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Systems of particles in a confining potential exhibit a spatially dependent density which fundamentally alters
the nature of phase transitions that occur. A specific instance of this situation, which is being extensively
explored currently, concerns the properties of ultracold optically trapped atoms. Of interest are how the
superfluid-insulator transition is modified by the inhomogeneity, and, indeed, the extent to which a sharp
transition survives at all. This paper explores a classical analog of these systems, the Blume-Capel model with
a spatially varying single-ion anisotropy and/or temperature gradient. We present results both for the nature of
the critical properties and for the validity of the “local density approximation” which is often used to model the
inhomogeneous case. We compare situations when the underlying uniform transition is first and second orders.
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I. INTRODUCTION

The realization of superfluid and Mott insulator transi-
tions in optically trapped atoms1–3 has led to an examination
of the nature of phase transitions in the presence of a spa-
tially varying potential. For example, it was found that when
a confining potential is added to the Bose-Hubbard Hamil-
tonian, the variation in density across the sample results in a
coexistence of superfluid and Mott insulator regions.4,5 As a
consequence, critical phenomena which occur in the uniform
case, when the entire system collectively makes a transition
from one phase to another, are smeared. The density no
longer exhibits a singularity as a function of chemical poten-
tial, as what occurs in the translationally invariant case.6,7

Measures of “local quantum criticality” can be defined to
help draw out residual signals of the global phase transition.8

These conclusions have been drawn from direct examina-
tion of the inhomogeneous model but have also been inferred
from studies of the translationally invariant model combined
with the local density approximation �LDA�.9 Specifically,
the LDA assumes that the properties of the confined system
at a particular spatial location are identical to those of the
unconfined system with a uniform potential taking the same
value as the local potential at that location. Various checks
have been made, for example, by comparing the LDA results
using quantum Monte Carlo �QMC� of a collection of uni-
form systems, with QMC simulations of a lattice with a real
trap.5,9

This LDA approximation is of course in direct analogy
with that commonly used in density-functional theory,10

where the exact exchange-correlation potential present at a
particular position r, in a system where the electron density
varies spatially, is replaced by the exchange-correlation en-
ergy of the uniform electron gas at the same constant density
as that present at r. It is known that this approximation yields
very good results in a number of contexts, especially when
the electron-electron interactions are of weak to intermediate
strength. On the other hand, when the coupling is stronger,
and phenomena such as magnetism and Mott transitions oc-
cur, the LDA is less accurate.11

In this paper, we examine the nature of phase transitions
in spatially inhomogeneous systems, and the validity of the
LDA, within a simpler classical context. We will not explore
here the effects of inhomogeneities in the quantum Hamilto-
nians �such as the Bose-Hubbard model� believed to be ap-
propriate for optical lattices. Indeed, it is likely that classical
analogs can provide only rough qualitative insights into the
much more complex quantum phase transitions being ex-
plored in the cold atom community. Previous work in the
area of the effect of inhomogeneities on classical phase tran-
sitions includes studies of Ising transitions in systems with a
temperature gradient where the nature of the interface be-
tween ferromagnetic regions adjacent to the “cold side” �T
�Tc� of a sample and paramagnetic regions next to the “hot
side” �T�Tc� has been explored.12–16 Spatial gradients aris-
ing from confinement �“Casimir effects”� have also been ex-
plored in models of 3He-4He mixtures within the context of
vectorized analogs of the Blume-Emery-Griffiths �BEG�
model.17

II. MODEL AND CALCULATIONAL APPROACH

A classical model which can be constructed to have a
spatially varying density similar to that in optically trapped
atom systems is the Blume-Capel model18,19 with a site de-
pendent single-ion anisotropy is

E = − J�
�ij�

SiSj + �
i

�iSi
2. �1�

Here Si is a discrete classical variable which can take on
three values: Si=0, �1. A coupling J is present between
nearest-neighbor spins which we choose to be positive �fer-
romagnetic�. We consider a square lattice of linear size L.
That is, i= �ix , iy� with 1� ix , iy �L. The value Si=0 can be
thought of as corresponding to a vacancy, while Si= �1 is an
Ising spin, a collection of which can order ferromagnetically
if the ratio of J to temperature T is sufficiently large. � is the
single-ion anisotropy parameter and controls the density of
Si=0 spins.
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The Blume-Capel model was originally introduced by
Blume18 and Capel,19 separately, to study first-order mag-
netic transitions. It was later generalized to the BEG
model,20 which incorporates an additional biquadratic inter-
action K��ij�Si

