasing the total
atom number, a particle-doped regionisimaged asalighter discinsidea
half-filled ring.

the transition pointis expected to be shifted above the classical value of
0.5owingto quantum fluctuations, but its exact location s stillan open
question®,

Toshedlight on the magnetic properties of the anisotropic triangular
Hubbard model atintermediate U/t, we form a large Mott insulator of
about 500 atoms by adjusting the local chemical potential at the centre
ofthe trap to approximately reach half-filling (Fig. 1c). We measure the
spin-spin correlation function
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between any pair of sites located at positionsrand r + d, as described
in our previous work>*. We average this correlator within the central
insulating region of about 200 sites, in which the chemical potential
variation owing to harmonic confinement is minimal. In the square
lattice ¢/t = 0.0265(3), we observe strong antiferromagnetic correla-
tions decaying exponentially with distance (Fig. 2a, left), visible as
aspatially averaged correlator C4 with a staggered sign that gradu-
ally fades out as a function of bond distance d in alogarithmic colour
scale. Comparing the measured nearest-neighbour spin correlators
to those obtained from determinant quantum Monte Carlo (DQMC)
simulations at half-filling gives a fitted temperature of 7/t = 0.26(1).
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Fig.2|Frustrating short-range antiferromagnetic orderinthesquare-to-
triangular lattice transition. a, Real-space spin correlation Cqas afunction

of displacementd averaged over theregion at half-filling. The magnitude of
antiferromagnetic correlations decreases with increasing frustration,
parameterized by t’/t,and the symmetry of the correlation function changes
from fourfold D, to sixfold D, that is, hexagonal. Each panelis averaged over
about200sites, withatypical s.e.m.of 0.005 (see Methods). The grid issmoothly
stretched horizontally to emphasize the change in connectivity. b, Nearest-
neighbour spin correlations across the t-bonds C, ), across the t’-bonds C;; ;,
and next-nearest-neighbour correlation C,,,. C, o is decreasing with increasing
frustration. C,; and C,,, reverse sign as diagonal neighboursin the square
lattice with aligned spins become nearest neighboursin the triangular lattice
with antialigned spins. Shaded bands: DQMC simulations at U/t =9.5and

As lattice anisotropy t’/t and frustration are increased, the growing
superexchange coupling/ along the diagonal d = (1, 1) favours antial-
igned spins, which competes with the Néel ordering, favouring ferro-
magnetic correlation between sites on the same sublattice. Asaresult,
we observe a suppression of the range of the spin-spin correlations.
Thecorrelator C ; is furthermore weakened for moderate anisotropies
t'/t=0.57(3) before changing its sign® (purple data points in Fig. 2b).
In the configuration closest to the triangular geometry, '/t = 0.97(4),
the three correlators to the nearest triangular neighbours C ), Co 1y
and C,; ;, are consistently isotropic, with aresidual difference by about
10% owing to technical limitations (see Methods). We also observe
positive next-nearest correlations C,, that reflect the effective hex-
agonal symmetry of the correlation function C4 that also show a sign
change (orange data points, Fig. 2b). We observe aslight temperature
increase asanisotropy t’/tisincreased, to 7/t = 0.39(4) in the triangular
lattice, which also contributes to the suppression of spin correlations
dominated by frustration (see Methods). This heating may be because
of increased laser noise with increasing lattice intensity imbalance.
Insolid-state systems, magnetic transitions can be observed through
changes in the symmetry of the spin structure factor, which can be
measured, for example, by means of neutron scattering. Here we obtain
thespinstructure factor S%(q) fromthe Fourier transformation of the
real-space spin correlation function (see Methods). Antiferromag-
netic Néelorderinthe squarelattice appears as awell-defined peak at
quasi-momentum (1, ), the M symmetry point of the first Brillouin
zone (BZ) (Fig.2c). Asweincrease t'/t, this peak becomes anisotropic,
broadening along the K-K’ direction. For the triangular lattice case, we
observe two distinct peaks at the Kand K’ points of the hexagonal BZ,
indicative of the 120° spiral order. The short-range character of this

T/t=0.35-0.4.Experimental temperatures are lower than the DQMC data here
fort’/t=0.0265(3) and 0.26(1). ¢, Measured spin structure factor $*(q) plotted
over the extended BZ of the square lattice (i) and triangular lattice (ii)—(v).
(i),(ii), Antiferromagnetic order on the square lattice shows up as asingle peak
at quasi-momenta (1, ) in the square BZ and a peak at the M point of the
hexagonal BZ. (ii)-(v), The single peak at the Mpoint broadens with increasing
t’/tand splitsinto two separate peaks at the Kand K’ points for t’/t = 0.97(4).
Thebroad peaksin (v) indicate short-range 120° order in the triangular lattice.
d, Cutofthespinstructure factor $**(q) along the I-K-K’-T line (illustratedinc,
(ii)). Shaded bands: DQMC simulations at U/t =9.7, T/t = 0.26 (square) and
U/t=9.2, T/t=0.39 (triangle), with widths propagated from experimental
uncertainties (see Methods). The error bars denote one s.e.m. and the number
of repetitions can be found in Methods.

