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Hard-core bosons on honeycomb lattice ribbons with zigzag edges are studied using exact numerical
simulations. We map out the phase diagrams of ribbons with different widths, which contain superfluid and
insulator phases at various fillings. We show that charge domain walls are energetically favorable, in sharp
contrast to the more typical occupation of a set of sites on a single sublattice of the bipartite geometry at
ρ = 1

2 filling. This “self-organized domain wall” separates two charge-density-wave regions with opposite Berry
curvatures. Associated with the change of topological properties, superfluid transport occurs down the domain
wall. Our results provide a concrete context to observe bosonic topological phenomena and can be simulated
experimentally using bosonic cold atoms trapped in designed optical lattices.
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I. INTRODUCTION

One of the most interesting properties of condensed matter
systems is their condensation into ordered low-temperature
phases, breaking an underlying symmetry of the Hamiltonian.
Such phases typically minimize the free energy F ; coexistence
of the distinct ordered patterns involves a domain wall, in-
creasing F . Nevertheless, domain walls often exist in practice
in experiments (or in simulations) as a consequence of long
annealing times. This is especially the case in the presence of
disorder which can pin their motion.

In addition to being manifest as metastable states, domain
walls can also arise in other ways. An important example is
provided by doping away from the commensurate antiferro-
magnetic (AF) filling of the cuprate superconductors [1], or
the Hubbard and t-J models that describe them [2–4]. Dopants
do not spread uniformly, but instead form “charge stripes.”
Across these stripes there is a “π -phase shift” of the AF order
[5]. The up-spin occupied sublattice interchanges across the
stripe, realizing a domain wall.

In model Hamiltonian studies on “ladder” geometries us-
ing the density matrix renormalization group, the charge
patterns are found to be “vertical stripes”; i.e., the doped
holes lie parallel to the short direction of the cluster [3].
These charge patterns are fundamentally connected not only
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to magnetism, e.g., the π -phase shift, but also to charge-
density-wave (CDW) and d-wave pairing order. Studies of
stripe physics and the associated domain walls remain of great
interest [6,7], with the possible coexistence of Luther-Emery
liquid states in which the spin excitations are gapped, and
quasi-long-range superconducting correlations being a key
issue [8].

We study bosonic particles on honeycomb ribbons. Four
novel features emerge. First, we argue that charge domain
walls are energetically favorable compared to occupation of
a set of sites on a single sublattice of the bipartite geometry,
even at half filling. This is a rather unique feature compared
to situations in which domain walls are excitations rather
than the ground state. Second, the low-density sites of the
domain wall are arranged “horizontally” (parallel to the long
axis), rather than vertically. These “self-organized domain
walls” open the possibility of superfluid transport down the
chain. Third, associated with this physics is a nontrivial Berry
curvature, which changes sign across the domain wall. Finally,
the system realizes an exotic one-dimensional supersolid.

II. THE MODEL AND METHOD

We consider spinless hard-core bosons on zigzag ribbons
of a honeycomb lattice, described by the extended Bose-
Hubbard model [9,10]:

H = −t
∑
〈i, j〉

( b†
i b j + b†

jbi ) + V
∑
〈i, j〉

nin j − μ
∑

i

ni. (1)

Here bi (b†
i ) are hard-core boson annihilation (creation) oper-

ators, and ni = b†
i bi is the number operator. Hard-core bosons

obey commutation relations [bi , b†
j] = 0 for sites i �= j and
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FIG. 1. Schematics of a width W = 5 and length L = 4 honey-
comb lattice ribbon with zigzag edges. One of the (atomic limit)
degenerate configurations of the ρ = 1

2 insulator is shown. The filled
circles represent hard-core bosons, with the colors distinguishing the
sublattices. The domain wall is marked by the solid line. The dashed
lines mark the domain walls of other degenerate configurations. The
kinetic energy gains by second-order hopping processes are marked.

on-site anticommutation relations {bi , b†
i } = 1. The first term

in Eq. (1) describes nearest-neighbor (NN) hopping, with
amplitude t taken as the unit of energy (t = 1). The second
term in Eq. (1) is the NN interaction V . Finally, μ denotes the
chemical potential, which controls the number of bosons in
the system. The model in Eq. (1) has a U(1) symmetry and
is invariant under the transformation bj → eiθ b j , where θ is
a real-valued phase. This symmetry is spontaneously broken
in a superfluid phase. The Hamiltonian is invariant under the
inversion transformation center of honeycomb lattice ribbons
with zigzag edges.

