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Frustration- and doping-induced magnetism 
in a Fermi–Hubbard simulator

Muqing Xu1, Lev Haldar Kendrick1, Anant Kale1, Youqi Gang1, Geoffrey Ji1, Richard T. Scalettar2, 
Martin Lebrat1 & Markus Greiner1 ✉

Geometrical frustration in strongly correlated systems can give rise to a plethora of 
novel ordered states and intriguing magnetic phases, such as quantum spin liquids1–3. 
Promising candidate materials for such phases4–6 can be described by the Hubbard 
model on an anisotropic triangular lattice, a paradigmatic model capturing the 
interplay between strong correlations and magnetic frustration7–11. However, the fate 
of frustrated magnetism in the presence of itinerant dopants remains unclear, as well 
as its connection to the doped phases of the square Hubbard model12. Here we 
investigate the local spin order of a Hubbard model with controllable frustration and 
doping, using ultracold fermions in anisotropic optical lattices continuously tunable 
from a square to a triangular geometry. At half-filling and strong interactions U/t ≈ 9, 
we observe at the single-site level how frustration reduces the range of magnetic 
correlations and drives a transition from a collinear Néel antiferromagnet to a short- 
range correlated 120° spiral phase. Away from half-filling, the triangular limit shows 
enhanced antiferromagnetic correlations on the hole-doped side and a reversal to 
ferromagnetic correlations at particle dopings above 20%, hinting at the role of kinetic 
magnetism in frustrated systems. This work paves the way towards exploring possible 
chiral ordered or superconducting phases in triangular lattices8,13 and realizing t–t′ 
square lattice Hubbard models that may be essential to describe superconductivity in 
cuprate materials14.

The collective properties of spins with antiferromagnetic interactions 
crucially depend on the geometry of the lattice they inhabit15. On a 
square lattice, spins form a Néel order with antialigned neighbours; by 
contrast, their mutual antiparallel alignment cannot be satisfied on a 
triangular lattice, which is the simplest model for geometric frustra-
tion and features non-trivial spin order. This frustrated spin order is 
associated with a massive ground-state degeneracy with enhanced 
quantum fluctuations and may lead to exotic phases of matter, such 
as quantum spin liquids1,2,16,17.

The Hubbard Hamiltonian is one of the most fundamental mod-
els describing the emergence of quantum magnetism among spin-
1/2 electrons with kinetic energy t and interaction energy U. On the 
non-frustrated square lattice, it is thought to capture the essential phys-
ics of the strongly correlated electrons in the doped high-temperature 
superconducting cuprate materials12. Interpolating the Hubbard model 
between square and triangular lattices has important practical value 
to accurately describe a broader class of correlated materials with 
structural anisotropy, including layered organic compounds believed 
to host quantum spin liquid phases3. Anisotropic triangular Hubbard 
models would furthermore provide a minimal model to understand the 
competition between charge dopants and magnetism with frustration 
away from half-filling, for which much less is known, as numerical calcu-
lations are challenging owing to the absence of particle–hole symmetry.

Ultracold fermions in optical lattices form a pristine realization of 
the Hubbard model. They can be used for the quantum simulation 

of frustrated systems18,19, shedding light on both its half-filled and 
doped phases with site-resolved observables. In this work, we realize 
a Fermi–Hubbard system with tunable frustration and investigate its 
magnetic order as a function of doping with single-site resolution in 
the regime of intermediate to strong interactions U/t ≈ 9. We explicitly 
implement tunable tunnelling anisotropy and investigate the combined 
effect of frustration and doping on magnetic order at temperatures 
T/t ≲ 0.4 comparable with or lower than the spin exchange energy. 
This is in contrast to concurrent work analysing nearest-neighbour 
antiferromagnetic correlations on an isotropic triangular lattice19 and 
to previous studies focusing on frustrated classical magnetism with 
ultracold bosons20.

Our system relies on a lattice formed by the interference of two 
orthogonal retro-reflected laser beams whose relative phase is actively 
stabilized21,22. With equal beam intensities, this interference realizes a 
non-separable square lattice rotated by 45°. Tunable frustration is intro-
duced by an extra tunnelling term t′ along one diagonal of this square 
lattice (Fig. 1a) and controlled by the intensity imbalance between the 
two beams (Fig. 1b), in contrast to previous realizations of lattices with 
three beams and a 120° rotational invariance18,20,23–25. As a result, our 
geometry can be smoothly changed from a square lattice for t′/t = 0 to 
an isotropic triangular lattice at t′/t = 1 and undergoes a dimensional 
crossover to weakly coupled one-dimensional chains in the limit t′/t ≫ 1.

We prepare a balanced mixture of fermionic 6Li atoms in the two 
lowest hyperfine states into this tunable optical lattice by adiabatically 
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ramping the lattice powers within 160 ms. We set the s-wave scattering 
length to values as = 358a0 − 432a0 by tuning the magnetic bias field in 
the vicinity of the Feshbach resonance at 832 G, for which a0 denotes 
the Bohr radius. The system is well described by a single-band Hubbard  
model with nearest-neighbour tunnelling t = 355(11)–426(21) Hz and a 
tunable diagonal tunnelling t′ = 9.5(4)–370(6) Hz. Owing to the under-
lying harmonic confinement of the laser beams, atoms are subject to 
a trapping potential and show a spatially varying density n (Fig. 1d; 
see Methods).