120° order is evident from a global reduction and a broadening of the
spin structure factor peaks (Fig. 2d).

Particle-hole asymmetry

Interactions between itinerant charge and magnetic moments can
lead to rich collective quantum phases. One paradigm is doping a
Néel-ordered Mottinsulator, inwhich the interplay between the kinetic
energy of the mobile dopants and strong correlations is believed to
underlie the physics of cuprates. Inthe square lattice Hubbard model,
however, Néel antiferromagnetism is made particularly robust at
half-filling by Fermi surface nesting and the absence of geometric
frustration, which may obscure competing orders. Doping frustrated
systems in which intriguing phases already arise at half-filling may
bring distinct new physics'2. Anisotropic triangular lattices can
be seen as the simplest lattice that frustrates collinear Néel order
and breaks the particle-hole symmetry through a single diagonal
next-nearest-neighbour tunnelling ¢'.

We investigate the effect of doping by increasing the central lattice
filling to n =1.6; together with a slow variation of the chemical poten-
tial resulting from the lattice confinement, this allows us to examine
short-range spin correlations over a large range of both particle and
hole dopings 6 = n —1linthelocal density approximation (see Methods).
As expected from the particle-hole symmetry in the band structure
(Fig. 3a), we find that the nearest-neighbour spin correlation C; o) in
the square lattice remains antiferromagnetic and decays similarly on
hole-doping or particle-doping +6 (Fig. 3b, bottom), with a residual
asymmetry explained by deviations of the underlying confinement
fromaradially symmetric harmonic potential. By contrast, we observe
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Fig.3|Particle-hole asymmetry of magnetic correlations and particle-
doping-induced ferromagnetism. a, Particle-hole symmetryis brokenin
thetriangular lattice, whichis visible as a change of the shape and topology of
thenon-interacting band structure above (purple) and below (brown) half-
filling. Inthe particle-hole-symmetric square lattice, antiferromagnetic order
isenhanced at half-filling owing to a strongly nested square Fermi surface
(dashed lines) for weakinteractions. b, Dopingleadstoadecreaseinthe
magnitude of the antiferromagnetic spin correlations averaged over the ¢
lattice bonds C;; yyand C, (grey points) compared with the half-filling value
(vertical dashedline). A pronounced particle-hole asymmetry emergesin the

particle-hole-asymmetric magnetismin the nearly isotropic triangu-
lar lattice t’/t = 0.97(4) (Fig. 3b, top). There, at the same temperature,
antiferromagnetic correlations survive for a wide range of hole dop-
ings, whereas they are strongly suppressed with particle doping. Sur-
prisingly, we find that the correlator C o, even becomes significantly
ferromagnetic above a certain particle doping 6 = 0.2, as confirmedin
spin correlation maps (Fig. 3¢).

Asymmetric spin correlations are to be expected for a Fermi liquid
owing to the particle-hole asymmetry of the triangular lattice band
structure: the shape and topology of the non-interacting Fermisurface
changes markedly onincreasing density and separates into two discon-
nected parts centred around the symmetry points Kand K’ close to full
filling n =2 (Fig. 3a). However, comparing with DQMC simulations,
we note that the experimentally observed sign reversal at large particle
dopings and sharp asymmetric suppression of spin correlation close to
half-filling are absent in a non-interacting system (see Methods). The
agreement with DQMC simulations at the experimental interaction
strength U/t = 9.2(5) suggests that this asymmetric interplay of particle
and hole dopants with magnetism is unique to interacting systems
(Fig. 3b, grey lines). This asymmetry and strongly weakened correla-
tions at particle dopings § = +0.5 are similarly observed in anisotropic
triangular geometries t’/t > 0.57 (Fig. 3d).

One possible mechanism for the particle-hole asymmetry in the
stability of spin correlations can be understood by considering one
dopant onatriangular plaquette in the superexchange energy /(') = 0
limit***, similar to the Nagaoka effect®. The dopant could minimize
its kinetic energy when different hopping paths interfere construc-
tively, whichis decided by the effective sign of the tunnellings ¢(") and
the surrounding spin configuration. With the sign convention of this
work, a particle dopant has (") > 0 and a spin triplet, ferromagnetic
configuration allows the dopant to hop with constructive quantum
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triangular lattice, whereas the correlation functionis symmetricin the square
lattice. Grey lines show DQMC simulations at U/t =9.1, T/t = 0.44 (triangular)
and U/t=9.0, T/t =0.40 (square). ¢, Spin correlation mapsin the triangular
latticeat dopings §=0.06 and 6 = 0.54. Nearest-neighbour correlations change
toweakly ferromagneticat 6= 0.54 withvalues C, 5, = 0.011(6) and C;; ;, = 0.006(5).
d, Nearest-neighbour spin correlations over the tlattice bonds as a function

of doping 6 and lattice anisotropy t’/t, showing alarge region of weakened
correlations at positive dopingand ¢/t > 0.5. The error bars denote one s.e.m.
and the number of repetitions can be foundin Methods. AFM, antiferromagnetic;
FM, ferromagnetic.