We employ the stochastic series expansion (SSE) quantum
Monte Carlo (QMC) method [11] with directed loop updates
to study Eq. (1). SSE expands the partition function in a power
series and the trace is written as a sum of diagonal matrix
elements. The directed loop updates and the fact that the
discrete configuration space can be sampled without floating-
point operations make the approach very efficient [12–14].
Our simulations are on finite lattices with the total number
of sites N = 2 × W × L, with W the width and L the length
of a ribbon (see Fig. 1). The temperature is set to be low
enough to obtain the ground-state properties. In calculating
the eigenstates of interacting systems, we also use the exact di-
agonalization (ED) and density matrix renormalization group
(DMRG) methods. The ED method is numerically exact, but
has strong size limitation. By identifying a small subspace out
of the exponentially large Hilbert space, the DMRG method
can simulate larger systems, and the results are accurate up to
a truncation error [15].

III. BAND STRUCTURE

The band structure of honeycomb lattice ribbons can be
determined analytically. One fermion has exactly the same
energy as one hard-core boson due to the absence of exchange
statistics. For W = 2, the Hamiltonian in momentum space is

H2(kx ) =
[

h1(kx ) h2

h†
2 h1(kx )

]
, (2)
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FIG. 2. The band structures of the honeycomb lattice ribbons
with the widths (a) W = 2, (b) W = 3, (c) W = 4, (d) W = 5.

with γk = 1 + eikx , and

h1(kx ) =
(

0 −tγk

−tγ ∗
k 0

)
, h2 =

(
0 0
−t 0

)
. (3)

The energy spectrum contains four branches, Ei = (±1 ±√
9 + 8 cos kx )t/2 (i = 1, 2, 3, 4). The band bottom is lo-

cated at kx = 0, and the corresponding eigenvalue is −(1 +√
17)t/2 (see Fig. 2). Thus the lower boundary of the phase

diagram, where the density first begins to become nonzero, is
a straight line μ/V = − 1+√

17
2 t/V .

Under a particle-hole transformation b†
i → hi , the Hamil-

tonian Eq. (1) becomes

H = −t
∑
〈i, j〉

(h†
i h j + H.c.) + V

∑
〈i, j〉

nh
i nh

j

− (3V − μ)
∑

i∈bulk

nh
i − (2V − μ)

∑
i∈edge

nh
i + E0, (4)

where nh
i = h†

i hi is the hole number operator and E0 =
3
2V N − LV − μN is a constant. In momentum space, the hole
Hamiltonian is

Hh
2 (kx ) =

⎡
⎢⎣

−2V −tγk 0 0
−tγ ∗

k −3V −t 0
0 −t −3V −tγk

0 0 −tγ ∗
k −2V

⎤
⎥⎦. (5)

The energy spectrum E1,2 = − t
2 − 5V

2 ± 1
2 Pk,+, E3,4 = t

2 −
5V
2 ± 1

2 Pk,−, with Pk,± =
√

9t2 + 8t2 cos kx + V 2 ± 2tV . The
band bottom determines the upper boundary of the phase
diagram, which is described by the curve μ

V = 1
2

t
V +

1
2

√
17 t2

V 2 + 2 t
V + 1 + 5

2 .
For the W = 3 case, the Hamiltonian is

H3(kx ) =

⎡
⎢⎣

h1(kx ) h2 0

h†
2 h1(kx ) h2

0 h†
2 h1(kx )

⎤
⎥⎦. (6)

The lower boundary is described by μ/V = −2.76 t/V .
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FIG. 3. Phase diagrams of W = 2, 3, 4, 5 honeycomb lattice rib-
bons contain superfluid regions and insulator phases at specific
fillings. Dotted lines enclose the ρ = 1

2 CDW insulator of hard-core
bosons on a periodic two-dimensional honeycomb lattice [16–18].
Ribbon length L = 24.

Finally, for W = 4,

H4(kx ) =

⎡
⎢⎢⎢⎣

h1(kx ) h2 0 0

h†
2 h1(kx ) h2 0

0 h†
2 h1(kx ) h2

0 0 h†
2 h1(kx )

⎤
⎥⎥⎥⎦. (7)

From the eigenvalue of the band bottom, we have μ/V =
−2.85 t/V describing the phase boundary for ρ = 0. The
phase boundary for ρ = 1 can be obtained numerically in the
hole representation. Figure 2 shows the bands for W = 2–5,
and Fig. 3 gives the corresponding phase diagrams, which are
further discussed in the following section.