2Sj
2 and odd perturbations21 H�iSi+L��ij�SiSj

2

+Si
2Sj. Since their initial formulation, the Blume-Capel and

BEG models have been extensively used to study the phase
separation of He3-He4 mixtures20 and various other systems
that exhibit tricritical behavior such as multicomponent
fluids22 and semiconductor alloys.23 Recent works have used
the Blume-Capel model to study ferromagnetic thin films
using an alternating single-ion anisotropy24 and the dynamics
of rough surfaces.25 A spatially dependent �i has been stud-
ied in a vector generalization of the Blume-Capel model26,27

to describe wetting in He3-He4 mixtures. Here �i takes on
separate values in the surface and bulk, and as a consequence
the Helium concentration and superfluid order parameter
have a nontrivial spatial dependence as one moves away
from the boundaries.

Our computational method is standard Metropolis Monte
Carlo. Each spin of the lattice is visited and a change from
the current spin value to one of the two other possibilities is
suggested. This change is accepted or rejected with the Me-
tropolis prescription. To ensure equilibration, a large number
of sweeps of all the spins in the lattice is performed prior to
making measurements. Unless otherwise noted, the statistical
errors in our results are smaller than the symbol size. The
lattices studied in the paper are small enough that it is not
necessary to employ more powerful cluster algorithms such
as those developed by Swendsen and Wang.28

For uniform systems, an accurate determination of the
critical point can be obtained from computing the second
moment of the magnetization,29

�M2��T,L� =
1

L4���
i

Si�2	 . �2�

Near the critical temperature Tc the following finite-size scal-
ing expression holds:

�M2��T,L� = L−2�/�f
L1/��Tc − T�� . �3�

Here � ��� are the critical exponents governing how the
magnetization �correlation length� vanishes �diverges� as T
→Tc in the thermodynamic limit. Equation �3� implies that
plots of L2�/��M2� for different lattice sizes L cross at T
=Tc, providing a method to locate the critical temperature.

The physics of the Blume-Capel model with uniform �i
=� is well understood. When �→−�, vacancies �Si=0� are
energetically very unfavorable. The system reduces to the
Ising model and there is, on a square lattice, a second-order
magnetic phase transition at Tc=2.269J. We can also deduce
the critical coupling at zero temperature. The energy of
the fully polarized ferromagnetic state �all Si= +1� is Eferro
= �−2J+��L2. The energy of the empty state �all Si=0� is
Evac=0. The ferromagnetic phase is favored up until ��2J.
Thus the phase diagram in the �T /J ,� /J� plane consists of
a ferromagnetic region at low T /J and low � /J bounded
by the lines T /J=2.269 and � /J=2. As � increases from

�=−� the extra entropy of vacancies reduces Tc until the
Ising limit boundary bends over to contact the T=0 critical
point.

The phase boundary for uniform J, �, has been obtained
by a number of methods, including Monte Carlo
simulations,30–32 finite-size scaling,33,34 renormalization-
group methods,35,36 and series expansions.37 From these
studies it is known34 that there is a tricritical point along the
phase boundary at �T /J ,� /J�= (0.609�4� ,1.965�5�). At low
temperatures in the vicinity of the T=0 critical point
�T /J ,� /J�= �0,2� the magnetization jumps discontinuously
upon leaving the ferromagnetic phase. Beyond the tricritical
point, the transition becomes continuous �second order�. The
phase boundary for this model is shown in Fig. 1 �top�,
where the values for Tc were obtained through the analysis of
Eqs. �2� and �3� using our code and from Refs. 33 and 38.
Figure 1 �bottom� shows a representative finite-size scaling
crossing for � /J=0. Table I provides the locations of Tc for
various values of �.