interference. A hole dopant, by contrast, has an effective (") < 0 and
thus prefers aspinsinglet, antiferromagnetic configuration. However,
at finite /(") and low temperatures 7 $J(), as in our experiment, how
such kinetic frustration competes with magnetic orders still remains
anopen question.

Particle-holeasymmetry is particularly apparentinspin correlations
along the diagonal bonds C, ., (Fig. 4a). In a square lattice, both cor-
relators are equal, particle-hole-symmetric and show areversal from
positive to negative for dopings |6| 2 0.2 (ref. 34). As the anisotropy t'/t
increases, the nature of C ;, changes from anext nearest neighbourtoa
nearest neighbour and its value smoothly interpolates to the particle—-
hole-asymmetric correlator C, , in the triangular lattice (Fig. 3b). The
ferromagnetic character of this correlator on particle doping is most
pronounced at ¢/t = 0.5 (Fig. 4b) and we find quantitative agreement
withDQMC simulations. Notably, increasing the frustration parameter
t'/thas the opposite effect on the other diagonal correlator C, _;,, which
becomes antiferromagnetic on particle doping (Fig. 4a, bottom).

Discussion and outlook

Possible scenarios for the appearance of ferromagnetism in the Hub-
bard model have been identified at the mean-field level®, for single
dopants® or at high temperature in frustrated systems**°, but acom-
plete theoretical picturein our regime of temperatures T </and strong
correlations is missing. The existence of a Van Hove singularity in the
non-interacting density of states of the triangular lattice at a density
n=3/2,together with weak ferromagnetic correlations observed in
DQMC simulations even at small interaction U/t = 4 (see Methods),
could suggest that density of states may play a crucial role**, Exper-
imentally, our findings might be related to recent observations in
transition-metal-dichalcogenide moiré materials*®. Quantum gas
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Fig.4 |Next-nearest-neighbour spin correlations at finite doping. a, Spin
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and C;, ;, (diagonal, red) similarly show particle-hole asymmetry away from the
square lattice geometry. b, Inthe anisotropic triangular lattice t’/t = 0.57(3),

microscope experiments could help explain the microscopic processes
underlying doping-induced magnetism through the measurement
of spin—-spin-charge correlations**8, as well as momentum-resolved
spectroscopy®.

Further experimental studies at interactions close to the metal-to-
insulator transition would also help shed light on a conjectured spin
liquid phase withbroken time-reversal symmetry®*°. Moreover, through
the addition of a third superlattice beam?, our tunable experimental
platformallows for exploring extensions of the Hubbard model directly
related to cuprate materials, such as the t-t’ model, which could help
explain the emergence of superconducting phases with doping™.
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Methods

Hubbard model on anisotropic triangular lattice
In this work, we study the Hubbard model on anisotropic triangular
lattices

H=-t) (CL(LO),UCr,o + Clo1,0Crat h-C~)

ro

! )
-ty (clanoCroth.c)+U 2 mn,
1,0 i

withtunnelling tbetweenssites r that are nearest neighbours onasquare
lattice and tunnelling ¢’ along one diagonal d = (1, 1) tunable between
Oandt.

Here we take the convention in which ¢(") > 0. Thus, in the isotropic
triangular lattice, the non-interacting energy band lies within (-6¢, 3t).
Uis the onsite interaction energy.

Experimental methods

Triangular optical lattice. We use two retro-reflected laser beams
(X, V) that are phase locked to each other to implement an interfer-
ence lattice inside a glass cell. As described in previous works®, each
latticebeamisretro-reflected fromaspherical mirror toformastand-
ard standing wave and undergoes a further vertical reflection off a
super-polished substrate. This reflection forms a one-dimensional
latticeinthe zdirection with alarger spacing determined by the beam
angle of incidence 6 = 69.2(1)° on the substrate. We selectively load a
two-dimensional atomic gasinto asingle layer of the zlattice, in which
the two-dimensional lattice potential can be written as:
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Here k, = k, = 2tsinf/A are the horizontal lattice wavenumbers asso-
ciated with the lattice wavelength 1=1,064 nm. ¢ is the interference
time phase between the Xand Ylatticebeamsandissettog=0ormto
minimize the effect of phase fluctuations on the lattice potential. We
thus formanon-separable square lattice rotated by 45° compared with
the beam propagation directions, with a spacing a = 805 nm.