The band structure of the honeycomb lattice consists of
two inequivalent Dirac points, which are characterized by ±π

Berry phases [19]. As a result of the nontrivial topological
property, localized flat bands connecting the two Dirac points
appear on the zigzag edges [20–23]. The development of the
flat bands is already evident in the full band structure of Fig. 2.
However, Fig. 4 makes this more clear by focusing on the
low-energy bands only and including data for W = 8. Figure 4
emphasizes that as the widths W of the ribbons increase, the
lengths of the flat bands grow. As W → ∞, the full flat band
along the edges is recovered. The band bottom corresponds to
the chemical potential at which the hard-core bosons begin to
fill into the system, which determines the phase boundary for
ρ = 0.

IV. PHASE DIAGRAM

Phase diagrams of ribbons with W = 2, 3, 4, 5 are shown
in Fig. 3. In the atomic limit (t/V = 0), the density abruptly
jumps from empty (ρ =0) to half filled (ρ = 1

2 ) at μ/V =0,
with bosons placed so they never occupy adjacent sites.
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FIG. 4. Low-energy bands of ribbons with several W and L =
∞. Inset shows the ratio of the range δkx of the flat band to the full
one-dimensional Brillouin zone, as a function of W . δkx/2π ∼ 1/3
for large W .

At ρ = 1
2 , no further bosons can be added without being

neighbors, costing energy ∝ V : there is a jump in μ. If the
half-filled bosons are placed so that they occupy only a single
sublattice, the empty sites of one of the boundaries are special:
they interact with only two neighboring occupied sites. Thus
the ρ = 1

2 CDW insulator terminates at μ/V = 2 [24]. Once
these special sites are completely occupied, the increase in
density pauses again until μ/V = 3, at which point bosons
are added to the remaining empty sites with three occupied
neighbors, completely filling the lattice. This atomic-limit
picture explains the positions of the insulating lobe bases in
Fig. 3.

The ρ = 1
2 insulator for 0 < μ/V < 2 has a (W + 1)-fold

degeneracy, including two single-sublattice CDWs and (W −
1) configurations with a domain wall arranged along each row
of vertical bonds. As noted earlier, the key observation for
the presence of self-organized domain walls of Fig. 1 is that a
domain wall has a pair of “edges” where empty sites have only
two occupied neighbors. This greater multiplicity of special
sites compared to a single sublattice leads to a lower energy
at finite hopping t/V �= 0: the second-order energy decrease
when a boson hops onto a special site is −t2/V compared to
the −t2/2V for hopping within the CDW. Figure 1 illustrates
these different hopping processes and the larger overall energy
decrease, −5t2/2V , of a site adjacent to a domain wall,
compared to −3t2/2V gained by a boson inside the CDW.
Filling half of the special sites in the domain-wall phase
also explains the densities ρ = 1

2 + 1
2W of the 2 < μ/V < 3

insulating lobes of Fig. 3.
The atomic insulator phases initially persist at small t/V ,

but the range in chemical potential over which they are stable
decreases. They completely disappear beyond a critical value
of t/V . At nonzero t/V , all these insulators are separated by
incommensurate superfluid regions.

Quantum phases suggested by these strong-coupling argu-
ments can be precisely determined using the SSE by mea-
suring the average density ρ = 1

N

∑
i〈ni〉 and the superfluid

density ρs = 〈W 2〉/4βt , where W is the winding number
counting the net number of times the paths of the particles
have wound around the periodic cell [25,26], and β is the
inverse temperature. Insulating behavior is characterized by
ρs = 0 and a plateau of ρ representing the persistence of
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FIG. 5. The average density (a) and superfluid density (b) as a
function of μ at t/V = 0.3 on a W = 2 and L = 24 ribbon.

the atomic-limit steps in the chemical potential to finite t/V .
Conversely, the superfluid has nonzero ρs and finite compress-
ibility κ = ∂ρ/∂μ. These features are clearly seen in the SSE
results of Fig. 5 for W = 2. A collection of plots like Fig. 5
for different t/V generates the phase diagram in Fig. 3.

Compared to that of the periodic honeycomb lattice, the
regions of the ρ = 1

2 insulators of Fig. 3 are greatly reduced,
and there appear new insulating regions at the filling ρ = 1

2 +
1

2W . There is an additional valence-bond insulator at ρ = 1
4 ( 3

4 )
for W = 2 (4) which has no atomic counterpart [27,28].

