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We use determinant quantum Monte Carlo simulations and exact diagonalization to explore insulating
behavior in the Hubbard model with a bimodal distribution of randomly positioned local site energies. From
the temperature dependence of the compressibility and conductivity, we show that gapped, incompressible
Mott insulating phases exist away from half-filling when the variance of the local site energies is sufficiently
large. The compressible regions around this Mott phase are metallic only if the density of sites with the
corresponding energy exceeds the percolation threshold, but are Anderson insulators otherwise.
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INTRODUCTION

The translationally invariant Hubbard model has long
been studied as a model of itinerant magnetism and �Mott�
insulating behavior. More recently, the possibility of uncon-
ventional �d-wave� superconductivity and spontaneously oc-
curring charge inhomogeneities �stripes and checkerboards�
has been explored, especially in the context of high-
temperature superconductivity.1 Including disorder in the
Hubbard Hamiltonian—for example, in the form of a distri-
bution of bond or site energies—imposes charge inhomoge-
neity externally and allows for the exploration of a number
of other interesting phenomena such as the formation of
Anderson insulating phases, possible transitions to metallic
behavior driven by interactions,2,3 and the influence of disor-
der on magnetic correlations.4

A particularly interesting suggestion made recently5–7

concerns the possibility of alloy Mott insulating phases away
from half-filling in a Hubbard model corresponding to a bi-
nary alloy—that is, for which the probability distribution of
site energies is bimodal, P��i�=x���i+� /2�+ �1−x����i

−� /2�. The idea is that if � is sufficiently large compared to
the bandwidth W, the noninteracting density of states will be
split and an insulating gap will separate two density-of-states
peaks of weight x and 1−x. When an on-site repulsion U is
turned on, these two peaks may in turn be Hubbard split by
U. Thus, in the limit ��U�W one can have alloy Mott
insulating phases at incommensurate densities �=x and �
=1+x which correspond to half-filling the two alloy sub-
bands. Spectral functions for this model have been recently
reported.8 A further interesting aspect of these alloy Mott
insulators is that they likely occur in the absence of antifer-
romagnetic ordering and its associated symmetry breaking, a
phenomenon which complicates the metal-insulator transi-
tion in the translationally invariant Hubbard model at �=1.
Possible experimental realizations of the binary-alloy Hub-
bard Hamiltonian in two dimensions include Co-Fe
monolayers.9 The nature of magnetism in such systems has
been explored by first-principles calculations.10

The previous studies of Mott transitions off half-filling
within tight-binding models were with dynamical mean-field
theory �DMFT�. In this paper we will reexamine the physics
of the binary-alloy Hubbard model using determinant quan-

tum Monte Carlo �DQMC� simulations and exact diagonal-
ization. While these methods are restricted to finite-size lat-
tices, they allow us to examine some of the aspects of the
effects of randomness like Anderson localization which are
not accessible with DMFT.

The specific Hamiltonian we study is

Ĥ = − t �
�lj��

�cj�
† cl� + cl�

† cj�� + U�
l

nl↑nl↓

+ �
l

��l − ���nl↑ + nl↓� .

Here cl�
† �cl�� is the usual fermion creation �destruction� op-

erator for spin � on site l, nl�=cl�
† cl� is the number operator,

and �lj� refers to near-neighbor pairs on a two-dimensional
square lattice. t, �, and U are the electron hopping, chemical
potential, and on-site interaction strength, respectively, and �l
is a local site energy given by the bimodal distribution de-
scribed previously. The bandwidth is W=8t when �=U=0.

This paper is organized as follows: We will first describe
some of the details of our computational methodology. We
then show results for the density as a function of chemical
potential which illustrate the appearance of alloy Mott pla-
teaus off half-filling and also demonstrate the consistency of
DQMC simulations and direct diagonalization. Results for
the participation ratio in the noninteracting limit suggest that
the alloy Mott plateaus at �=x and �=1+x could in fact be
rather different, a conclusion which we then confirm by cal-
culating the temperature dependence of the conductivity. Fi-
nally, we examine the critical hopping tc required to destroy
the alloy Mott plateau. We conclude by constructing the cor-
responding phase diagram.

