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Summary:We study the in
uence of disorder and randomly distributed impurities onthe properties of band-antiferromagnets. To this end the Hubbard modelwith (i) random potentials, (ii) random hopping elements, and (iii) ran-domly distributed values of interaction is treated using quantum MonteCarlo and dynamical mean-�eld theory. In cases (i) and (iii) weak dis-order can lead to an enhancement of antiferromagnetic order: in case (i)by a disorder-induced delocalization, in case (ii) by binding of free carri-ers at the impurities. For strong disorder or large impurity concentrationantiferromagnetism is eventually destroyed. Random hopping leaves the lo-cal moment stable but AF order is suppressed by local singlet formation.Random potentials induce impurity states within the charge gap until iteventually closes. Impurities with weak interaction values shift the Hub-bard gap to a density o� half-�lling. In both cases an antiferromagneticphase without charge gap is observed.1 IntroductionAntiferromagnetic spin correlations are present in many strongly correlated elec-tron systems, notably the prototype Mott insulators NiO and V2O3, the parentcompounds of HTSC cuprates, and heavy fermion systems such as YbP, U2Zn17,and many others. Many of those systems are intrinsically disordered, in partic-ular upon additional homo- or heterovalent doping. The in
uence of impuritydoping on antiferromagnetic (AF) order and electronic properties has recently



2 Ulmke et al.been studied in a variety of systems. Doping with static scatterers like nonmag-netic impurities usually weakens antiferromagnetic order, a prominent examplebeing Zn doping in YBa2Cu3O6 [1]. In spin chains (CuGeO3) [2] and laddercompounds (SrCu2O3) [3] on the other hand, doping with magnetic and non-magnetic impurities can induce AF order while the pure systems show spin gapbehavior. Very e�ective in destroying AF order are mobile carriers, e.g. holedoping in La1�xSrxCuO4 [4]. The stability of AF order strongly depends on thepositions of the dopand level. While in the nickel oxides La1�xSrxNiO4 [5] andNi1�xLixO [6] holes are supposed to be localized, in the cuprate La1�xSrxCuO4the hole level lies in the valence band leading to mobile scatterers. As a result,AF order is stable in La1�xSrxNiO4 up to x = 0:5, but is destroyed in the cupratealready at approx. 5% Sr doping.In the present paper we will study the in
uence of disorder on AF order andthe Mott band gap in band-antiferromagnets. We employ the Hubbard modelin the presence of di�erent types of disorder. While the (disordered) Hubbardmodel is certainly far too simple to describe real materials it already containsvery rich physics including local moment formation, magnetic ordering, Mott-Hubbard transition, and Anderson localization. On the other hand, the interplayof disorder and interactions in electronic systems belongs to the most di�cultproblems in physics, and reliable results within simple models are still verydesirable. The problem has been investigated in the past by a variety of methods,including �eld theoretical approaches [7], renormalization group treatments [8,9], unrestricted Hartree-Fock [10, 11], dynamical mean-�eld theory (DMFT) [12,13, 14], quantum Monte Carlo (QMC) [15, 16, 17], and several more (see [18]for a review). Here we give an overview of results obtained by QMC and DMFTconcentrating on the AF phase diagram and the Mott gap.We consider the following Hubbard Hamiltonian:Ĥ =Xi� (�i � �)n̂i� + Xhiji� tij(ĉyi� ĉj� + h:c:) +Xi Ui(n̂i" � 12)(n̂i# � 12): (1.1)In principle all parameters �i; tij ; Ui can be randomly distributed. The precisede�nition of the di�erent disorder types studied in this paper will be given in thefollowing sections. The average tav � htiji sets our energy scale. We will restrictthe hopping tij to nearest-neighbors hence not allowing for frustration. Longerrange, random hopping amplitudes will be important in the modeling of amor-phous materials such as doped semiconductors [18, 19] and are not consideredin the present work.



