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Thermodynamic and spectral properties of compressed Ce calculated using a combined
local-density approximation and dynamical mean-field theory
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We have calculated thermodynamic and spectral properties of Ce metal over a wide range of volume and
temperature, including the effects of 4f electron correlations, by the merger of the local-density approximation
and dynamical mean-field theory~DMFT!. The DMFT equations are solved using the quantum Monte Carlo
technique supplemented by the more approximate Hubbard-I and Hartree-Fock methods. At a large volume we
find Hubbard split spectra, the associated local moment, and an entropy consistent with degeneracy in the
moment direction. On compression through the volume range of the observedg-a transition, an Abrikosov-
Suhl resonance begins to grow rapidly in the 4f spectra at the Fermi level, a corresponding peak develops in
the specific heat, and the entropy drops rapidly in the presence of a persistent, although somewhat reduced,
local moment. Our parameter-free spectra agree well with experiment at thea- and g-Ce volumes, and a
region of negative curvature in the correlation energy leads to a shallowness in the low-temperature total
energy over this volume range which is consistent with theg-a transition. As measured by the double
occupancy, we find a noticeable decrease in correlation on compression across the transition; however, even at
the smallest volumes considered, Ce remains strongly correlated with residual Hubbard bands to either side of
a dominant Fermi-level structure. These characteristics are discussed in light of current theories for the volume
collapse transition in Ce.

DOI: 10.1103/PhysRevB.67.075108 PACS number~s!: 71.27.1a, 71.20.Eh, 75.20.Hr
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I. INTRODUCTION

A number of rare-earth metals undergo pressure indu
first-order phase transitions with unusually large volu
changes of 9–15%~for reviews see Refs. 1–3!. Of these
transitions the isostructuralg-a transition in Ce has receive
the most attention.4 It was discovered first, has the large
volume change~15% at room temperature!, and may also be
accessed entirely at ambient pressure~or in vacuum! by
changing the temperature, thus, for example, allowing th
ough spectroscopic investigation of both phases. The res
of such photoemission and bremsstrahlung studies5 show a
dramatic transfer of spectral weight to the Fermi energy
the development of a large peak with its center of grav
slightly above the Fermi energy when going from theg- to
the a-Ce phase. Similarly, the optical conductivity is high
in thea phase where the frequency dependent scattering
is characteristic for a Fermi-liquid behavior with an effecti
mass of about 20me .6 Also the magnetic susceptibility an
its temperature dependence change from a Curie-Weiss
behavior in theg phase to a Pauli paramagnetic behavior
thea phase.4 Despite these dramatic differences, the num
of 4f electrons does not change significantly and is close
one across theg-a phase transition line,7 which ends in a
critical point at T5600650 K,4 above which theg- and
a-Ce phases become indistinguishable.

Notwithstanding the considerable attention, there rema
continued disagreement about the nature of the transition
the a phase. In general, it is believed that the transit
is driven by changes in the 4f electron correlations, thoug
some alternative theories have been proposed. Two re
0163-1829/2003/67~7!/075108~18!/$20.00 67 0751
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examples of the latter assume some kind of symme
breaking in thea phase: Eliashberg and Capellmann8 argue
that a-Ce has a symmetry broken distorted structure mai
based on the observation that thea phase shows large
changes of the compressibility;9 Nikolaev and Michel10 pro-
pose ~hidden! quadrupolar ordering. In these theories o
must have a tricritical point atT;600 K with a second-orde
phase transition line extending to higher temperature, wh
disagrees with the common interpretation of the expe
ment.4