Having reviewed and reproduced some of the features of
the transitionally invariant Blume-Capel model, we now turn
to the subject of this paper, the inhomogeneous case. We
choose three models of spatial inhomogeneity. In the first
two we introduce a linear variation in either the single-ion
anisotropy or the temperature, keeping the other parameters
fixed,
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FIG. 1. �Color online� �a� Phase diagram of the Blume-Capel
model at uniform �i=�. Second- �first-� order phase transitions are
indicated by the solid �dashed� lines. The dotted line is the Ising
limit. The four diamonds depict values from Ref. 33. The squares
are taken from Ref. 38. The rest of boundary was obtained using
our code and the finite-size scaling analysis of Eq. �3�. The arrows
denote the trajectories used in the simulations of the inhomoge-
neous system and correspond to Figs. 2–5 as indicated. See text. �b�
A representative finite-size scaling analysis is shown. Here �=0.
The critical temperature Tc is determined by the position of the
universal crossing of the scaled second moment of magnetization
for different linear lattice sizes.
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��i� = �0 +
�1 − �0

Lx
ix, T = const,

T�i� = T0 +
T1 − T0

Lx
ix, � = const. �4�

These correspond to vertical �� varying� and horizontal �T
varying� cuts in the phase diagram. In the third case we allow
both temperature and single-ion anisotropy to change to-
gether,

��i� = �0 +
�1 − �0

Lx
ix,

T�i� = m��1 +
�1 − �0

Lx
ix� , �5�

where m determines the slope of T�i�. This more general
inhomogeneity allows us to follow paths in the �T ,�� plane
which are perpendicular to the phase boundary in the inter-
mediate coupling regime where the boundary curves around
from its low T and large negative � limits. Typically we will
be interested in cases where �0, �1, T0, and T1 are chosen
such that the lattice is ferromagnetic on the left side, ix=1,
with very few vacancies and then becomes paramagnetic for
ix=Lx. For simplicity, we have chosen a gradient only in one
spatial direction x, so the isocontours of the single-ion aniso-
tropy are vertical lines. In d=2 ultracold trapped gases, the
isocontours are typically circles around the trap center. How-
ever, we do not expect the results of our study to depend on
the shape of the boundary between phases, only on the exis-
tence of the boundary itself.39

We have imposed periodic boundary conditions �PBCs� in
both the x and y directions. Besides reducing finite-size ef-
fects, the use of PBC avoids having edge sites with a smaller
number of neighbors than in the bulk, a situation which
would make the connection with the LDA less simple. How-
ever, there is one slightly tricky issue with the PBC. The
PBC that links in the y direction by construction connect
sites with the same �i. In the x direction, the PBCs link sites

with vastly different single-ion anisotropies: �0 and �1. To
avoid this problem, the simulations were run on lattices with
linear size 2Lx+1 in the x direction with �i symmetric across
the center of the lattice. In effect, a second copy of the lattice
is connected to the x=1 boundary of the first, and the values
of �i increase linearly back up to �1 at which point the PBC
connection is established. A final point about the geometry is
that when we explore finite-size effects we will fix Ly =50
and increase Lx at constant ��1−�0�. This is done because
the x direction is the one along which the gradient is estab-
lished and so increasing Lx allows us to explore the limit
where the anisotropy gradient becomes weaker and weaker.
Each of the cases will be used in regions where the respec-
tive gradient is approximately perpendicular to the phase
boundary, as shown in Fig. 1 �top�. This ensures that the
critical region will be localized to a small area of the lattice.

We present results for the “linear structure factor,” which
we define as

S�ix� =� 1

Ly
2��

iy

S�ix,iy��2	 =
1

Ly
�
ly

�S�ix,1�S�ix,1+ly�� . �6�

S�ix� sums up the spin-spin correlations for all separations
ly =1,2 , . . . ,L with a given ix. The pairs of sites in S�ix�
therefore all have the same value of �i. This is a convenient
�indeed essential� choice in order to make meaningful com-
parisons with the LDA which employs lattices of constant �.
In this way, S�ix� is the natural generalization of the mean-
square magnetization 
Eq. �2�� used in the translationally in-
variant case.

We will also compare the energy for an inhomogeneous
lattice with that obtained by the LDA. Similar considerations
apply here as with the linear structure factor; we would like
to compare observables for sets of sites with the same value
of �i. However, the energy involves links �in the x direction�
which connect sites with different �i. For this reason we will
present results for the energy associated with bonds only in
the y direction,