Disorder and Impurities in Hubbard-Antiferromagnets 32 Methods2.1 Determinant quantum Monte Carlo (d=2)We use a �nite temperature quantum Monte Carlo method to obtain approxi-mation-free results for �nite lattices [20]. The algorithm is based on a mapping ofthe interacting electron problem onto a d+1 dimensional quasi-classical problemusing auxiliary Ising-type spins. It provides for calculating thermal averages ofobservables, Â, hÂi = Tr Â e��ĤTr e��Ĥ : (2.2)The phase space sampling over the auxiliary �eld con�gurations is performedusing Monte Carlo techniques. The weight of a con�guration is proportionalto a product of two determinants, one for each electron spin species. In thecase of half-�lling without random potentials, i.e. �i � � � 0, on a bipartitelattice the determinants always have the same sign, hence their product is alwayspositive semi-de�nite, which can be shown by particle-hole transformation ofone spin species [ci# ! (�1)icyi#]. In the general situation that the product canbecome negative the algorithm is still applicable in principle, however the signalto noise ratio decreases exponentially with systems size, inverse temperatureand interaction, putting severe restrictions to the applicability of the method.This so-called \minus-sign problem" is a general obstacle for all exact fermionicMonte Carlo methods as well as for spin-systems in the presence of frustration.Even without the minus-sign problem the computational e�ort is large becausethe computer time grows cubically with system size N , restrictingN to the orderof 100 on present supercomputers.In the case of disorder all observables have to be averaged over the (frozen)disorder con�gurations. Because of the computational e�ort we restrict ourselvesto two dimensional lattices with linear size up to Lx = 10 lattice spacing, whichoften allows a reliable �nite size scaling. Since we are interested in AF ordering wecalculate the magnetic correlation functions C(l) and their Fourier transforms,the magnetic structure factors S(q),C(l) = 1N Xj hmjmj+li; S(q) =Xl C(l)eiql: (2.3)In particular the AF structure factor S(�; �) is used to obtain the groundstate sublattice magnetization M by a �nite size scaling Ansatz according tospinwave theory [21]: S(�; �)N = M23 +O( 1Lx ): (2.4)



4 Ulmke et al.2.2 Dynamical mean-�eld theory (limit of in�nite dimensions)The dynamical mean-�eld theory [22, 23, 24] is a local approximation in whichthe self energy becomes site diagonal, or momentum independent:�ij(!) = �ij�(!); ~�(k; !) = ~�(!): (2.5)The one-particle Green function G(k; !) can hence be obtained from the non-interaction Green function G0(k; !) by G(k; !) = G0(k; ! � ~�(!)), and thelocal Green function is given by Gii(!) = 1=NPkG(k; !) This does not implya simple shift of energies, like in traditional mean-�eld theories (e.g. Hartree-Fock), because � remains dynamical, i.e. frequency depending, preserving localquantum 
uctuations. The local approximation becomes exact in the limit ofin�nite spatial dimensionality and maps the interacting lattice model onto aself-consistent single impurity model like, for example, the Wol� model [25]:ĤWol� =Xk� "kn̂k + U(n̂0" � 12)(n̂0# � 12) + �(n̂0" � n̂0#): (2.6)Here the one-particle energies "k have to be de�ned such that the non-inter-acting local Green function of the Wol� model ful�lls G0Wol� � (Gii�~�)�1. In theself-consistent solution the local (interacting) Green function of the Wol� modelhas to be equal to Gii. In the presence of disorder one has to average over allpossible values of U or �, respectively. This type of local averaging is equivalentto the \coherent potential approximation", well known from investigations ofdisordered alloys.While the self-consistency is rather easily reached by iteration the solution ofthe single impurity problem is the hard part. There exists no analytic solutionand di�erent numerical and approximative techniques have been employed (see,e.g., [23, 24]). Here we again use auxiliary �eld QMC [26], an algorithm quitesimilar to the one for �nite dimensional lattices sketched above. The computertime grows like L3 where L is the number of Matsubara frequencies. Fortunately,QMC for the single band model is free from the minus-sign problem.Typical quantities under consideration are the staggered magnetic susceptibil-ity �AF whose divergence signals the transition to an AF ordered state. Withinthe ordered phase one can calculate spin-dependent local densities n� on a givensublattice and hence the staggered moment M :n� = 1 + TXn G�n; M =X� �n� : (2.7)with G�n being the local Green function at Matsubara frequency i!n = (2n +1)�T . The one-particle density of states (DOS) is obtained by analytical con-tinuation of the imaginary time Green function using the Maximum Entropymethod. For details of the algorithm, the implementation of disorder averagesand determination of expectation values see [23, 24, 14].