The promotional model11 introduced in 1947 was the firs
theory of electronic origin to describe theg-a transition,
assuming a change in electronic configuration fro
4 f 1(spd)3 to 4f 0(spd)4. Theories of this general type12 fol-
lowed until Johansson’s 1974 analysis of cohesive ener
provided strong evidence that the promotional model co
not be right,13 as was also corrobborated by experimen
evidence that the number of 4f electrons did not change
significantly across the transition.7 These facts led Johansso
to propose a Mott transition~MT! scenario.13 Similar to the
MT of the Hubbard model,14 the 4f electrons are considere
to be localized in theg phase and to be itinerant in thea
phase, with this reduction in the degree of 4f -electron cor-
relation being caused by the decrease in the ratio of Coulo
interaction to kinetic energy under pressure. The phase t
sition is then understood to arise from a 4f contribution to
the cohesive energy in thea phase where the itinerant 4f
electrons participate in the crystal binding, in contrast to
g phase where the localized 4f electrons do not. In a subse
quent analysis based on these ideas, Johanssonet al.15 em-
ployed a standard local-density approximation~LDA ! calcu-
©2003 The American Physical Society08-1
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lation for thespd f electrons in thea phase, while treating
the 4f electrons as localized 4f 1 moments decoupled from
LDA spd bands in theg phase. Evidence for the MT sce
nario to be correct is taken from the considerable succes
LDA calculations and their generalized gradient improv
ments for the structural and volume dependence of the t
energy ofa-Ce-like phases.16,17 Additional support appear
to come from orbitally polarized18–20 and self-interaction
corrected20–22LDA modifications which obtain transitions in
Ce and Pr at about the right pressures. Also LDA1U calcu-
lations have been reported for one or both Ce phases.23,24

In the years following Johansson’s MT proposal, pho
emission experiments~see discussion and references in R
5! confirmed his estimate of the 4f binding energy; however
these exhibited other features in the 4f spectra which ap-
peared inconsistent with his MT picture. This led in 1982
the Kondo volume collapse~KVC! scenario of Allen and
Martin25 and Lavagnaet al.26 which is based on the Ander
son impurity model, and to later improvements by Allen a
Liu.27 Both MT and KVC pictures agree that, at the expe
mental temperatures, the larger volumeg phase is strongly
correlated~localized!, has Hubbard split 4f spectra, and ex-
hibits a Hund’s rule 4f 1 moment as reflected in the observ
Curie-Weiss magnetic susceptibility. But, while the MT sc
nario then envisages a rather abrupt transition on comp
sion to a weakly correlated~itinerant! a phase, in which the
Hubbard split bands have coalesced together near the F
level and the 4f 1 moments are lost, the KVC picture assum
continued strong correlation in thea phase with Kondo
screening by the valence electrons of the persistent 4f mo-
ments. The signature of this Kondo screening is a peak in
4 f spectra at the Fermi level, the Abrikosov-Suhl or Kon
resonance, which lies between the remaining Hubbard-s
spectral weight characteristic of the local moments.5 The
KVC model predicts in agreement with electron spectr
copy thatboth Ce phases show all three peaks in thef
spectra, the Abrikosov-Suhl resonance and the two Hubb
side bands. The difference is that the former resonance
small weight in theg phase and dramatically larger weight
thea phase, coming at the expense of reduced but still ex
Hubbard side bands in the latter case. It is this rapid volu
dependence of the Abrikosov-Suhl resonance and equ
lently of the Kondo binding energy that is the driving mech
nism for the phase transition in the KVC model, which
then intimately connected to the energy scale of the Ko
screening.25–27 A genuine prediction of the KVC mode
based on the nature of the Kondo entropy is the existenc
an unusual second critical point at low~negative! pressure,
which was subsequently seen experimentally by using al
ing to push it to observable positive pressures.28 Since the
original KVC model incorporates only two bands, there ha
been subsequent efforts to introduce more orbital real
from LDA.27,29,30The work of Allen and Liu, for example, is
quite realistic within the confines of the impurity model, i
cluding the full 4f degeneracy, spin orbit and intra-atom
exchange, as well as LDA-based hybridization matrix e
ments renormalized to spectroscopic data.27

Many of the Kondo-like features just discussed in t
context of the impurity Anderson model have been m
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recently found also in correlated solutions of the Hubba
model itself, which in infinite dimensions maps onto a se
consistent solution of an Anderson model.31 Therefore, if the
MT and KVC scenarios are based oncorrelatedsolutions32,33

of the Hubbard and impurity~or periodic! Anderson models
as respective paradigms, then these scenarios are not s
ferent, as has been recently argued.34 Specifically, the behav-
ior of the local moment at the MT of the Hubbard model
not so abrupt, nor is the appearance of a three peak struc
in the density of states unique to the impurity or period
Anderson models. Whether for the Hubbard model or r
materials, it is really the use of static mean-field approxim
tions~including LDA and its modifications! which introduces
the abrupt moment loss and single-peaked spectra in the
erant phase of the MT transition as envisioned
Johansson13 and the LDA community.18–24