V. STRONG COUPLING

The ED and DMRG methods can be used to obtain further
details of the evolution of the low-energy spectrum and site
densities away from the atomic (t = 0) limit. The (W + 1)-
fold degeneracy of the atomic limit ρ = 1

2 insulator is lifted
by the hopping. For the W = 2 case, the ground state is the
unique domain-wall phase. The first- and second- excited
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FIG. 6. Several of the lowest eigenenergies calculated by the ED
method: (a) W = 2, L = 4; (b) W = 2, L = 8; (d) W = 3, L = 4;
(e) W = 3, L = 5. The three lowest eigenenergies from the DMRG
methods on N = 48 sites: (c) W = 2, (f) W = 3.
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FIG. 7. The profiles of the local densities in the ground, first-,
and second-excited states. The first- and second-excited states are
linear combinations of the two single-sublattice CDW states. The
lattice size is W = 2 and L = 8. Inset shows the unit cell of the
W = 2 ribbon and equivalent sites, due to inversion point group
symmetry.

states are linear combinations of the single-sublattice CDW
states to preserve the symmetries of the Hamiltonian. As
shown for W = 2 in Figs. 6(a)–6(c), as t/V increases, W +
1 = 3 distinct eigenenergy curves emerge from the degenerate
t/V = 0 limit. The (N = 16)-site ED eigenenergies of the two
mixed single-sublattice CDW states lie above the domain-wall
state and are slightly split by finite-size effects. This finite-size
splitting is significantly reduced in the (N = 32)-site ED and
the (N = 48)-site DMRG calculations.

The site densities and the density-density correlations in
Figs. 7 and 8(a) confirm that the lowest eigenenergy is associ-
ated to the unique domain-wall phase. When t is nonzero, the
single-sublattice CDW states form linear combinations and
in the resulting state superpositions, all sites have average
filling around 0.5. However the domain-wall state, because
of inversion symmetry, has two inequivalent sets of sites,
half of which have densities which are low, and half which
are high (see Fig. 7). In the domain-wall phase, both edge
sites of the unit cell have high densities, while one of them
is occupied and the other is not in the CDW phase. The
density-density correlations between such sites have distinct
values, which are large for the domain-wall phase and small
for the CDW [see Fig. 8(a)]. Thus the presence of two well-
separated ρi(t/V ) trajectories and the large density-density
correlation between opposite-edge sites are “smoking guns”
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FIG. 8. The density-density correlations between the opposite-
edge sites of the unit cell for several of the lowest eigenenergies. The
lattice sizes are (a) W = 2 and L = 8, (b) W = 3 and L = 5.
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single-sublattice CDW states. The lattice size is W = 3 and L = 5.

that the ground state has a domain wall, as already suggested
by the strong-coupling argument.

We also demonstrate the existence of a domain wall in
the W = 3 ground state. In Figs. 6(d)–6(f), the (W + 1 = 4)-
fold atomic-limit degeneracy is lifted by hopping. The lowest
four eigenenergies are grouped into two sets, each of which
contains two mixed domain-wall or CDW states. Due to the
finite-size effect, the degeneracy of each set is split. In the
larger lattice results, the two lowest states become nearly
degenerate, and so are the two upper ones.

If one averages the ρi of the two domain-wall states, one
finds two “occupied” sites which have ρi large in both states,
two “empty” sites which have ρi small in both states, and two
sites which exchange ρi small and large. This leads to three
ρi trajectories: large, small, and approximately half filled.
Meanwhile, each of the CDW states has six inequivalent
sites, three high and three low density, which all exchange
between the two degenerate cases. When averaged, all sites
would therefore have ρi ∼ 0.5. The site densities of the lower
and upper two states are plotted in Fig. 9 and are consis-
tent with those of the domain-wall and CDW phases. The
density-density correlation between opposite-edge sites in the
domain-wall phase is also much larger than that in the CDW
phase [see Fig. 8(b)]. Thus the local densities and density-
density correlations observed for W = 3 offer compelling
evidence that the ground state manifests a charge domain wall.