Each pass through a surface of the uncoated glass cellincurs aloss
owing to Fresnel reflection; we calculate the reflection coefficient
r=8.27(1)% and transmission7 =1-r from the calibrated beam angles
and the light polarization. The polarization is chosen to be
p-polarization relative to the plane of incidence on the substrate to
maximize the interference between the two (X, ¥) beams; this is close
tos-polarization on theglass cell. We use V,.and V, to denote the lattice
depthsifthe polarization were horizontal (son substrate) and without
Fresnel loss. This notation is convenient when we need to take into
account partial interference owing to polarization angle and losses.

To realize a tunable diagonal tunnelling ¢’ = 0-1, we set the ratio
between the intensities of the two lattice beams to V,/V,=1-300. The
strongimbalance reduces the potential barrier connecting neighbours
along the diagonal d = (1, 1) to compensate the longer separation -/2a
and enhances quantum tunnelling.

Lattice loading and imaging. The preparation of the ultracold Fermi
gasbefore loading into optical lattices is similar to our previous works**.

Toload the gasinto theinterfering lattice, which we refer to as the phys-
icslattice, we adiabatically perform alinear ramp of the lattice powers
and hence of the lattice depths V,,.

We perform site-resolved imaging in a separate, dedicated lattice,
which we will refer to as the imaging lattice. The imaging and physics
lattice beams are overlapped on a polarizing beam splitter and are in
orthogonal polarizations. The protocol used to take a site-resolved
image is shown in Extended Data Fig. 1. We first ramp up the physics
lattice depth to about 8OF, within 50 ps, with E; = h*/8ma being the
recoil energy. This fast ramp rapidly suppresses the tunnelling between
lattice sites and allows for a faithful measurement of observablesin the
lattice occupation basis®. After freezing the density and spin distribu-
tion, we adiabatically transfer the atoms fromthe physicslattice tothe
imaging lattice with two hand-offs composed of three linear ramps,
each of 20 msin duration.

The imaging lattices are formed from the same laser source with a
wavelength of 1,064 nm but their frequencies are detuned relative to
eachotherandtothe physicslattice to effectively cancel any interfer-
ence term. This non-interfering lattice therefore has atwo-dimensional
square potential Ve -V, cos(2k, x) - V,,cos(2k, y), which contains twice
asmany sites as the interfering physics lattice. To ensure a high fidelity
transfer from the physics to the supersampling imaging lattice, it is
important that each site of the physics lattice has good overlap with
only one sublattice of the imaging lattice. If this is not the case, for
example, if one physics site equally overlaps with two imaging sites, it
is difficult to maintain adiabaticity in the transfer. We achieve this over-
lap condition by carefully choosing the frequency offset to compensate
the phase shift induced by the reflection off the substrate for the Y
beams. For the Xbeams, such a frequency offset turns out to be not
enoughand we choose to use a third X lattice to mediate the transfer:
it has good overlap with both imaging and physics X lattices. We first
transfer atoms from the physics lattice to X and then transfer to the
imaging lattice, both with the linear ramp mentioned above. We selec-
tively remove atoms in one of the hyperfine states as mentioned in
previous work®* in the imaging lattices.

Potential compensation. Owingto theimbalanced powers used onthe
X, Yaxesinthe triangular lattice, the harmonic confinement provided
by the Gaussian envelope of the lattice beams is different along differ-
entlattice axes. To obtain aradially symmetric sample, and to enhance
the density near the trap centre, we use a digital micromirror device
to project acompensating paraboloid potential onto the atoms. This
digital micromirror device andits light source have been describedin
previous work>.

Calibrations

Lattice depth, angle and phase calibration. We first calibrate the
depth of eachlattice beamindividually by performing amplitude modu-
lation spectroscopy in deep lattices of around 50£;, as described in a
previous work®. Because each beam forms two orthogonal standing
waves from retro-reflection and vertical reflection on the substrate,
we are able to measure two bandgaps between the ground band and
the second excited band of each effective one-dimensional lattice.
We then calculate the band structure of the single-beam lattice with
the potential:

Vil,z)=- g((l +FF2cos(20)cos(2k,2)
+2F*cos(260)cos(2kl) + F*cos(2(kl + k,z)) (4)
v
+rtcos2(kl - k,2))) - §’f2(1 +7%
Here [refers to the direction of propagation of the beam x or y and

k,= kcos@ is the wavevector associated with the vertical standing
wave. By fitting gaps obtained from the band-structure calculation to
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the measured bandgaps, we obtain the bare lattice depths
tion (3)), as well as the incident angle 6 = 69.2(1)°.