Néel to spiral order transition
In the strong coupling limit at which U is greater than the bandwidth, 
the Hubbard Hamiltonian at half-filling can be approximated by an 
antiferromagnetic Heisenberg model with anisotropic spin exchange 
couplings J(′) = 4t(′)2/U. This anisotropic spin model already features 
rich magnetic properties. In the bipartite square lattice J′ = 0, the 
ground state is an antiferromagnetic Néel state26. By contrast, frus-
tration in the isotropic triangular lattice gives rise to a 120° spiral Néel 
order27–30. Classical spin-wave theory predicts a transition between 
antiferromagnetic Néel order to an incommensurate spin spiral 
phase at J′/J ≥ 0.5, which smoothly evolves into 120° order at J′/J = 1 
(refs. 31,32). In the quantum spin-1/2 Heisenberg model, the location of 

the transition point is expected to be shifted above the classical value of 
0.5 owing to quantum fluctuations, but its exact location is still an open  
question33.

To shed light on the magnetic properties of the anisotropic triangular 
Hubbard model at intermediate U/t, we form a large Mott insulator of 
about 500 atoms by adjusting the local chemical potential at the centre 
of the trap to approximately reach half-filling (Fig. 1c). We measure the 
spin–spin correlation function

rd r r d r r d( )C
S

S S S S( ) =
1

� ˆ ˆ � − � ˆ �� ˆ � (1)
z z z z

2 + +

between any pair of sites located at positions r and r ± d, as described 
in our previous work34. We average this correlator within the central 
insulating region of about 200 sites, in which the chemical potential 
variation owing to harmonic confinement is minimal. In the square 
lattice t′/t = 0.0265(3), we observe strong antiferromagnetic correla-
tions decaying exponentially with distance (Fig. 2a, left), visible as 
a spatially averaged correlator Cd with a staggered sign that gradu-
ally fades out as a function of bond distance d in a logarithmic colour 
scale. Comparing the measured nearest-neighbour spin correlators 
to those obtained from determinant quantum Monte Carlo (DQMC) 
simulations at half-filling gives a fitted temperature of T/t = 0.26(1).  
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Fig. 1 | Investigating frustration on a tunable triangular lattice with a 
quantum gas microscope. a, A square lattice with coupling t can be 
continuously transformed into a triangular lattice with an extra tunable coupling 
t′ along one diagonal. Frustration is parameterized by the anisotropy ratio t′/t 
and leads to a change in the magnetic ground state from an antiferromagnetic 
Néel order in the square lattice (t′/t = 0) to a 120° spiral order in the isotropic 
triangular lattice (t′/t = 1), in both the classical and quantum Heisenberg limits. 
b, We implement this tunable lattice with two orthogonal retro-reflected 
lattice beams actively phase-locked to each other21. Their interference results 
in a non-separable square lattice potential rotated by 45°. Adjusting the 
intensity balance between the lattice beams X and Y (IX and IY) reduces the 

potential barrier between a pair of diagonal neighbours and enhances 
tunnelling. c, We realize a frustrated Fermi–Hubbard magnet by preparing a 
Mott insulator of about 500 fermionic atoms in the tunable lattice. Doublon–
hole pairs appear owing to quantum fluctuations at our finite interaction 
energy U/t ≈ 9 and are imaged as pairs of empty sites connected by tunnellings 
t(′) > 0 in a typical fluorescence picture owing to parity-projected imaging 
(with anisotropy t′/t = 0.26(1)). d, Atomic density varies across the sample 
owing to the presence of a radial confining potential, allowing us to locally 
investigate the effect of doping on magnetic order. With increasing the total 
atom number, a particle-doped region is imaged as a lighter disc inside a 
half-filled ring.



Nature  |  Vol 620  |  31 August 2023  |  973

As lattice anisotropy t′/t and frustration are increased, the growing 
superexchange coupling J′ along the diagonal d = (1, 1) favours antial-
igned spins, which competes with the Néel ordering, favouring ferro-
magnetic correlation between sites on the same sublattice. As a result, 
we observe a suppression of the range of the spin–spin correlations. 
The correlator C(1,1) is furthermore weakened for moderate anisotropies 
t′/t = 0.57(3) before changing its sign35 (purple data points in Fig. 2b). 
In the configuration closest to the triangular geometry, t′/t = 0.97(4), 
the three correlators to the nearest triangular neighbours C(1,0), C(0,1) 
and C(1,1) are consistently isotropic, with a residual difference by about 
10% owing to technical limitations (see Methods). We also observe 
positive next-nearest correlations C(2,1) that reflect the effective hex-
agonal symmetry of the correlation function Cd that also show a sign 
change (orange data points, Fig. 2b). We observe a slight temperature 
increase as anisotropy t′/t is increased, to T/t = 0.39(4) in the triangular 
lattice, which also contributes to the suppression of spin correlations 
dominated by frustration (see Methods). This heating may be because 
of increased laser noise with increasing lattice intensity imbalance.

In solid-state systems, magnetic transitions can be observed through 
changes in the symmetry of the spin structure factor, which can be 
measured, for example, by means of neutron scattering. Here we obtain 
the spin structure factor Szz(q) from the Fourier transformation of the 
real-space spin correlation function (see Methods). Antiferromag-
netic Néel order in the square lattice appears as a well-defined peak at 
quasi-momentum (π, π), the M symmetry point of the first Brillouin 
zone (BZ) (Fig. 2c). As we increase t′/t, this peak becomes anisotropic, 
broadening along the K–K′ direction. For the triangular lattice case, we 
observe two distinct peaks at the K and K′ points of the hexagonal BZ, 
indicative of the 120° spiral order. The short-range character of this 

120° order is evident from a global reduction and a broadening of the 
spin structure factor peaks (Fig. 2d).