VI. THE MAGNON BANDS AND BERRY CURVATURE

Having established the phase diagram and the existence
of domain walls in the ρ = 1/2 insulator, we now focus on
behavior at the interface. The topological property of the bulk

CDW phase of hard-core bosons is first investigated. The
Bose-Hubbard Hamiltonian in Eq. (1) is equivalent to a spin-
1/2 XXZ model through a mapping S+

i = b†
i and Sz

i = ni − 1
2 ,

H = −t
∑
〈i, j〉

(S+
i S−

j + S−
i S+

j )

+V
∑
〈i, j〉

(
Sz

i + 1

2

)(
Sz

j + 1

2

)
−μ

∑
i

(
Sz

i + 1

2

)
. (8)

Using the Holstein-Primakoff transformation, the spin oper-
ators are expressed in terms of bosonic creation and annihi-
lation operators. The honeycomb lattice is bipartite; thus the
transformation on sublattice A is defined as

S+
A,i = (

√
2S − a†

i,Aai,A)ai,A,

S−
A,i = a†

i,A(
√

2S − a†
i,Aai,A),

Sz
A,i = S − a†

i,Aai,A. (9)

Conversely, on sublattice B, the spin is in the opposite direc-
tion for antiferromagnetic order. Thus the spin operators are
defined as

S+
B,i = a†

i,B(
√

2S − a†
i,Bai,B),

S−
B,i = (

√
2S − a†

i,Bai,B)ai,B,

Sz
B,i = a†

i,Bai,B − S. (10)

Expanding the square root in Eqs. (9) and (10) in powers of
1/S, the zeroth-order terms are kept in the linear spin-wave
theory. Then the bosonic tight-binding Hamiltonian becomes

H = − t
∑
〈i, j〉

(ai,Aa j,B + a†
i,Aa†

j,B)

+V
∑
〈i, j〉

(1 − a†
i,Aai,A)a†

i,Bai,B

−μ
∑
i∈A

(1 − a†
i,Aai,A) − μ

∑
i∈B

a†
i,Bai,B, (11)

where a†
i,α, ai,α (α = A, B denoting the sublattice) are the

bosonic creation and annihilation operators [29]. In momen-
tum space, H = ∑

k ψ
†
kH(k)ψk , where ψk = {aA,k, a†

B,−k}T ,
and

H(k) =
[

μ f (k)
f ∗(k) 3V − μ

]
, (12)

with f (k) = −t (1 + e−ik·a1 + e−ik·a2 ) [a1 = (
√

3, 0), a2 =
(
√

3/2, 3/2) are the primitive vectors]. To diagonalize the
above Hamiltonian, we consider the following non-Hermitian
matrix,

σzH(k) =
[

μ f (k)
− f ∗(k) −3V + μ

]
. (13)
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FIG. 10. (a) The magnon band structure. The parameters are
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2 = 6t , when E+, E− are identical and we plot −E− to display
this. (b) The phase diagram of the Bose-Hubbard model on the
periodic honeycomb lattice and zigzag ribbon. The black (blue)
curves are the phase boundaries from the QMC method (the spin-
wave approximation) on the periodic honeycomb lattice. The red
curves are from the spin-wave approximation for a zigzag ribbon
with the width W = 12.

The eigenvalues are given by E±
k = μ − 3V

2 ± ε(k) with

ε(k) =
√

( 3V
2 )2 − | f (k)|2. The eigenvector matrix is

Uk =
[

cosh θkeiφk − sinh θk

− sinh θk cosh θke−iφk

]
, (14)

where sinh 2θk = | f (k)|
ε(k) , tan φk = Im f (k)

Re f (k) . The first (second)

column is the eigenvector u+,k (u−,k) corresponding to E+
k

(E−
k ). The Hamiltonian is thus diagonalized by the transfor-

mation U†
kH(k)Uk = diag(E+

k ,−E−
k ).

Thus the magnon band structure, i.e., the excitation
of the mapped spin-1/2 XXZ model, has two branches:

E±
k = ±(μ − 3V

2 ) + ε(k), where ε(k) =
√

( 3V
2 )2 − | f (k)|2.

In Fig. 10(a), we plot the magnon band structure at μ = 3V
2 =

6t , which consists of two gapped branches.
The above magnon bands of the mapped spin-1/2 XXZ

model correspond to the excitation spectrum above the CDW
insulator of the Bose-Hubbard model, which is the superfluid.
When the spectrum becomes gapless, i.e., E±

k = 0, superfluid
begins to appear in the system. Thus E±

k = 0 determine the
phase boundary between the CDW and superfluid phases,

which is μ = 3V
2 −

√
( 3V

2 )2 − (3t )2. We plot the phase bound-
ary from the spin-wave approximation in Fig. 10(b). It is
qualitatively consistent with the exact phase diagram from the
QMC method except that the range in the chemical potential
is slightly increased. We also determine the phase boundary
of the ρ = 1

2 domain-wall phase on a W = 12 zigzag ribbon,
which greatly shrinks from that of a periodic system.