All experiments are performed when the interference between
the Xand Ybeamsis maximized, that s, for ainterfering time phase
¢ =0 or ¢ =m. We interferometrically measure twice this phase 2¢
after around trip between the optical setup in which the phase meas-
urement occurs and the retro-reflecting mirrors in which the lattices
arecreated; asaresult, the interfering phase ¢ is only known modulo
1. To find the point of maximal interference, we scan the phase-lock
point ¢ through more than a full 2n period electronically by chang-
ing the phase ¢, of a phase-shifter and take site-resolved images at
each value. When ¢ = +1/2, the X, Y interference term vanishes
and the lattice changes from a chequerboard to a square lattice,
V(x,y) = V,cos(2k, x) + V,cos(2k, y). This change is clearly visible in
site-resolved images as a sudden doubling of the detected density of
atoms owing to the halving of the unit cell. As ¢ is scanned through
+1/2, the atom population moves from one sublattice A to the other
sublattice B. We use the atom populationimbalance 7= (b, - P/ (B, +Dp)
to find out where the transition is, as in Extended Data Fig. 3. We then
change the phase ¢, by musing the phase-shifter toget ¢ =0 or .

Tocalibrate theinterference terms between Xand Y, we turnon both
lattice beams and amplitude modulate one of them in the deep lat-
tice limit of approximately 160F;. We perform a Lorentzian fit on the
modulation spectrum to determine the bandgaps from the ground
band to the three d bands of the horizontal two-dimensional lattice.
These bandgaps are sensitive to the angle between the beams Xand Y
in the horizontal plane, which we deliberately tune away from 90° to
partially compensate for atunnelling anisotropy between the X + Yand
X -Ydirections associated with Fresnel losses. The angle difference
a from 90° is obtained from a fit of the calculated two-dimensional
band structure to the spectrum, fixing all independently calibrated
parameters. We find a = 0.98(9)°, for which the uncertainty mostly
comes from the uncertainties on the fits to the bandgap frequencies.

Using the calibrated lattice parameters, we numerically compute
theband structure of the two-dimensional interfering lattice at experi-
mental powers (Extended Data Fig. 2). The values of the experimental
tunnelling amplitudes are obtained in the tight-binding approximation
from a Fourier transform of the lowest energy band and are reported
in Extended Data Table 1. We also confirmed that all higher-order
tunnellings are at least two orders of magnitude smaller.

V,, (equa-

Imaging fidelity. As described in the section ‘Lattice loading and imag-
ing’, our imaging sequence consists of two parts: a transfer from the
physicslattice to theimaging lattice and fluorescence imaging through
Raman sideband cooling. We characterize the fidelity of the fluores-
cenceimaging as described in our previous work®* and find the fidelity
of correctly determining the occupation of alattice site tobe 99.4(6)%.

Next, we measure the fidelity of the transfer process from the physics
lattice to the imaging lattice as follows. We load atoms in a Mott insu-
lating state with alarge U/t to ensure unity filling and then perform
the physics to imaging transfer, followed by the usual fluorescence
imaging. We count the fraction of atoms that are transferred to the
‘wrong’ sublattice of the imaging lattice starting from the unit-filled
Mott insulator and find this fraction to be 0.9(2)%. These are atoms
that did not adiabatically follow the physics-imaging transfer and we
account forthemasareductioninimaging fidelity. Overall, we report
animaging fidelity of 98.5(7)%.

Data analysis

Spin structure factor. The spin structure factor $§%(q) is obtained by
performing a Fourier transform of the measured real-space spin cor-
relation function Cy:

|d|<d max X
Yy elric, ©)

d

S#(q)=

Owing to the finite spin correlation length at our experimental tem-
peratures, the spin correlations rapidly fall off with distance |d|. Hence
we truncate the Fourier sum up to a cutoff distance d,,,,,, chosen such
thatthe further distance correlations are negligible and the structure
factor has converged within error bars. For the square lattice case
t'/t=0.0265(3), we keep up to d,,,, = 8, whereas for all other values of
t'/t,wekeeponlyuptod,,,, =5. We use afinely spaced grid of momen-
tum space points (q,, g,) to compute the structure factor, which is
equivalent to zero-padding the correlation function for distances
larger than d,,,,.. This does not add or alter any information contained
in the structure factor, while making it easier to see the broadening
of the peaks as well as the change of the symmetry from fourfold to
sixfold.

InFig. 2c, we show two different BZs, square BZ in (i) and hexagonal
BZ in (ii)-(v). Here we describe how we plot the structure factor for
these two BZs. Because our imaging lattice forms a square grid, we
can label each lattice site with arow and column index (i, j). We can
convert these indices to a physical distance r;; using the lattice unit
vectors e, and e,, that s, r,; = ie, + je,. For the square Hubbard model
with negligible ¢’ tunnelling, it is natural to choose e, and e, to be the
unit vectors of the square lattice, which are orthogonal to each other.
This results in a square BZ. For the anisotropic Hubbard model with
finite ¢’ tunnelling, we instead choose e, and e, to be the unit vectors
of the triangular lattice, which are 120° with respect to each other.
This results in a hexagonal BZ. Writing the unit vectors in Cartesian
coordinates, we have:

e

() )
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Magnetic correlation length. The spin correlation length that canbe
obtained through different fit methods is shown as a function of lattice
anisotropy t’/tin Extended Data Fig. 5.