Disorder and Impurities in Hubbard-Antiferromagnets 53 Random potentials3.1 Local moment quenchingRandom potentials are the most frequently studied type of disorder in the con-text of Anderson localization. Contrary to the Hubbard interaction which athalf-�lling favors single occupation on each site, di�erent local potentials leadto di�erent occupations and hence to a quenching of local magnetic momentson sites with large absolute value of the local potential. This is seen in Fig. 1awhere the average local moment squared, m2, is plotted versus disorder strengthfor a 
at distribution of � values with width �. It is also shown that the spin-spin-correlations go in parallel with m2. For a large width of random potentialsthis type of disorder is apparently very e�ective in the destruction of magneticorder. To study the behavior of the charge gap, the electronic compressibility,� � @n=@�, is calculated as a function of � (Fig. 1b). While disorder decreases� in the non-interacting case, � is enhanced by disorder at �nite U . The reasonis the introduction of states within the AF charge gap as will be discussed be-low. As mentioned above, random potentials break the particle-hole symmetry

(a) (b)Figure 1 (a) Local magnetic moment C(0; 0), spin-spin correlation function atlattice vector (2; 2), and AF structure factor S(�; �) as a function of disorderstrength for a constant distribution of random potentials (in all cases the U =� = 0 values are subtracted). (b) compressibility � vs. �; disorder reduces � inthe non-interacting case and enhances it at U = 4 [16].



6 Ulmke et al.leading to a minus-sign problem even at half �lling. This is the reason why onlysmall lattices (4� 4 in Fig. 1) can be studied for this type of disorder.3.2 Disorder-enhanced delocalizationConsider the situation deep in the AF phase, i.e. with a large staggered moment.A high value of the local potential on a given site reduces the local spin leadingto an e�ective delocalization of the electron. A low potential on the other handcannot signi�cantly further increase localization because the majority spin isalready almost saturated. This asymmetry of the localizing and delocalizinge�ects of random potentials on the majority spins is depicted in the DMFTresults, Fig. 2. The majority spin (") is strongly reduced for � > 0 but almostunchanged for � < 0. Note that the total local density monotonically decreaseswith �, and that the net magnetization (n" � n#) is reduced for any j�j > 0.
n" + n#n" � n#n#n"U = 8;W = 8; � = 7:5

�i
density
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1.61.41.21.00.80.60.40.20.0Figure 2 Local spin resolved densities in DMFT as a function of the randompotential value �i [27]. Total width of disorder distribution is W � � = 8.The fact that the delocalization is not compensated can be expressed in termsof an enhanced e�ective hopping parameter te� . In the case (U � �) � t thee�ective te� can be estimated by the mapping onto the AF Heisenberg model:the AF exchange arises from virtual hopping of an electron with spin � to aneighboring site occupied with an electron of spin ��. The exchange energy forthis and the opposite process isJij = t2U � (�i � �j) + t2U � (�j � �i) � 2t2U �1 + (�i � �j)2U2 � : (3.8)
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Figure 3 AF (Tn�U) phase diagram in DMFT for a bimodal random potentialdistribution. Energies in unit of the half bandwidth. [14]Jij is hence always enhanced from the pure case (J0 = 2t2=U), and the averageexchange becomes Jav = J0[1 + �(�=U)2] where � depends only on the shapeof the disorder distribution (e.g., � = 1=12 for the constant, � = 1=2 for abinary distribution). More generally, one can show that the form of the magnonpropagator remains unchanged in second order in �=U [27], but magnons aresti�ened by a factor of (1 + �(�=U)2). The e�ective hopping in strong couplingcan thus be expressed as te� = t[1 + �(�=U)2]1=2. In dimensions d > 2 oneexpects the N�eel temperature TN to be proportional to J and hence TN , too,should be enhanced by weak disorder.While disorder-enhanced delocalization stabilizes AF order at strong couplingit suppresses it at weak coupling. For small U the AF state is rather \spindensity wave like" and an enhanced kinetic energy tends to weaken AF orderand to reduce TN . In addition, random potentials destroy the perfect nestinginstability responsible for AF order at small U .The T vs. U phase diagram within DMFT (Fig. 3) summarizes and con�rmsthe above considerations: For small U , TN is reduced and eventually vanisheswhen � becomes roughly equal to U . At large U , however, the TN curves fordi�erent � cross each other, i.e. at a given value of U , TN increases with dis-order. The opposite e�ects of disorder on TN depending on U are due to thenon-monotic behavior of the function TN (U). If the slope of TN (U) is positive(negative) an e�ectively reduced ratio U=te� leads to a suppression (enhance-ment) of TN .