COMPUTATIONAL METHODS

We study the alloy Hubbard Hamiltonian with exact di-
agonalization and DQMC simulations.11 The former ap-
proach is a standard application of the Lanczos algorithm to
determine exactly the ground-state wave function. We use
N=8 site lattices. This method produces exact values for the
correlation functions of interacting quantum systems at T
=0. A select set of basis vectors is constructed by the re-
peated application of the Hamiltonian and orthogonalization
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to preceding basis vectors in order to approximate the Hilbert
space of the system. The power of the approach is that the
ground-state wave function can be accurately captured as a
linear combination of a relatively small number of vectors,
typically O�102�, even when the system’s Hilbert space di-
mension is O�106� or larger. Convergence to the ground state
is verified by ensuring measurements are stable even as ad-
ditional basis vectors are added.15

In this case, N is sufficiently small that we can sum over
all disorder realizations. In order to reduce finite-size effects,
we employ the boundary condition averaging method.12 In
the noninteracting limit, averaging over different hopping
phases at the boundary for a finite lattice reproduces the ther-
modynamic limit spectrum exactly. For U nonzero, the
finite-size effects, while not eliminated, are reduced.13 Spe-
cifically, we implement a 2	4 cluster with two boundary
phases �
x and 
y�, one boundary phase for each of the two
independent, orthogonal boundaries. An average over the
phase-space area encompassed by 
x= �0,2�� and 
y
= �0,2�� was done by selecting 10–100 �
x ,
y� pairs.

In the DQMC approach, the partition function Z is ex-
pressed as a path integral by discretizing the inverse tem-
perature �. The on-site interaction is then replaced by a sum
over a discrete Hubbard-Stratonovich field.14 The resulting
quadratic form in the fermion operators can be integrated out
analytically, leaving an expression for Z in terms of a sum
over all values of the Hubbard-Stratonovich field with a sum-
mand �Boltzmann weight� which is the product of the deter-
minants of two matrices �one for spin up and one for spin
down�. The sum is sampled stochastically using the Me-
tropolis algorithm. We present results for 6	6 lattices. We
average over 5–10 realizations of the local site energies. For
this lattice size, fluctuations of the results from realization to
realization are roughly the same size as statistical error bars
from the Monte Carlo sampling.

Equal-time operators such as the density and energy are
measured by accumulating appropriate elements of the in-
verse of matrices M� whose determinants give the Boltz-
mann weight. Specifically, after the fermions are integrated
out, �cj�cl�

† �=Gjl� where G�=M�
−1. Two particle correlation

functions are obtained from products of elements of G. For
example, the correlation between spin on sites n and n+ l is
given by cspin�l�= �Sn+l

− Sn
+�= �cn+l,↓

† cn+l,↑cn,↑
† cn,↓�

= �Gn+l,n,↑Gn,n+l,↓�. These expectation values capture the
physics exactly on the finite lattice being simulated �apart
from the statistical errors arising from the sampling and
“Trotter errors” arising from the discretization of ��. We
have chosen the discretization mesh so that these Trotter er-
rors are smaller than the statistical ones.16,17

For the conductivity �dc, we employ an approximate
procedure19 which allows �dc to be computed from the wave-
vector q- and imaginary-time -dependent current-current
correlation function �xx�q ,� without the necessity of per-
forming an analytic continuation,18

�dc =
�2

�
�xx�q = 0, = �/2� .

Here �=1/T and �xx�q ,�= �jx�q ,�jx�−q ,0��, and jx�q ,�,
the q, -dependent current in the x direction, is the Fourier
transform of

jx��,� = i�
�

t�+x̂,�eH�c�+x̂,�
† c�� − c��

† c�+x̂,��e−H.

This approach has been extensively tested for the
superconducting-insulator transition in the attractive Hub-
bard model,19 as well as for metal-insulator transitions in the
repulsive model.2,20

In order to get further insight into the physics of Anderson
localization, we also diagonalize the noninteracting system
on lattices as large as N=64	64. We characterize the prop-
erties of the noninteracting eigenfunctions �
n� through the
scaling of the participation ratio,

Pn = 	�
i=1

N

��i�
n��4
−1

.

For an eigenfunction perfectly localized at a site i0, �i �
n�
=�i,i0

, we have Pn=1, while for a perfectly delocalized
eigenfunction �i �
n�=1/�N, we have Pn=N. In general, Pn

is a measure of the extent of the eigenfunction—that is, the
number of sites for which �i �
n� is non-negligible.