Inthe square lattice, we can directly fit to the real-space spin correla-
tion function |C(d)| a modified exponential function

d
fNLo ()= meXP( Iglj (6)

with amplitude A and correlation length § as fit parameters and
excluding the nearest neighbours owing to its singlet nature. This
form is inspired from renormalization-group studies of the quan-
tum Heisenberg model and the associated (2 +1)d nonlinear-o
model*.

More generally, magnetic correlation lengths can be extracted from
the peaks of the spinstructure factor §%(q). A simple, common fit func-
tionis the following Ornstein-Zernike form:

A +B 7)
[(q,- QEN +[(q,~ Q,)E, 1

Joz (@ =

with amplitude A and background offset B. The correlation lengths &,
and ¢ aretheinverse of the full widths at half maximum of this Lorentzian
functionalongdirections x= (1,1)/~/2and y = (-1,1)/-/2.For ¢/t = 0.03
to 0.75, we fix the peak centre (Q,, Q,) to be the M point (m, ), corre-
sponding to antiferromagnetic Néel order. In the triangular lattice
t'/t=0.97, we define thefit function as the sum of two Lorentzian func-
tions centred ontheK, K" points (Q,, Q) = +(21/3, 211/3) inthe BZ of the
underlying squarelattice, corresponding to 120° Néel order, and reduce
§,ytoasingle fit parameter £= /2§ = ff /2 describing an isotropic
correlationlength in triangular lattlce unlts



Radial binning and doping data. The underlying harmonic confine-
ment provided by the Gaussian envelope of the lattice beams causes
thelocal chemical potential to decrease fromthe centreto the edge of
the trap, which naturally leads to a spatially varying density n. To obtain
density-resolved correlations (Figs. 3 and 4), we assume that the
underlying confinement has elliptical equipotential lines, whichincludes
two-dimensional harmonic potentials with unequal trapping frequen-
cies. We group lattice sites according to the normalized anisotropic
distancer= /(x/ox)2 + (y/ay)z, inwhichxandyarethesite coordinates
relative to the centre of mass of the atomic distribution along its long
andshortaxesando,and g,are the square roots of the second moments
ofthe distribution. Measured densities n,and spin correlations C,are
then averaged over each distance bin containing 50 sites and typically
500 experimental realizations (see Extended Data Table 2).

To investigate the effect of particle doping, we increase the atom
number compared with measurements done at half-filling to reach
centre densities of about n =1.6 atoms per site. We are only able to
detect the density of singly occupied sites n4, owing to light-assisted
collisions during imaging®* and, as a result, both particle-doped and
hole-doped regions show detected densities below the half-filling value
(Fig. 1d). We correct detected densities ng4, according to imaging
fidelities and assume that reflects the density of singly occupied sites
n,. Toconverttheminto actual densitiesnand doping § =n - 1, welocate
the half-filling radius r,rassociated with the bin with maximum detected
density n?f that separates the particle-doped core to the hole-doped
periphery of the sample. Density in the hole-doped bins at radiir > r,¢
is then obtained from the linear approximation ny, = n,/n’, whereas
density in the particle-doped bins r < rsis given as n, =1+ n /n{". This
linear approximation holds particularly well at experimental temper-
atures T/t < 0.5 and deviates by at most An = 0.01 from the actual
density for all lattice anisotropies t’/t, as estimated from DQMC simu-
lations at U/t =10.

Fitting U/t and T/t from DQMC. We obtain U/t by comparing experi-
mental parity-projected single occupancy densities and spin correla-
tions to DQMC simulations. The results for U/t are listed in Extended
Data Table 1and the results for T/t are listed in Extended Data Table 2,
bothas afunction of anisotropy t'/t.

To obtain these values, we first examine the doped data, in which
temperatures are higher and thus easier to access in DQMC. As
described later in the section ‘DQMC simulation’, we perform DQMC
simulations onamesh of u, U, Tand ¢/, with simulation parameters
described. At each pointin the mesh, we compute the particle density
n(u, U, T, t'), thedouble occupancyd(y, T, ¢) and the nearest-neighbour
spin correlator C, o)(u, U, T, t). These data can be inverted to yield
Un, Cy), d,t), T(n, Cyy, d, t)and u(n, Cy ), d, t'). We performthis inver-
sionbylinearinterpolation. Tofind Uand T, we then analyse the doped
experimental data as described in the section ‘Radial binning and
doping data’. For each '/t value, we find the radial distance with the
maximal single occupancy density n{"**. We also measure C, at this
distance. Computing the double occupancyasd = (1- n{"**)/2,wethen
compute U(1, Cy ), d, t') and T(1, C ), d, t') from the interpolated
DQMC data.