8 Ulmke et al.3.3 Closing of the charge gapLocal potentials can induce electronic states in the charge gap. As also foundexperimentally the positions of the impurity states are crucial for the stabilityof AF order with respect to carrier doping. Disorder-induced gap states willreduce the size of the charge gap. We now want to determine the critical disorderstrength at which the gap vanishes. First we employ the T-matrix approximationwhich becomes exact for a single impurity and will be used as an approximationin the disordered case. [28, 27] To apply this approach we would need the one-particle Green function of the correlated, not-disordered problem which is ofcourse still unknown. As an approximation we use the local host Green functionof the AF Hartree-Fock solution:[g0�]ii = (1=N)Xk (! � �D)=(!2 �E2k): (3.9)Here 2D = mU is the Hubbard energy gap in the pure AF, Ek = pD2 + �2kis the AF band energy, and D is obtained from the self-consistency condition(1=N)Pk(2Ek)�1 = U�1. With this local host Green function we can calculatethe location of impurity-induced states from the poles in the T-matrix, T�(!) =�i=(1 � �i[g0�(!)]ii). We consider a constant distribution of random potentialbetween ��=2. There are disorder-induced states within the gap if j[g0� ]iij >2=�. The energy ~D up to which states are formed within the gap is given by[g0�(� ~D)]ii = 2=�. The remaining charge gap 2 ~D is plotted versus � in Fig. 4.The decrease is almost linear and the 2 ~D vanishes close to � = U . Also shownis the result from a numerical unrestricted Hartree-Fock (UHF) analysis. In thisapproach, the HF Hamiltonian on a �nite lattice is numerically (self-consistently)diagonalized, so that disorder is treated exactly [10, 11, 27]. The energy gap isobtained from the energy di�erence between the lowest energy state of the upperHubbard band and the highest energy state of the lower Hubbard band. Averagesare taking over 100 disorder realizations on a 10� 10 lattice. The saturation ofthe gap at �=U � 1 is due to the �nite system size. The agreement with the T-matrix approach is excellent for the present interaction value U = 10t. Deviationsfrom the T-matrix approach are more pronounced at lower interaction strengthswhere the fermion states are more extended.The closing of the charge gap is also observed within the DMFT approach.Fig. 5a shows the density of states for several disorder values. Note that allspectra shown are within the AF ordered phase, i.e. AF order is much morestable than the charge gap which closes about � = U . A linear reduction of thecharge gap is also observed in the case of a binary disorder distribution (Fig. 5b).For this stronger type of disorder both the charge gap and the AF order vanishnear � = U .



Disorder and Impurities in Hubbard-Antiferromagnets 9
U = 10

W=UNormalize
dEnergy
Gap

1.41.21.00.80.60.40.2 0

1.00.80.60.40.20Figure 4 Normalized energy gap, ~D=D, in d = 2 versus disorder strength (W ��) at U = 10t as obtained by the T-matrix approximation (solid line) and theUHF analysis (symbols) [27].
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(a) (b)Figure 5 (a) Density of states (DOS) for a constant disorder distribution ofdi�erent width in DMFT [27]; all spectra are within the AF phase. (b) Chargegap vs. � in DMFT for the bimodal distribution of random potentials.3.4 Crossover to strong disorder; spin vacanciesAs discussed in the previous section the one-particle gap decreases with � andvanishes near � = U . Upon further increase of � the two Hubbard bandswill overlap whereby electrons from the highest levels of the lower band (with�i > U=2) will be transfered to the lowest levels of the upper band (with�i < �U=2). Those sites will become doubly occupied, their local moment willvanish as observed in Sec. 3.1. Assuming 
at Hubbard bands of width �, appro-
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(a) (b)Figure 6 (a) TN as a function of site dilution in DMFT for di�erent values ofU . Dashed line Hartree-Fock approximation for U = 0:65 (energies in units of thehalf bandwidth). (b) Enhancement of local moments on the remaining fraction(1� x) of the lattice at inverse temperature � = 16. [14]priate in the limit t� U;�, the overlap region is � (��U) and the fraction ofnonmagnetic site can be estimated by x � (��U)=�. This situation can be mod-eled by spin vacancies of concentration x which will lead to strong magnon scat-tering. Such diluted antiferromagnets have been widely studied recently mostlywithin spin diluted Heisenberg models [29, 30] and also Hubbard models [28].A perturbative analysis in the strong coupling limit (O(t2=U2)) [28, 27] yieldsa softening of magnons by a factor of (1� 2x) in d = 2. Extrapolating to largefractions x, the magnon energy scale ~J = J(1� 2x) hence vanishes only close tothe percolation threshold xperc � 0:4. In d > 2 the N�eel temperature is assumedto be proportional to ~J and a linear decrease of TN is thus expected. In experi-ments, e.g. on Zn doped YBa2Cu3O6 [1] and on Li doped NiO [31] such a lineardependence on x is indeed observed with prefactors of � 2 and 2.2, respectively.In the limit d ! 1 the percolation threshold is 1.0; hence we can expect AForder to persist for arbitrarily large dilution. Within DMFT indeed a linear de-crease of TN / (1 � x) is observed for the diluted model at large U (Fig. 6a).At small U , however, AF order is remarkably robust, TN being constant up todilutions close to x = 1 where TN eventually drops to zero. This behavior of TNcan be explained by a strong enhancement of the local moment density on theremaining sites at small U (Fig. 6b). The reason for this enhancement is thatwith reduced average number of nearest neighbors the kinetic energy decreases,leading to a stronger localization. At large U the local moments are alreadyalmost saturated at x = 0 and just cannot be further enhanced. The situation