Particle–hole asymmetry
Interactions between itinerant charge and magnetic moments can 
lead to rich collective quantum phases. One paradigm is doping a 
Néel-ordered Mott insulator, in which the interplay between the kinetic 
energy of the mobile dopants and strong correlations is believed to 
underlie the physics of cuprates. In the square lattice Hubbard model, 
however, Néel antiferromagnetism is made particularly robust at 
half-filling by Fermi surface nesting and the absence of geometric 
frustration, which may obscure competing orders. Doping frustrated 
systems in which intriguing phases already arise at half-filling may 
bring distinct new physics11,13. Anisotropic triangular lattices can 
be seen as the simplest lattice that frustrates collinear Néel order 
and breaks the particle–hole symmetry through a single diagonal 
next-nearest-neighbour tunnelling t′.

We investigate the effect of doping by increasing the central lattice 
filling to n = 1.6; together with a slow variation of the chemical poten-
tial resulting from the lattice confinement, this allows us to examine 
short-range spin correlations over a large range of both particle and 
hole dopings δ = n − 1 in the local density approximation (see Methods). 
As expected from the particle–hole symmetry in the band structure 
(Fig. 3a), we find that the nearest-neighbour spin correlation C(1,0) in 
the square lattice remains antiferromagnetic and decays similarly on 
hole-doping or particle-doping ±δ (Fig. 3b, bottom), with a residual 
asymmetry explained by deviations of the underlying confinement 
from a radially symmetric harmonic potential. By contrast, we observe 
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Fig. 2 | Frustrating short-range antiferromagnetic order in the square-to- 
triangular lattice transition. a, Real-space spin correlation Cd as a function  
of displacement d averaged over the region at half-filling. The magnitude of 
antiferromagnetic correlations decreases with increasing frustration, 
parameterized by t′/t, and the symmetry of the correlation function changes 
from fourfold D4 to sixfold D6, that is, hexagonal. Each panel is averaged over 
about 200 sites, with a typical s.e.m. of 0.005 (see Methods). The grid is smoothly 
stretched horizontally to emphasize the change in connectivity. b, Nearest- 
neighbour spin correlations across the t-bonds C(1,0), across the t′-bonds C(1,1) 
and next-nearest-neighbour correlation C(2,1). C(1,0) is decreasing with increasing 
frustration. C(1,1) and C(2,1) reverse sign as diagonal neighbours in the square 
lattice with aligned spins become nearest neighbours in the triangular lattice 
with antialigned spins. Shaded bands: DQMC simulations at U/t = 9.5 and 

T/t = 0.35–0.4. Experimental temperatures are lower than the DQMC data here 
for t′/t = 0.0265(3) and 0.26(1). c, Measured spin structure factor Szz(q) plotted 
over the extended BZ of the square lattice (i) and triangular lattice (ii)–(v). 
(i),(ii), Antiferromagnetic order on the square lattice shows up as a single peak 
at quasi-momenta (π, π) in the square BZ and a peak at the M point of the 
hexagonal BZ. (ii)–(v), The single peak at the M point broadens with increasing 
t′/t and splits into two separate peaks at the K and K′ points for t′/t = 0.97(4).  
The broad peaks in (v) indicate short-range 120° order in the triangular lattice. 
d, Cut of the spin structure factor Szz(q) along the Γ–K–K′–Γ line (illustrated in c, 
(ii)). Shaded bands: DQMC simulations at U/t = 9.7, T/t = 0.26 (square) and 
U/t = 9.2, T/t = 0.39 (triangle), with widths propagated from experimental 
uncertainties (see Methods). The error bars denote one s.e.m. and the number 
of repetitions can be found in Methods.
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particle–hole-asymmetric magnetism in the nearly isotropic triangu-
lar lattice t′/t = 0.97(4) (Fig. 3b, top). There, at the same temperature, 
antiferromagnetic correlations survive for a wide range of hole dop-
ings, whereas they are strongly suppressed with particle doping. Sur-
prisingly, we find that the correlator C(1,0) even becomes significantly 
ferromagnetic above a certain particle doping δ ≳ 0.2, as confirmed in 
spin correlation maps (Fig. 3c).

Asymmetric spin correlations are to be expected for a Fermi liquid 
owing to the particle–hole asymmetry of the triangular lattice band 
structure: the shape and topology of the non-interacting Fermi surface 
changes markedly on increasing density and separates into two discon-
nected parts centred around the symmetry points K and K′ close to full 
filling n = 2 (Fig. 3a). However, comparing with DQMC simulations,  
we note that the experimentally observed sign reversal at large particle 
dopings and sharp asymmetric suppression of spin correlation close to 
half-filling are absent in a non-interacting system (see Methods). The 
agreement with DQMC simulations at the experimental interaction 
strength U/t = 9.2(5) suggests that this asymmetric interplay of particle 
and hole dopants with magnetism is unique to interacting systems 
(Fig. 3b, grey lines). This asymmetry and strongly weakened correla-
tions at particle dopings δ ≈ +0.5 are similarly observed in anisotropic 
triangular geometries t′/t ≥ 0.57 (Fig. 3d).

One possible mechanism for the particle–hole asymmetry in the 
stability of spin correlations can be understood by considering one 
dopant on a triangular plaquette in the superexchange energy J(′) = 0 
limit36,37, similar to the Nagaoka effect38. The dopant could minimize 
its kinetic energy when different hopping paths interfere construc-
tively, which is decided by the effective sign of the tunnellings t(′) and 
the surrounding spin configuration. With the sign convention of this 
work, a particle dopant has t(′) > 0 and a spin triplet, ferromagnetic 
configuration allows the dopant to hop with constructive quantum 

interference. A hole dopant, by contrast, has an effective t(′) < 0 and 
thus prefers a spin singlet, antiferromagnetic configuration. However, 
at finite J(′) and low temperatures T ≲ J(′), as in our experiment, how 
such kinetic frustration competes with magnetic orders still remains 
an open question.