Ey�ix� = −
J

Ly
�
iy

S�ix,iy�S�ix,iy+1� +
1

Ly
�
iy

��ix,iy�S�ix,iy�
2 . �7�

III. RESULTS

Figure 2�a� shows, for fixed T /J=1.25, the linear struc-
ture factor S as a function of � /J. More precisely, S�ix� is
computed at different values of ix for a system with a gradi-
ent 	�= ��1−�0� /Lx with �0 /J=−8.00 and �1 /J=4.00. The
value of S�ix� is plotted against the corresponding value of
��ix,iy� on the horizontal axis. Since the relation between
��ix,iy� and ix is linear 
Eq. �4��, the horizontal axis can
equivalently be viewed as labeling the spatial position as one
sweeps across the inhomogeneous lattice. At the same time,
the LDA values are obtained by simulating uniform systems
at a range of � values corresponding to the vertical trajectory
marked “Fig. 2” in the phase diagram of the uniform system

Fig. 1 �top��. This trajectory crosses the ferromagnetic to
paramagnetic phase boundary at �=1.305�5� in a second-
order transition. We see that the LDA predicts the behavior

TABLE I. Table of the critical temperatures for various values
of � /J that were found using our code and finite-size scaling tech-
nique in comparison with those from Refs. 33 and 34. The value at
� /J=−8, where vacancies are strongly suppressed, is close to the
Tc /J=2.269 of the two-dimensional Ising model, as expected.

� /J kBTc /J a kBTc /J b kBTc /J c

−8 2.250�4�
−4 2.153�3�
−0.5 1.794�3� 1.794�7�
0 1.686�2� 1.695 1.681�5�
1 1.397�1� 1.398

1.87 0.802�2� 0.800

aThis work.
bReference 33.
cReference 34.
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of S in a qualitatively correct fashion over the entire range of
� and is quantitatively accurate except in the vicinity of the
critical region where the lattice inhomogeneity blurs the tran-
sition. This is the same basic result as found for optically
trapped atom systems.4,5 However, we are able in this simple
classical model to compare more precisely the LDA with the
inhomogeneous case. In particular, Fig. 2 shows the im-
proved accuracy of the LDA as the gradient of the inhomo-
geneity becomes smaller, something which has not yet been
done in the quantum case.

We expect the LDA and the nonuniform system to agree
well when the gradient 	� is small enough, so that � does
not change much over a correlation length; in other words, it
is when 
	� is small compared to the width of the critical
region for the LDA. It is well known12 that 
��	��−�/�1+��

and consequently the condition for good agreement is that
�	��−�/�1+��	�= �	��1/�1+�� be very small. The inset of Fig.
2�a� shows �, the full width at half maximum �FWHM� of
the critical regions calculated from −��S� /��, versus
�	��1/�1+�� �using the known homogeneous Ising/Blume-
Capel value �=1�. The inset exhibits clear linear behavior,
thus confirming the scaling argument. In Fig. 2�b� we show
the analog of Fig. 1�b� where L is replaced by 


��	��−�/�1+��. All curves intersect at � /J=1.326 thus deter-
mining the critical value of � for T=1.25J.

Figure 3 shows a similar set of data but for T /J=0.56
which corresponds to the trajectory labeled “Fig. 3” in Fig. 1
�top� and crosses the ferromagnetic-paramagnetic phase
boundary in a first-order transition at � /J=1.986�5�. Again,
the LDA is qualitatively correct. To examine the agreement
between LDA and the nonuniform system, we apply the
same argument as before: 
	� must be very small. In this
case, however, we have a first-order transition and 
 remains
small as the transition is approached. It does not scale with
	�. Consequently, 
	��	� decreases linearly with the gra-
dient compared with �	��1/2 in the previous case. It is no-
table that curves of the linear structure factor for different
values of the gradient cross at roughly a single point.

Our final two results for the linear structure factor are
given in Figs. 4 and 5 and show cuts across the phase bound-
ary in which both temperature and the single-ion anisotropy
are simultaneously evolving. The trajectories are labeled
“Fig. 4” and “Fig. 5” in Fig. 1. The physics of our model
does not depend independently on T, �i, and J but only on
the ratios �i /T and J /T. In Fig. 2 only the first of these ratios
is changing, while in Figs. 4 and 5 both ratios are evolving as
we traverse the lattice. Since both of these cuts traverse the
phase boundary in the second-order region, the results for the
LDA resemble those of Fig. 2. This emphasizes that the
question of the accuracy of the LDA does not appear cru-
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FIG. 2. �Color online� �a� The dashed lines depict the linear
structure factor S versus ��i� at T /J=1.25 for several different
gradients in the single-ion potential. For all full lines �0 /J=−8.00
and �1 /J=4.00, but as Lx increases the gradient 	�= ��1−�0� /Lx

softens. The LDA result is the solid curve and is quantitatively
correct except in the transition region. As expected, the accuracy of
the LDA improves as the gradient of the inhomogeneity decreases
�see text�. Inset: the width of the critical region � /J exhibits linear
dependence on �	��1/�1+�� �see text�. �b� Same as �a� except that the
vertical axis is scaled by 	�−�/�1+��, where � here is the �homoge-
neous Ising/Blume-Capel� magnetization critical exponent �=1 /8,
and �=1 is the correlation length critical exponent. All curves meet
at � /J=1.326 giving the critical value in the thermodynamic limit.
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cially to depend on which parameters in the energy �or the
temperature� are varying.