A new approach to describe Ce including both orbital
alism and electronic correlation effects is now available w
the recent merger35–37 of LDA and dynamical mean-field
theory ~DMFT!.38,39 This approach has been employed
Zölfl et al.40 who used the noncrossing approximatio
~NCA! to solve the DMFT equations in order to calculate t
spectra, Kondo temperatures, and susceptibilities fora- and
g-Ce. Independently, we treated the DMFT equations w
the more rigorous quantum Monte Carlo41 ~QMC! simula-
tions and reported, as first results of the present effort,
dence for a Ce volume collapse in the total LDA1DMFT
energy which coincides with dramatic changes in thef
spectrum.42 A similar transition was also described earlier
LDA1DMFT calculations for Pu.43 In all three cases, thef
spectra showed Abrikosov-Suhl resonances lying in betw
residual Hubbard splitting for the smaller-volume, les
correlateda phases, in contrast to the LDA results me
tioned above which only obtain the Fermi-level structu
Related behavior is also observed for the Mott transition
V2O3, which was studied recently by LDA1DMFT.44

In the present work we extend Ref. 42 to lower tempe
tures, complement it with Hubbard-I calculations,36,45 and
calculate the volume dependence of additional phys
quantities including the entropy, specific heat, total spectru
orbital occupation, and the magnetic moment. In Sec. II,
LDA1DMFT technique is briefly described along with th
Hubbard-I approximation and a faster implementation of
QMC treatment which is subsequently validated against
tablished approaches. In Sec. III, thermodynamic results,
the energy, specific heat, entropy, and free energy, are
sented over a wide range of volume and temperature and
signatures for thea-g transition are discussed. We prese
the volume and temperature dependence of the 4f and the
valencespdspectrum and compare to experiment in Sec.
The 4f occupation, local magnetic moment, and relat
quantities are given in Sec. V. Finally, the results of th
paper are summarized and discussed in Sec. VI.

II. THEORETICAL METHODS

The results in this paper have been obtained by
LDA1DMFT method, that is, by the merger of the LDA an
dynamical mean-field theory~DMFT! which was recently
8-2
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introduced by Anisimov et al.35 and Lichtenstein and
Katsnelson36 ~for an introduction see Ref. 37!. The starting
point of this method is a conventional LDA band-structu
calculation. Since electronic correlations are only treated
mean-field level within LDA, the most important term fo
electronic correlations, i.e., the local Coulomb interaction
added explicitly. This defines a multiband many-body pro
lem that is solved by DMFT. To solve the DMFT equation
we employ two different implementations of the QMC tec
nique as well as the Hubbard-I~Refs. 36 and 45! ~H-I! ap-
proximation. This section describes the relevant compu
tional details of our calculations.

A. LDA¿DMFT approach

Scalar-relativistic, linear muffin-tin orbital LDA
calculations46,47were performed for face centered cubic~fcc!
Ce over a grid of volumes as described elsewhere.3 The as-
sociated (6s,6p,5d,4f ) one-electron Hamiltonians defin
16316 matricesHLDA

0 , after shifting the 4f site energies to
avoid double counting the Coulomb interactionU f between
4 f electrons. The latter is explicitly taken into account in t
full second-quantized Hamiltonian for the electrons,

H5 (
k,lm,l 8m8,s

@HLDA
0 ~k!# lm,l 8m8ĉk lms

† ĉk l 8m8s

1
1

2
U f (

i,ms,m8s8

8 n̂i f msn̂i f m8s8 . ~1!

Here, k are Brillouin zone vectors,i are lattice sites,lm
denote the angular momentum,s is the spin quantum num
ber, n̂i f ms[ ĉi f ms

† ĉi f ms , and the prime signifiesms
Þm8s8. The many-body Hamiltonian, Eq.~1!, hasno free
parameters since we employed constrained-occupation L
calculations to determineU f and the 4f site energy shift for
all volumes considered~see Fig. 5 of Ref. 3 for the values!.
We did not take into account the spin-orbit interaction wh
has a rather small impact on LDA results for Ce, and a
neglected the intra-atomic exchange interaction which
only an effect if there are more than one 4f electrons on a Ce
atom.

The DMFT maps the lattice problem, Eq.~1!, onto the
self-consistent solution of the Dyson equation,

Gk~ iv!5@ ivI 1mI 2HLDA
0 ~k!2S~ iv!I f #

21, ~2!

and a seven-orbital~auxiliary! impurity problem defined by
the bath Green function,

G~ iv!215S 1

7N (
k

Tr$Gk~ iv!I f% D 21

1S~ iv!. ~3!