Particle–hole asymmetry is particularly apparent in spin correlations 
along the diagonal bonds C(1,±1) (Fig. 4a). In a square lattice, both cor-
relators are equal, particle–hole-symmetric and show a reversal from 
positive to negative for dopings |δ| ≳ 0.2 (ref. 34). As the anisotropy t′/t 
increases, the nature of C(1,1) changes from a next nearest neighbour to a 
nearest neighbour and its value smoothly interpolates to the particle–
hole-asymmetric correlator C(1,0) in the triangular lattice (Fig. 3b). The 
ferromagnetic character of this correlator on particle doping is most 
pronounced at t′/t ≈ 0.5 (Fig. 4b) and we find quantitative agreement 
with DQMC simulations. Notably, increasing the frustration parameter 
t′/t has the opposite effect on the other diagonal correlator C(1,−1), which 
becomes antiferromagnetic on particle doping (Fig. 4a, bottom).

Discussion and outlook
Possible scenarios for the appearance of ferromagnetism in the Hub-
bard model have been identified at the mean-field level39, for single 
dopants38 or at high temperature in frustrated systems37,40, but a com-
plete theoretical picture in our regime of temperatures T ≲ J and strong 
correlations is missing. The existence of a Van Hove singularity in the 
non-interacting density of states of the triangular lattice at a density 
n = 3/2, together with weak ferromagnetic correlations observed in 
DQMC simulations even at small interaction U/t = 4 (see Methods), 
could suggest that density of states may play a crucial role41–45. Exper-
imentally, our findings might be related to recent observations in 
transition-metal-dichalcogenide moiré materials46. Quantum gas 
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triangular lattice, whereas the correlation function is symmetric in the square 
lattice. Grey lines show DQMC simulations at U/t = 9.1, T/t = 0.44 (triangular) 
and U/t = 9.0, T/t = 0.40 (square). c, Spin correlation maps in the triangular 
lattice at dopings δ = 0.06 and δ = 0.54. Nearest-neighbour correlations change 
to weakly ferromagnetic at δ = 0.54 with values C(1,0) = 0.011(6) and C(1,1) = 0.006(5). 
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and the number of repetitions can be found in Methods. AFM, antiferromagnetic; 
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microscope experiments could help explain the microscopic processes 
underlying doping-induced magnetism through the measurement 
of spin–spin–charge correlations47,48, as well as momentum-resolved 
spectroscopy49.

Further experimental studies at interactions close to the metal-to- 
insulator transition would also help shed light on a conjectured spin 
liquid phase with broken time-reversal symmetry8,50. Moreover, through 
the addition of a third superlattice beam21, our tunable experimental 
platform allows for exploring extensions of the Hubbard model directly 
related to cuprate materials, such as the t–t′ model, which could help 
explain the emergence of superconducting phases with doping14.
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Fig. 4 | Next-nearest-neighbour spin correlations at finite doping. a, Spin 
correlations between next nearest neighbours C(1,1) (along the t′ bond, purple) 
and C(1,−1) (diagonal, red) similarly show particle–hole asymmetry away from the 
square lattice geometry. b, In the anisotropic triangular lattice t′/t = 0.57(3), 

correlations along the tunable triangular bond t′ show a clear sign reversal 
from antiferromagnetic for hole doping δ < −0.1 to ferromagnetic for δ ≥ 0. 
Purple lines show a DQMC simulation at U/t = 9 and T/t = 0.4. The error bars 
denote one s.e.m. and the number of repetitions can be found in Methods.
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Methods

Hubbard model on anisotropic triangular lattice
In this work, we study the Hubbard model on anisotropic triangular 
lattices
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with tunnelling t between sites r that are nearest neighbours on a square 
lattice and tunnelling t′ along one diagonal d = (1, 1) tunable between 
0 and t.

Here we take the convention in which t(′) ≥ 0. Thus, in the isotropic 
triangular lattice, the non-interacting energy band lies within (−6t, 3t). 
U is the onsite interaction energy.

Experimental methods
Triangular optical lattice. We use two retro-reflected laser beams 
(X, Y) that are phase locked to each other to implement an interfer-
ence lattice inside a glass cell. As described in previous works51, each 
lattice beam is retro-reflected from a spherical mirror to form a stand-
ard standing wave and undergoes a further vertical reflection off a 
super-polished substrate. This reflection forms a one-dimensional 
lattice in the z direction with a larger spacing determined by the beam 
angle of incidence θ = 69.2(1)° on the substrate. We selectively load a 
two-dimensional atomic gas into a single layer of the z lattice, in which 
the two-dimensional lattice potential can be written as:
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Here kx = ky = 2πsinθ/λ are the horizontal lattice wavenumbers asso-
ciated with the lattice wavelength λ = 1,064 nm. ϕ is the interference 
time phase between the X and Y lattice beams and is set to ϕ = 0 or π to 
minimize the effect of phase fluctuations on the lattice potential. We 
thus form a non-separable square lattice rotated by 45° compared with 
the beam propagation directions, with a spacing a = 805 nm.

Each pass through a surface of the uncoated glass cell incurs a loss 
owing to Fresnel reflection; we calculate the reflection coefficient 
r = 8.27(1)% and transmission r r= 1 −  from the calibrated beam angles 
and the light polarization. The polarization is chosen to be 
p-polarization relative to the plane of incidence on the substrate to 
maximize the interference between the two (X, Y) beams; this is close 
to s-polarization on the glass cell. We use Vx and Vy to denote the lattice 
depths if the polarization were horizontal (s on substrate) and without 
Fresnel loss. This notation is convenient when we need to take into 
account partial interference owing to polarization angle and losses.

To realize a tunable diagonal tunnelling t′ = 0–1, we set the ratio 
between the intensities of the two lattice beams to Vy/Vx ≈ 1–300. The 
strong imbalance reduces the potential barrier connecting neighbours 
along the diagonal d = (1, 1) to compensate the longer separation a2  
and enhances quantum tunnelling.