The Berry curvature associated with each magnon band is
given by

�λ(k) = ∂Ay(k)

∂kx
− ∂Ax(k)

∂ky
, (15)

where Ai = −i〈uλ,k| ∂
∂ki

|uλ,k〉 (i = x, y) is the Berry potential.
λ = ± denotes the two magnon bands [30–32]. The Berry cur-
vature is peaked at the Brillouin zone (BZ) corners, Fig. 11(a),
and is antisymmetric with respect to the inversion center
k = (0, 0). The sum of the Berry curvature of each band in

FIG. 11. (a) The Berry curvature associated with the upper
magnon band, which differs from that of the lower band by a sign.
The first Brillouin zone is marked by black lines. The parameters
are μ = 3V

2 = 6t . (b) The excitation spectrum on a W = 12 ribbon
with a zigzag domain wall in the middle. The red curves represent
states localized near the domain wall. The green curves are twofold
degenerate, and are associated with the zigzag edges. The parameters
are μ = V = 4t .

the BZ (the Chern number) vanishes identically. The Berry
curvatures for the two ρ = 1

2 CDW insulators differ by an
overall sign; thus the Berry curvature changes the sign across
the domain wall. Due to bulk-boundary correspondence, there
should appear in-gap domain-wall states [33,34]. As shown in
Fig. 11(b), there are two such branches associated with the
domain wall. One of them is at the bottom of the magnon
excitation spectrum, and it corresponds to the superfluid above
the ρ = 1

2 CDW insulator, which is localized near the domain
wall.

VII. THE DOMAIN-WALL SUPERFLUID

For the density ρ = 1
2 , the domain wall is thus formed

by a quasi-1D region with negligible occupancy, confined
by robust CDW phases. As the chemical potential is further
increased, bosons are preferentially added to the empty sites
forming the domain wall, since they only interact with two
occupied neighbors in contrast with three neighbors of an
empty CDW site. A single extra boson can hop freely along
the chain, lowering its kinetic energy without changing the in-
teracting energy. Additional added particles behave effectively
as interacting bosons in 1D, which condense to superfluid
transport down the domain wall. The values of the superfluid
density, Fig. 5(b), follow a dome shape, and are maximal at
density ∼ 1

2 + 1
4W when half of such empty sites are occupied.

After the domain wall is full, the superfluid vanishes, and the
system becomes a ρ = 1

2 + 1
2W insulator. Figure 12 shows

the density for W = 2, 4. The presence of two sets of well-
separated local traces is consistent with the ρ = 1

2 insulator
being a domain-wall phase (see discussion of Fig. 7).

While the local density of the sites on the domain wall with
small occupation increases, that of the high-occupancy sites
first decreases even as μ grows. This anomalous behavior is
a signature of the flow of bosons onto the domain wall and
the appearance of a superfluid localized near the domain wall.
It is noteworthy that the domain-wall superfluid coexists with
diagonal (density) order: the zigzag honeycomb nanoribbon
realizes an exotic one-dimensional supersolid [35,36]. The
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FIG. 12. The local densities as a function of the chemical poten-
tial: (a) W = 2 and t/V = 0.3, (b) W = 4 and t/V = 0.25. Due to
the geometric symmetries, only nonequivalent sites are shown. Here
the length of the ribbons is L = 24.

emergence of this superfluid is a manifestation of change in
topological properties when crossing the domain wall.

To verify the localization of the superfluid near the domain
wall, we show the single-particle correlator 〈b†

0br〉 in Fig. 13.
The correlator along the zigzag chain on the domain wall
is slower than a power-law decay with distance, which is
characteristic of a gapless quasi-1D superfluid. In contrast, the
excitation is gapped for the ρ = 1

2 domain-wall insulator, and
the correlator decays exponentially. As one moves away from
the domain wall, the correlator becomes increasingly short-
ranged, and ρs decreases. For wide ribbons, the superfluid

10−3

10−2

10−1

100

b 0
b† r

(a) μ = 4t

μ = 3.6t

100 101

r

10−4

10−3

10−2

10−1

b 0
b† r

(b) μ = 4t

μ = 5.4t

FIG. 13. The single-particle correlator 〈b†
0br〉: (a) W = 2, (b)

W = 4. The circle symbols on the inset geometries mark the refer-
ence site r = 0. The correlators are calculated along the thick zigzag
lines, and only nonequivalent lines are shown. The thick yellow lines
are plotted as guides to algebraic behavior. Up triangles connected
by dotted lines refer to the insulating regime with ρ = 1

2 . Parameters
are the same as those in Fig. 5.

density decays exponentially with the distance away from the
domain wall.