Because the lattice parameters are identical between the doped
dataset and the half-filled dataset, we assume that Uis the same in
the two datasets (at fixed ¢’/t). We can then extract temperatures in
the half-filled dataset using a procedure similar to the above. We per-
form DQMC simulations on a more restricted z mesh centred near
half-filling, butalarger Tmesh to capture the lower temperaturesin this
dataset. We measure C, ,,(U, T, t') at half-filling from DQMC, invert this
to T(Cy ), ', U) by linear interpolation and then evaluate the inverted
function at the experimentally measured C, ).

All error bars are obtained by linearly propagating the errors on
experimental quantities through the interpolated DQMC data. We
neglect systematic errors introduced by the interpolation, as well as

statistical errors in DQMC, as they are negligible in comparison with
the statistical errors contributed by experimental data.

One may alsoinvert this technique to obtain predicted spin correla-
tions as a function of (n, T, U, t') by interpolation. This is the method
used to generate the DQMC curves in Fig. 2d. Error bars are obtained
by numerically differentiating the result with respect to the input
parameters and performing linear error propagation from U, Tand ¢'.
Tofurtherillustrate this technique, in Extended Data Fig. 4, we plot the
analogue of Fig.2a,c, obtained frominterpolated DQMC data, namely,
the correlation maps and spin structure factors at the experimental
parameters.

Data summary. For data presentedin Fig. 2, we prepare our sample with
anaverage parity-projected density n40f 0.89(2) at the centre to have
aMottinsulator at half-fillinginaregion of about 200 sites, inwhich the
effect of harmonic confinement is minimal. For the data presented in
Figs.3 and 4, we prepare our sample with an average parity-projected
density of about 0.4, which corresponds to a particle density of 1.6.

Theory comparison

DQMC simulation. DQMC or auxiliary-field quantum Monte Carlo
(or AFQMC) is a type of unbiased numerical method to study quan-
tum many-body problems. We apply this algorithm to simulate the
anisotropic Fermi-Hubbard model described in this work using the
QUEST package®. This method can fail to converge at low temperatures
because of the negative sign problem® for general fermion systems,
such assquare lattice Hubbard models away from half-filling or aniso-
tropic triangular lattice Hubbard models at any filling because of lack
of particle-hole symmetry. Reliable results could still be generated
with sufficient statistical averaging for the coldest temperature data
oftriangular lattice Hubbard modelin the scope of this work. However,
the exponentially decreasing average sign makesit very costly toreach
lower temperatures and improved methods may be required.

We perform the DQMC simulationsonan 8 x 8 lattice with a Trotter
step size tdr = 0.02 and we vary the number of imaginary time slices
L to change inverse temperature $=1/T = Ltdr. Each run is generated
with 5,000 warmup passes and 30,000 measurement passes. For tem-
peratures 7/t = 0.4, we average over 16 independent runs with different
seeds to obtain reliable statistics and for temperatures 7/t = 0.35, we
average over 33 runs to compensate the reduced average sign. Compar-
ingour results with ref. 35, the statistical error dominates over Trotter
and finite system size errors.

Theory results with experiment parameters. We show spin correla-
tion maps computed with DQMC as shown in Extended Data Fig. 4a for
different anisotropies and sameinteraction strength U/t and tempera-
ture T/tasinthe experiments (Fig. 2a). We could also compute the spin
structure factor by Fourier transforming the theory-predicted spin
correlations (Extended Data Fig. 4b). We find quantitative agreement
between experiment and theory on the spin correlations.

Wefind thatboththe temperature and the entropy are increasing as
anisotropy increases, as shownin Fig. 2b. We plot the theory-predicted
spin correlations at constant entropy S = 0.5644k; per particle and
U/t=9.8 in Extended Data Fig. 8. The constant entropy data are
fromref. 35.

To study the how spin correlation is affected by doping and frustra-
tion, we runDQMC simulations for density n = 0-2, anisotropy t’/t =1.0
andU/t=0,2,4and 6 at T/t = 0.4, asshownin Extended DataFig. 6,and
for U/t=10 at T/t=0.5-0.9, as shown in Extended Data Fig. 7.

The particle-holeasymmetric spin correlationsinthenon-interacting
case (U/t = 0) are qualitatively different. The nearest-neighbour correla-
tions are negative for all densities owing to Pauli exclusion®* and the
peak of such antiferromagnetic correlationis shifted from half-filling
n=1towardsthe hole-dopedside. Asinteraction Uisincreased, antifer-
romagnetic correlations are suppressed aroundn =1.5and already turn
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ferromagnetic at U/t = 6. The sign reversal for large particle doping in
theisotropic triangular lattice becomes more prominent as tempera-
ture decreases.