HereI is the unit matrix,I f[@d l f d l 8 fdmm8# projects onto the
sevenf orbitals,m is the chemical potential, Tr denotes th
trace over the orbital matrix, andN is the number ofk points
(N52048 for T<0.4 eV and N5256 for T.0.4 eV).
Within the LDA, there is a minor crystal-field splitting of th
seven 4f orbitals. However, in Eq.~3! we average over the
seven 4f orbitals, i.e., we treat them as degenerate in
07510
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auxiliary impurity problem. Consequently, the DMFT se
energy is diagonalS( iv)I f , at least in the paramagneti
phase studied. The impurity problem is solved with one
the methods described in the following two sections and g
erates a self-energyS( iv). This self-energy gives a new
Green function in Eq.~2! and thus a new impurity problem
and so on, iterating to self-consistency~for more details see
Refs. 39 and 37!. In this self-consistency cycle, the chemic
potentialm of Eq. ~2! is adjusted so that the total number
electrons described by Eq.~1! is nf1nv54 per Ce site.
Here, the number of 4f electronsnf , and similarly the num-
bernv of valence~i.e.,spd) electrons, may be obtained from
the lattice Green function

nf5
T

N (
nks

Tr@Gk~ ivn!I f #e
ivn01

, ~4!

where T is the temperature andvn5(2n11)pT are the
Matsubara frequencies. To obtain the physically relev
Green functionG(v), we employ the maximum entrop
method48 for the analytic continuation to real frequenciesv.

In principle, the LDA and DMFT parts of the calculatio
should be mutually self-consistent, with DMFT changes
orbital occupations~especiallynf) feeding back into a new
HLDA

0 (k) andU f , as argued by Savrasov and co-workers43

Certainly the constrained occupation calculations used to
U f and the 4f site energy inHLDA

0 (k) should not be im-
pacted, as they are intended to be valid over the rang
,nf,2. These calculations provide what are, in effect, t
screened Coulomb energies for 0, 1, and 2f electrons per
site, which covers this range according to what fraction
the sites are at one or another of the various occupatio3

However, differences between the DMFTnf and the LDAnf
could, if the former were fed back into the LDA, change t
position of 4f level slightly, and with that the extension o
the 4f wave function, and thus thef-valence hybridization. It
is simply not known at this point if such effects are impo
tant, although we note that DMFT~QMC! and LDA-like ~see
Sec. II D! solutions of Eq.~1! generally yield values ofnf
within 10% of one another. The additional cost on top of t
already very expensive LDA1DMFT(QMC) method also
makes such additional self-consistency impractical in
present case.

B. Hubbard-I approximation

In the large-volume limit where intersite hybridizatio
vanishes, the auxiliary impurity problem is simply the is
lated atom, i.e.,G( iv)51/(iv1m2« f), where« f is the 4f
site energy. In this limit the exact self-energy is known a
may, at finite volumes, be used as the H-I approximation:36,45

Sat~ iv!5 iv1mat2@Gat~ iv!#21, ~5!

Gat~ iv!5(
j 51

14
wj~mat,T!

iv1mat2~ j 21!U f
, ~6!
8-3
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nf
at514T(

n
Gat~ ivn!eivn01

, ~7!

where« f has been absorbed intomat, which is set at each
iteration in such a way thatnf

at of Eq. ~7! equals the curren
nf of Eq. ~4!. The positive weightswj for transitions between
j 21 andj electrons are given by

wj5@ j v j1~152 j !v j 21#Y S 14(
l 50

14

v l D , ~8!

wherev j are Boltzmann weights for havingj electrons on the
atom,

v j5
14!

j ! ~142 j !!
expF2H 1

2
j ~ j 21!U f2 j matJ /TG . ~9!

Our DMFT ~H-I! procedure is in fact also correct atall
volumes in the high-temperature limit. Noting that thewj ’s
sum to unity, one can see that

Sat~`!5
13

14
U f (

j 50

14

j v j Y (
j 50

14

v j5
13

14
nfU f , ~10!

since we always choosemat so thatnf
at5nf . This is the para-

magnetic Hartree-Fock value, which is also the correct hi
temperature limit sincevn}T, and only the high-frequency
tail of the self-energy is of importance.