We now turn to a comparison of the energy of the inho-
mogeneous system with that of the LDA. Figure 6 shows the
same cut at constant T /J=1.25 as in Fig. 2. Remarkably, the
energy is given very accurately by the LDA throughout the
inhomogeneous lattice, even through the transition region
where the linear structure factor differed markedly. This re-
sult may appear surprising in that the first piece of Ey in Eq.
�5� is the near neighbor spin correlation in the y direction,
which is also one of the ingredients of the linear structure
factor S. That the LDA value for Ey is so accurate suggests
that the failure of the LDA in the transition region is domi-

nated by its misestimate of the long-range correlations, while
the short-range ones are correctly identified. Indeed, this re-
sult might be expected since it is the long-range pieces of S
whose behavior is crucial to the occurrence of a second-order
transition.

Finally, Fig. 7 shows the same cut at constant T /J=0.56
as in Fig. 3. Here, when the underlying homogeneous tran-
sition is first order, we see that even the energy is badly
estimated by the LDA. The local energy has a universal
crossing, corresponding to the transition value of � /J similar
to that of the linear structure factor S.

IV. CONCLUSIONS

The local density approximation is a commonly employed
method to understand the phase transitions of ultracold opti-
cally trapped atoms which experience a spatially varying
confining potential. In this paper we have explored the va-
lidity of the LDA in the simpler classical Blume-Capel
model to which we have applied a gradient in the tempera-
ture and/or the single-ion anisotropy.

Our basic conclusion is that the LDA performs well quan-
titatively in regions that are not close to where the state of
the system is making a transition between the allowed
phases, in our case ferromagnetic and paramagnetic. That is,
the values of the local structure factor and energy predicted
by the LDA match those of a direct simulation of the inho-
mogeneous system except in the transition zone. This is simi-
lar to the conclusions drawn in the optical lattice case.4 How-
ever, because our model is classical as opposed to quantum
mechanical, we can explore the validity of the LDA in
greater detail, including the systematic improvement in the
accuracy of the LDA with inhomogeneous systems which
have smaller gradients.

An especially interesting feature of the Blume-Capel
model is the presence of a tricritical point on the phase
boundary. This allows us to compare the validity of the LDA
for first- and second-order transitions in the same model. Our
conclusion is that a quantity such as the linear structure fac-
tor which samples long-range correlations is more badly es-
timated by the LDA in the transition region of a first-order
phase change but that the width of the region over which the
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FIG. 5. �Color online� �a� The linear structure factor S versus
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ents. Inset: the width of the critical front versus the scaling variable
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FIG. 6. �Color online� Comparison of the LDA prediction for
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have fixed T /J=1.25 and changed �i across the lattice. This is the
trajectory labeled Fig. 2 in Fig. 1. The LDA energy is remarkably
accurate even in the transition region.
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have fixed T /J=0.56 and changed �i across the lattice. This is the
trajectory labeled Fig. 3 in Fig. 1. Near the transition the LDA
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LDA is inaccurate is more narrow. Overall, the accuracy of
the LDA in the two cases is not so dramatically different. On
the other hand, the predictive accuracy of the LDA for the
energy, which samples just short-range correlations, is very
different for the first- and second-order situations. In the
second-order case, the LDA energy is quantitatively correct
even through the transition region, while in the first-order
case the energy is rather badly misestimated. In optical lat-
tice experiments, it is known �for example, for spinor
condensates40,41� that both first- and second-order transitions
can occur, depending on the sign of the interaction and the
Mott lobe which is being entered. While we do not expect
our results for the Blume-Capel model to have a generic

character that would allow them to be taken over to the bo-
son Hubbard model, studies of such classical models might
nevertheless provide qualitative insight into how the order of
the transition affects the accuracy of methods such as the
LDA.
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