RESULTS

We first demonstrate the existence of the alloy Mott and
band insulating phases by looking at the density as a function
of chemical potential. Figure 1 shows the case U=2, �=4,
and x=0.25. We see an alloy Mott insulating plateau extend-
ing from �= �−�−U� /2=−3 to �= �−�+U� /2=−1, in which
the total density is �=x=0.25. At �= �−�+U� /2=−1, the
lower alloy subband becomes doubly occupied and �=2x
=0.5. A second plateau then reflects the “band” gap which
must be surpassed to begin occupying the upper alloy sub-

FIG. 1. �Color online� Density as a function of chemical poten-
tial for W=0.8, U=2, �=4, and x=0.25. Solid line: ground-state
exact diagonalization of an eight-site cluster. Dashed line: DQMC
on 6	6 clusters with temperature T=1/16. In the former case,
results are averaged over all configurations with two sites with �A

=−2 and six sites with �B= +2, and over different choices of the
boundary phases. In the latter case, results are given for a single
realization. The two methods give very similar results, with the
DQMC somewhat rounded by finite temperature.
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band, which is, like the lower subband, also Hubbard split.
In Fig. 1, the alloy Mott plateaus revealed in ���� at �

=x=0.25 and �=1+x=1.25 appear rather similar. We now
argue that the nature of the states is, instead, quite different.
For a square lattice in d=2 the percolation threshold is xc
=0.5928.21 We therefore might expect that the noninteracting
states with site energy �l=−� /2=−2, out of which the �=x
plateau is built, are localized, since the constitute only a frac-
tion x=0.25�xc of the sites in the lattice. Meanwhile, the
noninteracting states with site energy �l=� /2= +2, out of
which the �=1+x plateau is built, are delocalized. This is
illustrated in Fig. 2 where we show the participation ratio of
the noninteracting system. States with energies correspond-
ing to the upper alloy subband, which has a density exceed-
ing the percolation threshold, extend over a macroscopic por-
tion of the lattice. States in the lower alloy subband are
localized.

We now use the temperature dependence of the conduc-
tivity to argue that the distinction between the two alloy Mott
insulating plateaus is preserved when the interaction U is
turned on. Figure 3 gives �dc as a function of � for three
different temperatures T=1/8, T=1/12, and T=1/16. The
conductivity is zero in both the alloy Mott- and band-
insulator phases. In the regions bracketing the upper alloy
band, �dc is relatively large and increases as T is lowered.
That is, these regions are metallic. While we cannot rule out
the possibility that the phase at densities bracketing the lower
alloy subband is a dirty metal as opposed to an insulator, �dc
is a factor of 10 smaller and increases much less noticeably
as T is lowered. Because of the sign problem, we are not able
to obtain data for lower T. However, in light of our partici-
pation ratio results, we believe that, as in the case of the
Hubbard model with random site or bond energies,2,20 the
conductivity will turn over and decrease as T is lowered
further, reflecting the insulating character of the states.

The addition of impurities decreases the conductivity in
the metallic regions by a factor of 2. In Fig. 4 we have doped
our system away from the Mott plateaus and kept the inter-
action strength fixed at U=2. For the nondisordered case
��=0�, we have doped our system at �=1.4, well into the
metallic region between Mott and doubly occupied insulating
phases. With disorder ��=4�, scattering is inevitable and the
metallic region is limited to densities 0.5���1.25 which is
the expected cause of the decrease in conductivity.

We have presented DQMC results at U=2, �=4 which
correspond to on-site interaction and alloy-site energy sepa-
ration about 2 and 4 times the bandwidth, respectively. The
reason for these strong coupling values is that for larger t it is
not possible to reach low enough temperatures to see clear
plateaus in the density versus chemical potential plots. How-
ever, we argued that diagonalization and DQMC gave con-
sistent results �see Fig. 1�, and we will now use the former

FIG. 2. �Color online� Upper panel: participation ratio P as a
function of the eigenenergy E for the alloy Hubbard Hamiltonian
with U=0, �=4, and t=1. Results are shown for lattice sizes vary-
ing from N=16	16 to N=64	64. P�E� is small for the lower
alloy band which has only x=0.25�xc of the sites, but P�E� in the
upper alloy band has a significant fraction of N. The inset shows
that P�E� /N scales to a nonzero value as N→� for the upper band
and zero for the lower band. Lower panel: the same for x=0.45.
Here both alloy subbands have a density below the percolation
threshold and both participation ratios scale to zero.

FIG. 3. �Color online� The conductivity �dc is shown as a func-
tion of chemical potential for several temperatures. Parameter val-
ues are as in Fig. 1. The upper alloy band, whose sites have a
density larger than the percolation threshold, has a large �dc, which
also increases as T is reduced �inset�. The insulating phases have
�dc�0. The conductivity near the lower alloy subband is much
smaller and much more weakly temperature dependent than the
upper.
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approach to generate the ground-state phase diagram at
weaker couplings. As before, we average over different
boundary condition phases to reduce finite size effects.