C. QMC simulations

Our main approach to solve the DMFT impurity proble
is the numerical QMC technique. We use two implemen
tions that differ mainly by the Fourier transformation b
tween the Matsubara frequency representation employe
the Dyson equation, Eq.~2!, and the imaginary time repre
sentation employed for the QMC simulation of the impur
problem, Eq.~3!. Within QMC, the imaginary time interva
@0,b# (b51/T) is discretized intoL Trotter slices of size
Dt5b/L. Since there are 91 Ising fieldsper time slice, the
number of time slices that are computationally managea
in the QMC is seriously restricted. Thus, if one employs
discrete Fourier transformation betweenG( ivn) at a finite
number of L Matsubara frequencies andG(t l),t l
51Dt, . . . ,LDt, the resulting Green function oscillate
considerably around the correctG(t). To overcome this
shortcoming, Ulmke and co-workers49 suggested using a
smoothing procedure that replacesG( ivn)→G̃( ivn), after
calculating the auxiliaryG( ivn) via Eq. ~3!, where

G̃~ ivn![
Dt

12exp@2Dt/G~ ivn!#
. ~11!

It is G̃( ivn) that is Fourier transformed to imaginary tim
G(t l), and once the QMC simulations of the Anderson i
purity problem have yielded the outputG(t l), the process is
reversed: The Fourier transform ofG(t l), G̃( ivn) yields
G( ivn) from the inverse of Eq.~11!. The new self-energy is
thenS( ivn)5G( ivn)212G( ivn)21.
07510
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This approach generates smooth Green functionsG(t l)
and reproduces the correctDt→0 limit. We use it in one
implementation of the QMC algorithm, referred to as QMC1
in the following. Other approaches employed in the literatu
are to fit splines toG(t l) and, thus, to use more suppo
points thanL to do the Fourier transformation39 or to extend
the Matsubara frequency sums by employing the iterated
turbation theory result at high frequencies.41 Most results of
our paper were obtained by yet another QMC implemen
tion (QMC2) that uses a different way to Fourier transfor
and which seems to be less sensitive to statistical noise
this modification is new, it is described in some detail in S
II C 1 and validated in Sec. II C 2.

1. Modified QMC implementation

In the implementation QMC2, we use a constrained fit

G~t!5(
i

wi f i~t! ~12!

to the output QMC impurity Green functionG(t l), in
order to accomplish the Fourier transform toG( ivn) for

n52 1
2 Nv , . . . ,1

2 Nv21 with Nv.L. The basis functions
are f i(t)52e2« it/(e2b« i11) and have Fourier transform
f i( iv)51/(iv2« i). At real frequencies, Eq.~12! corre-
sponds to a set ofd functions with different spectral weight
wi , and is capable in the limit of an infinite set of bas
functions of reproducing any given spectrum. In contrast t
spline fit where every fit coefficient is determined by t
local behavior in an imaginary time interval, in our approa
every fit-coefficient is determined by the local behavior
frequency space.

The constraints to the fit Eq.~12! are wi>0, G(01) is
precisely the QMC value,G(01)1G(b2)521, and
(d/dt)G(01)1(d/dt)G(b2)5g2, whereb2[b201 and
gm is the (iv)2m high-frequency moment ofG( iv). For the
last constraint,g2 is obtained from the relationG21( iv)
5G 21( iv)2S( iv) which impliesg25g21s0, where these
are the indicated moments ofG( iv), G( iv), and S( iv),
respectively. Here,g2 is known asG is input to the QMC,
and we takes05S( iv5`)5(13/14)nfU f with nf514@1
1G(t501)# for the present paramagnetic case.50

Typically we use grids ofL/4 equally spaced« i , and
optimize the agreement with the QMC data as a function
the centroid and width of these grids, in each case syst
atically eliminating basis functions for a given grid whic
would otherwise yield negativewi . Because the QMC ex
pense increases asL3, we are forced to execute fewer Mon
Carlo sweeps for the largestL ’s, and the statistics becom
less good than for smallerL ’s. However, the constraintwi
>0 still seems to provide a sensible interpolation throu
the statistical noise, although this has the consequence
the number of surviving positivewi increases more slowly
than L. Nonetheless, we see a systematic evolution a
function of L and extrapolationsL→` agree with large-
volume and high-temperature limits~Hubbard-I! and the
QMC1 ~see Sec. II C 2!. Note that while we find the fit Eq
~12! to be very useful for functional behavior along th
8-4
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imaginary time and frequency axes, and for integral qua
ties such asnf and the total energy, it is not useful in practic
for directly obtaining real frequency behavior in the presen
of typical QMC statistical uncertainties. The maximum e
tropy method is far superior here as it folds these uncert
ties into calculation of the spectra.48