VIII. CONCLUSIONS

We studied hard-core bosons on zigzag edge honeycomb
lattice ribbons using exact simulations. The phase diagram
contains superfluid and insulating phases and, remarkably,
at ρ = 1

2 filling the ground state contains a charge domain
wall rather than occupation of a single sublattice. This “self-
organized domain wall” separates CDW regions with opposite
Berry curvature, and supports superfluid transport in coexis-
tence with diagonal (density) order. Our results demonstrate
that honeycomb ribbons provide a concrete geometry for the
observation of bosonic topological phenomena.

This physics can be explored experimentally. Cold atoms
in optical lattices provide a well-established means to emu-
late the Bose-Hubbard model [37]; large values of U which
achieve the hard-core limit can be attained, and the honey-
comb geometry has been generated [38–40]. The use of a
synthetic dimension may also provide a simple realization of
honeycomb ribbons [41,42]. New tools based on quantum gas
microscopes allow the observation of the density profile at the
level of individual atoms [43–46] and hence direct comparison
with our real-space measurements. The Berry curvature can
also be obtained via interferometric techniques [47,48].
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APPENDIX A: THE DOMAIN-WALL SUPERFLUID
ON A WIDER RIBBON

To characterize the domain-wall superfluid more com-
pletely, and to show its nature on wider ribbons, we perform
QMC simulations on a W = 12 and L = 24 ribbon. Since
there are more approximately degenerate ρ = 1

2 phases on
wider ribbons, a small pinning field is used to select a specific
configuration [49]. The pinning field is a staggered potential
with the value −|�| (|�|) on each occupied (unoccupied) site
of the targeted domain-wall phase. In the following simula-
tions, the strength of the pinning field is set to |�| = 0.1, and
we focus on the phase with the domain wall in the middle.

Figure 14 shows the average density and superfluid den-
sity as a function of chemical potential at V/t = 4. As the
chemical potential increases, bosons are continuously added
to the ρ = 1

2 domain-wall phase until the domain wall is full,
and the ribbon becomes a ρ = 1

2 + 1
2W insulator. Between the

two insulators, the superfluid density is nonzero, implying the
system is a superfluid.
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FIG. 14. The average density and superfluid density as a function
of μ at V/t = 4 on a W = 12 and L = 24 ribbon.

This wide W = 12 ribbon allows for a more detailed exam-
ination of superfluid localization near the domain wall, and the
formation of a one-dimensional superfluid channel. Figure 15
shows the local densities as functions of the chemical poten-
tial. For the ρ = 1

2 insulator, the profile of the local density
indicates it is a domain-wall phase with the domain wall in the
middle of the ribbon. From about μ = 5, additional bosons
are added to the system. The value on the low-occupation
sites of the domain wall increases significantly. In the ρ =
1
2 + 1

2W insulator, the site densities approach ρi ∼ 0.5, which
corresponds to the case in which the domain wall is full. The
local densities are only slightly affected for sites more than
2a (a the lattice constant) away from the domain wall. Thus
the added bosons mainly reside near the domain wall. It is
also noted that the local densities on the highly occupied sites
near the domain wall first decrease. This implies the bosons

4 5 6 7 8 9

i

0.0

0.2

0.4

0.6

0.8

1.0

1

2

3

4

domain wall1
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3
4

FIG. 15. The local densities as functions of chemical potential.
Due to the translation symmetry, the sites of each sublattice on the
lines parallel to the domain wall are equivalent (see the right panel).
In addition, the system is symmetric about the domain wall. So we
only show the values on nonequivalent sites, which are from the
upper (lower) half unit cell. The parameters are the same as those
in Fig. 14.
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FIG. 16. The single-particle correlator 〈b†
0br〉 as a function of

distance from the reference point. Due to the symmetries, only
nonequivalent zigzag lines are shown. For comparison, we also
calculate 〈b†

0br〉 in the ρ = 1
2 CDW phase, and show the results along

two zigzag chains closest to the domain wall. Inset shows 〈b†
0br〉 as

a function of distance r⊥ away from the domain wall at fixed r = 6.
The data are well fitted by an exponential decay. Here the parameters
are the same as those in Fig. 14.

begin to flow between high- and low-occupation sites, which
is consistent with the appearance of superfluid. Since the
decrease is most significant on the domain wall, the gapless
superfluid is mainly around it.