Lattice loading and imaging. The preparation of the ultracold Fermi 
gas before loading into optical lattices is similar to our previous works34. 

To load the gas into the interfering lattice, which we refer to as the phys-
ics lattice, we adiabatically perform a linear ramp of the lattice powers 
and hence of the lattice depths Vx,y.

We perform site-resolved imaging in a separate, dedicated lattice, 
which we will refer to as the imaging lattice. The imaging and physics 
lattice beams are overlapped on a polarizing beam splitter and are in 
orthogonal polarizations. The protocol used to take a site-resolved 
image is shown in Extended Data Fig. 1. We first ramp up the physics 
lattice depth to about 80ER within 50 μs, with ER = h2/8ma being the 
recoil energy. This fast ramp rapidly suppresses the tunnelling between 
lattice sites and allows for a faithful measurement of observables in the 
lattice occupation basis52. After freezing the density and spin distribu-
tion, we adiabatically transfer the atoms from the physics lattice to the 
imaging lattice with two hand-offs composed of three linear ramps, 
each of 20 ms in duration.

The imaging lattices are formed from the same laser source with a 
wavelength of 1,064 nm but their frequencies are detuned relative to 
each other and to the physics lattice to effectively cancel any interfer-
ence term. This non-interfering lattice therefore has a two-dimensional 
square potential V V k x V k y∝ − cos(2 ) − cos(2 )x x y y , which contains twice 
as many sites as the interfering physics lattice. To ensure a high fidelity 
transfer from the physics to the supersampling imaging lattice, it is 
important that each site of the physics lattice has good overlap with 
only one sublattice of the imaging lattice. If this is not the case, for 
example, if one physics site equally overlaps with two imaging sites, it 
is difficult to maintain adiabaticity in the transfer. We achieve this over-
lap condition by carefully choosing the frequency offset to compensate 
the phase shift induced by the reflection off the substrate for the Y 
beams. For the X beams, such a frequency offset turns out to be not 
enough and we choose to use a third X  lattice to mediate the transfer: 
it has good overlap with both imaging and physics X lattices. We first 
transfer atoms from the physics lattice to X  and then transfer to the 
imaging lattice, both with the linear ramp mentioned above. We selec-
tively remove atoms in one of the hyperfine states as mentioned in 
previous work34 in the imaging lattices.

Potential compensation. Owing to the imbalanced powers used on the 
X, Y axes in the triangular lattice, the harmonic confinement provided 
by the Gaussian envelope of the lattice beams is different along differ-
ent lattice axes. To obtain a radially symmetric sample, and to enhance 
the density near the trap centre, we use a digital micromirror device 
to project a compensating paraboloid potential onto the atoms. This 
digital micromirror device and its light source have been described in 
previous work53.

Calibrations
Lattice depth, angle and phase calibration. We first calibrate the 
depth of each lattice beam individually by performing amplitude modu-
lation spectroscopy in deep lattices of around 50ER, as described in a 
previous work51. Because each beam forms two orthogonal standing 
waves from retro-reflection and vertical reflection on the substrate, 
we are able to measure two bandgaps between the ground band and 
the second excited band of each effective one-dimensional lattice. 
We then calculate the band structure of the single-beam lattice with 
the potential:
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Here l refers to the direction of propagation of the beam x or y and 
kz = kcosθ is the wavevector associated with the vertical standing 
wave. By fitting gaps obtained from the band-structure calculation to 
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the measured bandgaps, we obtain the bare lattice depths Vx,y (equa-
tion (3)), as well as the incident angle θ = 69.2(1)°.

All experiments are performed when the interference between 
the X and Y beams is maximized, that is, for a interfering time phase 
ϕ = 0 or ϕ = π. We interferometrically measure twice this phase 2ϕ 
after a round trip between the optical setup in which the phase meas-
urement occurs and the retro-reflecting mirrors in which the lattices 
are created; as a result, the interfering phase ϕ is only known modulo 
π. To find the point of maximal interference, we scan the phase-lock 
point ϕ through more than a full 2π period electronically by chang-
ing the phase ϕp of a phase-shifter and take site-resolved images at 
each value. When ϕ = ±π/2, the X, Y interference term vanishes  
and the lattice changes from a chequerboard to a square lattice, 
V x y V k x V k y( , ) ≈ cos(2 ) + cos(2 )x x y y . This change is clearly visible in 
site-resolved images as a sudden doubling of the detected density of 
atoms owing to the halving of the unit cell. As ϕ is scanned through 
±π/2, the atom population moves from one sublattice A to the other 
sublattice B. We use the atom population imbalance I p p p p= ( − )/( + )A B A B

 
to find out where the transition is, as in Extended Data Fig. 3. We then 
change the phase ϕp by π using the phase-shifter to get ϕ = 0 or π.

To calibrate the interference terms between X and Y, we turn on both 
lattice beams and amplitude modulate one of them in the deep lat-
tice limit of approximately 160ER. We perform a Lorentzian fit on the 
modulation spectrum to determine the bandgaps from the ground 
band to the three d bands of the horizontal two-dimensional lattice. 
These bandgaps are sensitive to the angle between the beams X and Y 
in the horizontal plane, which we deliberately tune away from 90° to 
partially compensate for a tunnelling anisotropy between the X + Y and 
X − Y directions associated with Fresnel losses. The angle difference 
α from 90° is obtained from a fit of the calculated two-dimensional 
band structure to the spectrum, fixing all independently calibrated 
parameters. We find α = 0.98(9)°, for which the uncertainty mostly 
comes from the uncertainties on the fits to the bandgap frequencies.