Disorder and Impurities in Hubbard-Antiferromagnets 11in the case of vacancies is therefore quite di�erent from the e�ect of weak sitedisorder where disorder-enhanced delocalization is observed.4 Random hoppingThe case of spin vacancies discussed in the previous section can of course beregarded as a speci�c type of randomness in the hopping elements. The moregeneric case of a continuous (
at) distribution of tij 2 [1 � �=2; 1 + �=2] wasstudied in d = 2 using QMC. Since the hopping is still restricted between nearestneighbors on a square lattice particle-hole symmetry is preserved and no minus-sign problem occurs at n = 1. Random tij hardly a�ect the density of localmoments (Fig. 7a), the slight decrease may be due to the enhanced kineticenergy which is / q< t2ij >. Nevertheless, longer-range spin-spin correlationsare strongly suppressed if � is of the order of t (see Fig. 7a). The �nite sizescaling according to (2.4) yields the AF order parameter (staggered moment)Mversus � (Fig. 7b). M vanishes at a critical disorder strength of �c � 1:4. Wepropose [16] that the phase boundary is determined basically by the varianceof the AF exchange coupling v = (< J2ij > � < Jij >2)= < J2ij >. AF orderpersists for v < vc � 0:4. This criterion is consistent with the phase boundaryof the bond-disordered AF Heisenberg model with a bimodal distribution of Jij[32].The reason for the vanishing of AF order for this type of disorder is supposedlythe formation of local singlets. Such singlets will form �rst on the strongestbonds and will leave some spins which are weakly coupled to their neighborsunpaired. Those \free" spins are expected to give a Curie-like contribution tothe susceptibility as observed in doped semiconductor [18, 19]. The numericalresults indeed show a strong enhancement of the uniform susceptibility howeverdo not allow for quantitative conclusions [16].5 Impurities with weak local interactionsThe Hubbard model at n = 1 exhibits both AF order and the Mott-Hubbardmetal-insulator transition (MIT). It is important to note that both e�ects are inprinciple independent. The Mott-Hubbard MIT occurs at intermediate interac-tion (U � bandwidth) while AF order can set in at arbitrarily small U due to theFermi surface nesting instability. It is argued that the MIT at T = 0 representsa quantum critical point which is however concealed by the low temperature AFphase [33], and attempts are made to suppress the AF phase to very low or zeroT by di�erent types of frustration [24]. A di�erent possibility to separate AF
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(a) (b)Figure 7 (a) Local moment and spin-spin correlations in d = 2 for random hop-ping (same quantities as in Fig. 1). (b) Staggered magnetization M as obtainedby �nite size scaling vs. � [16].order and the MIT is to shift the �lling at which the Mott-Hubbard MIT occursaway from n = 1 by introducing impurities with a low (or zero) local interactionwith a concentration f . Such impurity sites can be doubly occupied without thecost of the local repulsion and hence the MIT is expected at a density n = 1+f .5.1 Mott-Hubbard gapThe Hubbard model with a bimodal distribution of U values (U = 0 on a fractionf of the lattice, and U = 8t on the remaining sites) was investigated by QMC onsquare lattices and in DMFT. Note that for technical reasons (minus-sign prob-lem) the choice of the U�disorder in model (1.1) preserves particle-hole sym-metry. This corresponds to di�erent chemical potential on the two constituentssuch that at n = 1 the electronic density is homogeneous, i.e. independent onUi. To detect charge gaps the electronic density n is plotted versus the chemicalpotential � (Fig. 8a). As expected the gap moves to a density o� half �lling closeto 1 + n. This agrees with the kinetic energy which shows minima at the cor-responding densities (Fig. 8b). At a closer look one observes an additional gapat n = 1 which is due to the doubling of the unit cell in the AF ordered state.
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