We can also calculate the single-particle correlator for
this wider W = 12 ribbon to get a more detailed picture of
the physics as the distance r⊥ away from the domain wall
increases. As for smaller W , the decay of the correlator
becomes rapid with larger r⊥, suggesting that the superfluid
density decreases (see Fig. 16). For the zigzag chain on the
domain wall, the decay of the correlator is slower than power
law. However the decay becomes exponential from the fourth
zigzag chain, where the superfluid begins to vanish. Moreover
the curves remain almost unchanged for the far zigzag chains,
manifesting the uniform bulk CDW order there. The inset
shows 〈b†

0br〉 as a function of r⊥ (the distance away from the
domain wall) at fixed r = 6. The data are well fitted using an
exponential decay. Thus the superfluid is localized near the
domain wall, and decays exponentially into the bulk.

APPENDIX B: THE DOMAIN WALL WITH TURNS

It is interesting to see whether it is possible to have domain
walls with turns. The domain wall organized by the NN
interactions should be straight and along the ribbon. The open
zigzag edges of the ribbons are created by removing a line of
vertical bonds. Then both sites connected by such a bond can
be occupied. To be at half filling, we have a line of vertical
bonds empty in the bulk, which form the “self-organized”
domain wall. Once the domain wall has turns, nonvertical
bonds crossing should be empty. To maintain the number of
bosons at half filling, there must appear adjacent occupied
sites connected by periodic boundary conditions, which in-
duce interacting energy. As shown in Fig. 17(a), a Z-shaped
domain wall crosses one nonvertical bond, and there appears a
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V

V

V

V

(a)

(b)

Periodic Boundary Condition

FIG. 17. Schematic demonstrations of (a) a domain wall with
two turns, (b) a domain wall along a direction other than the longer
axis of the ribbon. Both configurations are not energetically favored.
The two plots are based on a W = 3 and L = 4 ribbon. The wavy
bonds cross the periodic boundary, each of which connects two
occupied sites generating an interacting energy V .

pair of adjacent bosons generating an interaction V . A domain
wall along a direction other than the ribbon is shown in
Fig. 17(b). It crosses three nonvertical bonds, and there appear
three pairs of adjacent bosons with an interacting energy 3V .
Generally when a domain wall crosses the nonvertical bonds
for n times, there appear n pairs of adjacent bosons, and the
interacting energy increases by nV . So for large interactions,
a domain wall with turns is not energetically favored.

Although the domain walls with turns cannot be generated
by the NN interactions, they can be designed using staggered
potentials. We create a Z-shaped domain wall using staggered
potentials with the strength |�| = 4t on a W = 12 and L = 24

1 2 3 4 5 6 7 8
/t

0.0
0.2
0.4
0.6
0.8
1.0 (a)

=4t
1=2.2 t

2=3.3t

0.0

0.5

1.0

1.5

2.0

s 
 1

02

(b) i= i( 2)- i( 1)

FIG. 18. (a) The average density and superfluid density as a
function of μ on a ribbon with a Z-shaped domain wall generated
using a staggered potential. (b) The distribution of the bosons added
to the ρ = 1

2 insulator. Ribbon width W = 12 and length L = 24.
The strength of the staggered potential is � = 4t .

ribbon, which is periodic along the longer axis. Figure 18(a)
plots the average density and the superfluid density as a
function of μ. The ρ = 1

2 plateau with vanishing superfluid
corresponds to the domain-wall insulator. As the chemical
potential further increases, bosons are added to the ρ = 1

2
insulator. The superfluid density has finite values, and the
system becomes a superfluid. We calculate the distribution of
the added bosons, δρi = ρi(μ2) − ρi(μ2), with μ2, μ1 marked
in Fig. 18(a). As shown in Fig. 18(b), the added bosons
mainly distribute near the Z-shaped domain wall, implying the
superfluid above the ρ = 1

2 transporting down such a domain
wall. With this method, complex-shaped domain walls can be
designed, realizing circuits of superfluids.
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