Using the calibrated lattice parameters, we numerically compute 
the band structure of the two-dimensional interfering lattice at experi-
mental powers (Extended Data Fig. 2). The values of the experimental 
tunnelling amplitudes are obtained in the tight-binding approximation 
from a Fourier transform of the lowest energy band and are reported 
in Extended Data Table 1. We also confirmed that all higher-order  
tunnellings are at least two orders of magnitude smaller.

Imaging fidelity. As described in the section ‘Lattice loading and imag-
ing’, our imaging sequence consists of two parts: a transfer from the 
physics lattice to the imaging lattice and fluorescence imaging through 
Raman sideband cooling. We characterize the fidelity of the fluores-
cence imaging as described in our previous work34 and find the fidelity 
of correctly determining the occupation of a lattice site to be 99.4(6)%.

Next, we measure the fidelity of the transfer process from the physics  
lattice to the imaging lattice as follows. We load atoms in a Mott insu-
lating state with a large U/t to ensure unity filling and then perform 
the physics to imaging transfer, followed by the usual fluorescence 
imaging. We count the fraction of atoms that are transferred to the 
‘wrong’ sublattice of the imaging lattice starting from the unit-filled 
Mott insulator and find this fraction to be 0.9(2)%. These are atoms 
that did not adiabatically follow the physics-imaging transfer and we 
account for them as a reduction in imaging fidelity. Overall, we report 
an imaging fidelity of 98.5(7)%.

Data analysis
Spin structure factor. The spin structure factor Szz(q) is obtained by 
performing a Fourier transform of the measured real-space spin cor-
relation function Cd:

∑S C( ) = e . (5)zz
d

i
≤

⋅
max

q
d

d
q d

d

Owing to the finite spin correlation length at our experimental tem-
peratures, the spin correlations rapidly fall off with distance |d|. Hence 
we truncate the Fourier sum up to a cutoff distance dmax, chosen such 
that the further distance correlations are negligible and the structure 
factor has converged within error bars. For the square lattice case 
t′/t = 0.0265(3), we keep up to dmax = 8, whereas for all other values of 
t′/t, we keep only up to dmax = 5. We use a finely spaced grid of momen-
tum space points (qx, qy) to compute the structure factor, which is 
equivalent to zero-padding the correlation function for distances 
larger than dmax. This does not add or alter any information contained 
in the structure factor, while making it easier to see the broadening 
of the peaks as well as the change of the symmetry from fourfold to  
sixfold.

In Fig. 2c, we show two different BZs, square BZ in (i) and hexagonal 
BZ in (ii)–(v). Here we describe how we plot the structure factor for 
these two BZs. Because our imaging lattice forms a square grid, we 
can label each lattice site with a row and column index (i, j). We can 
convert these indices to a physical distance ri, j using the lattice unit 
vectors e1 and e2, that is, ri, j = ie1 + je2. For the square Hubbard model 
with negligible t′ tunnelling, it is natural to choose e1 and e2 to be the 
unit vectors of the square lattice, which are orthogonal to each other. 
This results in a square BZ. For the anisotropic Hubbard model with 
finite t′ tunnelling, we instead choose e1 and e2 to be the unit vectors 
of the triangular lattice, which are 120° with respect to each other. 
This results in a hexagonal BZ. Writing the unit vectors in Cartesian 
coordinates, we have:
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Magnetic correlation length. The spin correlation length that can be 
obtained through different fit methods is shown as a function of lattice 
anisotropy t′/t in Extended Data Fig. 5.

In the square lattice, we can directly fit to the real-space spin correla-
tion function |C(d)| a modified exponential function

f
A

ξ
( ) = exp − (6)σNL d

d
d









with amplitude A and correlation length ξ as fit parameters and 
excluding the nearest neighbours owing to its singlet nature. This 
form is inspired from renormalization-group studies of the quan-
tum Heisenberg model and the associated (2 + 1)d nonlinear-σ  
model54.

More generally, magnetic correlation lengths can be extracted from 
the peaks of the spin structure factor Szz(q). A simple, common fit func-
tion is the following Ornstein–Zernike form:

f
A

q Q ξ q Q ξ
B( ) =

[( − ) ] + [( − ) ]
+ (7)

x x x y y y
OZ 2 2q

with amplitude A and background offset B. The correlation lengths ξx 
and ξy are the inverse of the full widths at half maximum of this Lorentzian  
function along directions x = (1, 1)/ 2 and y = (−1, 1)/ 2. For t′/t = 0.03 
to 0.75, we fix the peak centre (Qx, Qy) to be the M point (π, π), corre-
sponding to antiferromagnetic Néel order. In the triangular lattice 
t′/t = 0.97, we define the fit function as the sum of two Lorentzian func-
tions centred on the K, K′ points (Qx, Qy) = ±(2π/3, 2π/3) in the BZ of the 
underlying square lattice, corresponding to 120° Néel order, and reduce 
ξx,y to a single fit parameter ξ ξ ξ= 2 = 3 /2x y  describing an isotropic 
correlation length in triangular lattice units.



Radial binning and doping data. The underlying harmonic confine-
ment provided by the Gaussian envelope of the lattice beams causes 
the local chemical potential to decrease from the centre to the edge of 
the trap, which naturally leads to a spatially varying density n. To obtain 
density-resolved correlations (Figs. 3 and 4), we assume that the  
underlying confinement has elliptical equipotential lines, which includes 
two-dimensional harmonic potentials with unequal trapping frequen-
cies. We group lattice sites according to the normalized anisotropic 
distance r x σ y σ= ( / ) + ( / )x y

2 2, in which x and y are the site coordinates 
relative to the centre of mass of the atomic distribution along its long 
and short axes and σx and σy are the square roots of the second moments 
of the distribution. Measured densities ns and spin correlations Cd are 
then averaged over each distance bin containing 50 sites and typically 
500 experimental realizations (see Extended Data Table 2).