Data availability

The datasets generated and analysed during this study are available
from the corresponding author on reasonable request. Source data
are provided with this paper.

Code availability

The code used for the analysis are available from the corresponding
author on reasonable request.
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Extended DataFig.1|Schematic of thelatticerampsusedinthe
experimental protocol. We linearly ramp up the two physics lattice beams X
and Yto experimental powers within160 msand quench them to freeze out
dynamics. The Xbeamis handed over to anintermediate beam X by ramping
down Xand rampingup X simultaneously and thenboth X and Ybeamsare
handed over toimaging beams by first ramping up the imaging beams and then
ramping down the X and Ybeams. Allramps use a20-ms linear ramp. Optionally,
onespinspecies canbe removed with aresonantlaserin theimaginglattice.
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Extended DataFig.2|Band structure for the full lattice potential from
equation (3). Contour lines show the Fermi surface for different density levels
insteps of An=1/4. The dashed black line indicates half-filling. Hole-doped
regionsareshowninpurpleand particle-doped regions in brown.



Imbalance /

0.5

0.0

-1.0

50.0

52.0 54.0 56.0

Phase-Shifter Phase ¢,/°

58.0

60.0

Extended DataFig.3| Calibration of theinterference phase. Atom number
imbalance Z between the two sublattices associated with potential
(equation (3)), averaged over the whole cloud, as the interference phase ¢ is
scanned using the electronic phase-shifter phase ¢,. We performalinear
regression to find out the phase ¢, at which theimbalance cancels, which
corresponds to ¢ =1/2 (mod ). The maximum interference phase =0
(modm)isthen obtained by increasing the phase-shifter phase ¢, by 1.
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Extended DataFig. 4| Correlations at half-filling from the DQMCsimulation.  arecomputed with the same interpolation method asinFig.2. Thebroadening
a, Weplotthe spincorrelation functions from DQMC simulationsonan 8 x 8 ofthe spinstructure factor peaks andits splitting in the isotropic triangular
lattice asin Fig. 2a, at the same temperature 7/t and interaction U/t asin lattice agree quantitatively with the experiment.

experiments for each anisotropy t’/t.b The spin structure factors from DQMC
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Extended DataFig.5|Magnetic correlationlength at half-filling. The
correlationlength is obtained from experimental datashownin Fig. 2 at
differentlattice anisotropiest’/¢t, by fitting thereal-space spin-spin correlations
Cqinthesquare lattice (square symbol) or the spin structure factor $%(q) with
an Ornstein-Zernike form at the M point (circles, isotropic form; diamonds,
anisotropic form) or atthe Kand K’ points (triangle). See text for details.
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Extended DataFig. 6 | Interaction dependence of the simulated spin
correlations. The nearest-neighbour spin correlations C;, o are computed
using DQMCfor t’/t =1, temperature 7/t = 0.4 and for different interaction
strengths U/t=0, 2,4 and 6. In the non-interacting case, the spin correlationis
antiferromagnetic at all densities and decays to zero with asteeper slope onthe
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hole-dopedside than on the particle-doped side. As interaction Uincreases,
the peak of correlation shifts towards half-filling and the slope of correlationis
steeperonthe particle-dopedside. Asignreversal to ferromagnetic correlations
isclearly visible at U/t = 6. Statistical error bars are smaller than the symbol size.
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Extended DataFig.7 | Temperature dependence of the simulated spin
correlations. The nearest-neighbour spin correlations C;, o are computed
using DQMC for U/t =10, t’/t =1and different temperatures 7/t = 0.5-0.9 and
showaclear particle-hole asymmetry. Statistical error bars are smaller than
thesymbolsize.
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Extended DataFig. 8| Comparing experimental spin correlations with
DQMC simulations at constant entropy. Nearest-neighbour spin correlations
acrossthet-bonds C o (blue), across the t-bonds C ) (purple) and next-nearest-
neighbour correlation C, ;, (orange) are shown, along with simulations at fixed
entropy per particle S = 0.5644k; (to be compared with Fig. 2b). The difference
betweenexperimental and simulated data hint atalargerentropyincrease
when preparing the systeminatriangular lattice compared withasquare

lattice.



Extended Data Table 1| Summary of tunnelling and Hubbard
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Extended Data Table 2 | Summary of experimental temperatures and number of experiment realizations for each dataset

v/t Half-filling T/t # of realisations, Fig.2 Doped T/t # of realisations, Figs. 3, 4
0.0265(3) 0.26(1) 432 0.35(1) 483
0.26(1) 0.33(1) 478 0.35(1) 635
0.57(3) 0.34(2) 613 0.39(2) 505
0.75(3) 0.32(3) 461 0.43(3) 495
0.97(4) 0.39(4) 953 0.47(6) 446
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