Figure 5 shows the length of the three plateaus as the
hopping t is increased for U=2, �=4, and x=0.25. The two
alloy Mott plateaus appear to vanish at roughly the same
hopping strength t�1. The alloy band insulator is less robust
and is destroyed when quantum fluctuations are only about
half as strong. The reason is that when hopping off of one of
the lower-energy alloy sites for an alloy Mott insulator one
has to pay a cost of �=4. However, when one hops off of
one of these sites for the alloy band insulator one only has to
pay the cost of �−U=2. This greater ease of such charge
fluctuations for the alloy band insulator makes its destruction
by increasing t occur earlier.

Similar data for other choices of U and � allow us to
generate the ground-state phase diagram. In Fig. 6 we show
four possible phases for the region of which U��. As in
Fig. 5, large t which corresponds to small U / t and � / t will
suppress the insulating plateaus which results in a metallic
phase. Taking the limiting case for small U / t and large � / t,
we find one alloy band insulating plateau at �=2x. Inversely,
for small � / t and large U / t, we find two alloy Mott phases at
�=x and �=1+x. For large U / t and � / t, both alloy band-
and Mott-insulator phases coexist. The case for U�� will
correspond to two alloy band insulators at x and 1+x and an
alloy Mott insulator at half-filling for sufficiently large val-
ues of U / t and � / t.

CONCLUSIONS

In this paper we have presented DQMC and diagonaliza-
tion results for the phase diagram of the Hubbard model with
binary-alloy disorder. In agreement with previous
treatments,5,6 we find alloy Mott insulating behavior away
from half-filling when the separation of the two site energies
exceeds U. We extended the earlier results to characterize the
nature of the compressible states above and below the alloy
Mott insulating plateaus by showing that their conductivity
markedly differs. Together with the results for the participa-
tion ratio, our data suggest that for x�xc the lowest alloy
Mott plateau separates two compressible Anderson insulating
regions, while the upper alloy Mott plateau separates two
compressible metallic phases.

Our results have focused primarily on x=0.25, but differ-
ent behavior would emerge for other values of x.22 For ex-
ample, choosing a value of x=0.70�xc would not only pro-
duce alloy Mott plateaus at �=0.70 and 1.70, but also create
a lower alloy Mott gap that is surrounded by metallic phases.
Consequently, the upper alloy Mott gap �1−x=0.30�xc�
would be in between two Anderson insulating states.

FIG. 4. �Color online� The conductivity �dc is shown as a func-
tion of temperature for metallic regions of different disorder with
interaction energy U=2. The conductivity for the nondisordered
cases is twice that of the disordered case as the insulating phases as
incommensurate filling decrease the size of the metallic regions.

FIG. 5. �Color online� The length of the insulating plateaus, ��,
is shown as a function of hopping t for U=2, �=4, and x=0.25
using exact diagonalization of N=8 site clusters using boundary
condition averaging. The alloy Mott-insulator plateaus at �=x and
�=1+x are more robust than the alloy band-insulator plateau at �
=2x.

FIG. 6. Phase diagram of U / t vs � / t. I: alloy band insulator at
�=0.50 and no alloy Mott insulator. II: metallic phase. III: alloy
band insulator at �=0.50 and alloy Mott insulators at �=0.25 and
1.25. IV: alloy Mott insulator at �=0.25 and 1.25 and no alloy band
Insulator. V: U��, alloy band insulator at �=0.25 and 1.25 and
alloy Mott insulator at �=1.00.
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This paper has explored the interplay of on-site Hubbard
correlations and randomness in the form of a bimodal distri-
bution of site energies. Related QMC studies of the effect of
site and bond disorder on a strongly correlated metal2,20 find
that the slope d� /dT can change sign from positive to nega-
tive as correlations are increased from a highly disordered
noninteracting starting point, suggesting a crossover to me-
tallic behavior. If the disorder is then increased, the sign of
the slope of the conductivity can change back to positive,
indicating sufficiently large disorder causing insulating be-
havior in a strongly correlated metal. However, the details of
whether interactions and randomness cooperate or compete
can depend on symmetries of Hamiltonian.20

A closer examination of magnetic correlations in this
model is of interest and will be the subject of future work.

While we expect that disorder will suppress magnetism, as
will the fact that the alloy Mott phases are away from com-
mensurate fillings, it is also the case that disorder can in-
crease the exchange constant J and hence the Neél tempera-
ture in certain circumstances.4,5,23 Examining real-space
magnetic correlations using DQMC would be a useful
complement to previous DMFT studies.
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