To investigate the effect of particle doping, we increase the atom 
number compared with measurements done at half-filling to reach 
centre densities of about n = 1.6 atoms per site. We are only able to 
detect the density of singly occupied sites ndet owing to light-assisted 
collisions during imaging34 and, as a result, both particle-doped and 
hole-doped regions show detected densities below the half-filling value 
(Fig. 1d). We correct detected densities ndet according to imaging 
fidelities and assume that reflects the density of singly occupied sites 
ns. To convert them into actual densities n and doping δ = n − 1, we locate 
the half-filling radius rhf associated with the bin with maximum detected 
density ns

hf that separates the particle-doped core to the hole-doped 
periphery of the sample. Density in the hole-doped bins at radii r > rhf 
is then obtained from the linear approximation n n n= /h s s

hf, whereas 
density in the particle-doped bins r < rhf is given as n n n= 1 + /p s s

hf. This 
linear approximation holds particularly well at experimental temper-
atures T/t ≤ 0.5 and deviates by at most Δn = 0.01 from the actual  
density for all lattice anisotropies t′/t, as estimated from DQMC simu-
lations at U/t = 10.

Fitting U/t and T/t from DQMC. We obtain U/t by comparing experi-
mental parity-projected single occupancy densities and spin correla-
tions to DQMC simulations. The results for U/t are listed in Extended 
Data Table 1 and the results for T/t are listed in Extended Data Table 2, 
both as a function of anisotropy t′/t.

To obtain these values, we first examine the doped data, in which 
temperatures are higher and thus easier to access in DQMC. As 
described later in the section ‘DQMC simulation’, we perform DQMC 
simulations on a mesh of μ, U, T and t′, with simulation parameters 
described. At each point in the mesh, we compute the particle density 
n(μ, U, T, t′), the double occupancy d(μ, T, t′) and the nearest-neighbour 
spin correlator C(1,0)(μ, U, T, t′). These data can be inverted to yield 
U(n, C(1,0), d, t′), T(n, C(1,0), d, t′) and μ(n, C(1,0), d, t′). We perform this inver-
sion by linear interpolation. To find U and T, we then analyse the doped 
experimental data as described in the section ‘Radial binning and  
doping data’. For each t′/t value, we find the radial distance with the 
maximal single occupancy density ns

max. We also measure C(1,0) at this 
distance. Computing the double occupancy as d n= (1 − )/2s

max , we then 
compute U(1, C(1,0), d, t′) and T(1, C(1,0), d, t′) from the interpolated  
DQMC data.

Because the lattice parameters are identical between the doped 
dataset and the half-filled dataset, we assume that U is the same in 
the two datasets (at fixed t′/t). We can then extract temperatures in 
the half-filled dataset using a procedure similar to the above. We per-
form DQMC simulations on a more restricted μ mesh centred near 
half-filling, but a larger T mesh to capture the lower temperatures in this 
dataset. We measure C(1,0)(U, T, t′) at half-filling from DQMC, invert this 
to T(C(1,0), t′, U) by linear interpolation and then evaluate the inverted 
function at the experimentally measured C(1,0).

All error bars are obtained by linearly propagating the errors on 
experimental quantities through the interpolated DQMC data. We 
neglect systematic errors introduced by the interpolation, as well as 

statistical errors in DQMC, as they are negligible in comparison with 
the statistical errors contributed by experimental data.

One may also invert this technique to obtain predicted spin correla-
tions as a function of (n, T, U, t′) by interpolation. This is the method 
used to generate the DQMC curves in Fig. 2d. Error bars are obtained 
by numerically differentiating the result with respect to the input 
parameters and performing linear error propagation from U, T and t′. 
To further illustrate this technique, in Extended Data Fig. 4, we plot the 
analogue of Fig. 2a,c, obtained from interpolated DQMC data, namely, 
the correlation maps and spin structure factors at the experimental 
parameters.

Data summary. For data presented in Fig. 2, we prepare our sample with 
an average parity-projected density ndet of 0.89(2) at the centre to have 
a Mott insulator at half-filling in a region of about 200 sites, in which the 
effect of harmonic confinement is minimal. For the data presented in 
Figs. 3 and 4, we prepare our sample with an average parity-projected 
density of about 0.4, which corresponds to a particle density of 1.6.

Theory comparison
DQMC simulation. DQMC or auxiliary-field quantum Monte Carlo 
(or AFQMC) is a type of unbiased numerical method to study quan-
tum many-body problems. We apply this algorithm to simulate the 
anisotropic Fermi–Hubbard model described in this work using the 
QUEST package55. This method can fail to converge at low temperatures 
because of the negative sign problem56 for general fermion systems, 
such as square lattice Hubbard models away from half-filling or aniso-
tropic triangular lattice Hubbard models at any filling because of lack 
of particle–hole symmetry. Reliable results could still be generated 
with sufficient statistical averaging for the coldest temperature data 
of triangular lattice Hubbard model in the scope of this work. However, 
the exponentially decreasing average sign makes it very costly to reach 
lower temperatures and improved methods may be required.

We perform the DQMC simulations on an 8 × 8 lattice with a Trotter 
step size tdτ = 0.02 and we vary the number of imaginary time slices 
L to change inverse temperature β = 1/T = Ltdτ. Each run is generated 
with 5,000 warmup passes and 30,000 measurement passes. For tem-
peratures T/t = 0.4, we average over 16 independent runs with different 
seeds to obtain reliable statistics and for temperatures T/t = 0.35, we 
average over 33 runs to compensate the reduced average sign. Compar-
ing our results with ref. 35, the statistical error dominates over Trotter 
and finite system size errors.

Theory results with experiment parameters. We show spin correla-
tion maps computed with DQMC as shown in Extended Data Fig. 4a for 
different anisotropies and same interaction strength U/t and tempera-
ture T/t as in the experiments (Fig. 2a). We could also compute the spin 
structure factor by Fourier transforming the theory-predicted spin 
correlations (Extended Data Fig. 4b). We find quantitative agreement 
between experiment and theory on the spin correlations.

We find that both the temperature and the entropy are increasing as 
anisotropy increases, as shown in Fig. 2b. We plot the theory-predicted 
spin correlations at constant entropy S = 0.5644kB per particle and 
U/t = 9.8 in Extended Data Fig. 8. The constant entropy data are  
from ref. 35.

To study the how spin correlation is affected by doping and frustra-
tion, we run DQMC simulations for density n = 0–2, anisotropy t′/t = 1.0 
and U/t = 0, 2, 4 and 6 at T/t = 0.4, as shown in Extended Data Fig. 6, and 
for U/t = 10 at T/t = 0.5–0.9, as shown in Extended Data Fig. 7.

The particle–hole asymmetric spin correlations in the non-interacting 
case (U/t = 0) are qualitatively different. The nearest-neighbour correla-
tions are negative for all densities owing to Pauli exclusion57–59 and the 
peak of such antiferromagnetic correlation is shifted from half-filling 
n = 1 towards the hole-doped side. As interaction U is increased, antifer-
romagnetic correlations are suppressed around n = 1.5 and already turn 
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ferromagnetic at U/t = 6. The sign reversal for large particle doping in 
the isotropic triangular lattice becomes more prominent as tempera-
ture decreases.

Data availability
The datasets generated and analysed during this study are available 
from the corresponding author on reasonable request. Source data 
are provided with this paper.

Code availability
The code used for the analysis are available from the corresponding 
author on reasonable request.
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Extended Data Fig. 1 | Schematic of the lattice ramps used in the 
experimental protocol. We linearly ramp up the two physics lattice beams X 
and Y to experimental powers within 160 ms and quench them to freeze out 
dynamics. The X beam is handed over to an intermediate beam X  by ramping 
down X and ramping up X  simultaneously and then both X  and Y beams are 
handed over to imaging beams by first ramping up the imaging beams and then 
ramping down the X  and Y beams. All ramps use a 20-ms linear ramp. Optionally, 
one spin species can be removed with a resonant laser in the imaging lattice.
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Extended Data Fig. 2 | Band structure for the full lattice potential from 
equation (3). Contour lines show the Fermi surface for different density levels 
in steps of Δn = 1/4. The dashed black line indicates half-filling. Hole-doped 
regions are shown in purple and particle-doped regions in brown.



Extended Data Fig. 3 | Calibration of the interference phase. Atom number 
imbalance I  between the two sublattices associated with potential 
(equation (3)), averaged over the whole cloud, as the interference phase ϕ is 
scanned using the electronic phase-shifter phase ϕp. We perform a linear 
regression to find out the phase ϕp at which the imbalance cancels, which 
corresponds to ϕ = π/2 (mod π). The maximum interference phase ϕ = 0  
(mod π) is then obtained by increasing the phase-shifter phase ϕp by π.
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Extended Data Fig. 4 | Correlations at half-filling from the DQMC simulation. 
a, We plot the spin correlation functions from DQMC simulations on an 8 × 8 
lattice as in Fig. 2a, at the same temperature T/t and interaction U/t as in 
experiments for each anisotropy t′/t. b The spin structure factors from DQMC 

are computed with the same interpolation method as in Fig. 2. The broadening 
of the spin structure factor peaks and its splitting in the isotropic triangular 
lattice agree quantitatively with the experiment.



Extended Data Fig. 5 | Magnetic correlation length at half-filling. The 
correlation length is obtained from experimental data shown in Fig. 2 at 
different lattice anisotropies t′/t, by fitting the real-space spin–spin correlations 
Cd in the square lattice (square symbol) or the spin structure factor Szz(q) with 
an Ornstein–Zernike form at the M point (circles, isotropic form; diamonds, 
anisotropic form) or at the K and K′ points (triangle). See text for details.
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Extended Data Fig. 6 | Interaction dependence of the simulated spin 
correlations. The nearest-neighbour spin correlations C(1,0) are computed 
using DQMC for t′/t = 1, temperature T/t = 0.4 and for different interaction 
strengths U/t = 0, 2, 4 and 6. In the non-interacting case, the spin correlation is 
antiferromagnetic at all densities and decays to zero with a steeper slope on the 

hole-doped side than on the particle-doped side. As interaction U increases, 
the peak of correlation shifts towards half-filling and the slope of correlation is 
steeper on the particle-doped side. A sign reversal to ferromagnetic correlations 
is clearly visible at U/t = 6. Statistical error bars are smaller than the symbol size.



Extended Data Fig. 7 | Temperature dependence of the simulated spin 
correlations. The nearest-neighbour spin correlations C(1,0) are computed 
using DQMC for U/t = 10, t′/t = 1 and different temperatures T/t = 0.5–0.9 and 
show a clear particle–hole asymmetry. Statistical error bars are smaller than 
the symbol size.
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Extended Data Fig. 8 | Comparing experimental spin correlations with 
DQMC simulations at constant entropy. Nearest-neighbour spin correlations 
across the t-bonds C(1,0) (blue), across the t′-bonds C(1,1) (purple) and next-nearest- 
neighbour correlation C(1,−1) (orange) are shown, along with simulations at fixed 
entropy per particle S = 0.5644kB (to be compared with Fig. 2b). The difference 
between experimental and simulated data hint at a larger entropy increase 
when preparing the system in a triangular lattice compared with a square 
lattice.



Extended Data Table 1 | Summary of tunnelling and Hubbard 
parameters
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Extended Data Table 2 | Summary of experimental temperatures and number of experiment realizations for each dataset
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