In order to accelerate the convergence of o
DMFT(QMC2) method we carry out cheap iterations on t
constant part of the self-energy in between each expen
QMC iteration. That is, we subtract a constant Hartree-F
contribution50 from the QMC self-energy: DS( iv)
5SQMC( iv)2(13/14)nf

QMCU f where nf
QMC514@11G(t

501)#. Following every QMC cycle, then, one hasS( iv)
5(13/14)nfU f1DS( iv) in Eq. ~2! which is iterated to self-
consistency withnf from Eq. ~4!, while keepingDS fixed.
The resultant values ofnf andnf

QMC agree within statistica
uncertainties. These uncertainties can be significantly sm
for nf than fornf

QMC at the smallest volumes.
We findG(t) to converge quickly as a function of QMC2

iteration for allt at small volume, and fort close to 0 andb
at large volume. For intermediatet at large volume and low
temperature, however, whereG(t) is generally quite small,
convergence appears to result from the average of freq
small values ofG(t) with occasional large values as th
Ising configurations are sampled, with the large-volu
atomic limit approached by the latter becoming statistica
unimportant.

In order to improve the statistics given by this behavi
we have chosen to include sweeps from all previous Q
iterations~excluding warm-up sweeps! along with the new
sweeps inGi

new(t l) in arriving at the QMC2 result for itera-
tion i: Gi(t l)5@Gi

new(t l)1( i 21)Gi 21(t l)#/ i . Note that the
warm-up sweeps themselves are already started with a
sonable self-energy, such as a converged DMFT(H-I) re
or a DMFT(QMC2) result for anotherL. We have tested this
treatment at both small and large volumes by starting ane
i 51 from the converged DMFT(QMC2) self-energy, and
have found agreement with the previous results to wit
statistical uncertainties.

We used 10 000 sweeps per QMC iteration forL580,
decreasing systematically to 1000 forL5256, and carried
out from 20 to over 100 QMC iterations for eachT, V
point. At small V even at T50.054 eV we found the
DMFT(QMC2) energy to settle down generally after a fe
QMC2 iterations to maximal excursions of about60.02 eV
~60.05 eV! for L580 ~256!, with the root-mean-squar
uncertainties much smaller. Such benign behavior exte
to increasingly large volumes at higherT, where these
DMFT(QMC2) results begin to agree closely wit
DMFT(H-I). At low temperature, the scatter in our measu
ments as a function of iteration grows as volume is
creased, especially in the transition region and beyond; h
ever, the Trotter corrections also diminish here so ther
less need for largerL.

Finally, we turn to the issue of performing the Fouri
transform from imaginary time to Matsubara frequenci
The virtue of the fit, Eq.~12!, is that it decouplesL andNv

allowing manageable QMC costs~smallerL) and yet accu-
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rate kinetic energies ~larger Nv). Most of our
DMFT(QMC2) calculations took Nv5256 for T
>0.054 eV andNv5512 for T50.027 eV. In the course o
this work we realized that there is a volume dependence
the error in the kinetic energy from the Matsubara cutoff, a
while the Nv5256 choice atT50.054 eV leads to a smal
0.04-eV error in the vicinity of the transition, it become
more significant, 0.11 eV, at the smallest volumes cons
ered. Since our DMFT(H-I) and DMFT(QMC2) codes have
identical kinetic-energy treatment, we used the former to c
rect the present DMFT(QMC2) results to effective values o
Nv four times those just noted, which should give better th
0.01-eV accuracy at all volumes. We verified this by selec
DMFT(QMC2) tests with the largerNv . Note that this
kinetic-energy treatment includes~and the cited errors re
flect! an approximate evaluation of the full infinite Matsu
ara sum. Specifically, we approximate the high-frequency
havior of a quantity F( iv) by F0( iv)5w1 /( iv2«1)
1w2 /( iv2«2), with parameters chosen to reproduce
1/(iv)m moments form51 –4. Then we approximate th
infinite Matsubara sum onF( iv) by the analytic result for
the infinite sum overF0 plus the finite sum over the differ
enceF2F0.

2. Validation

Here we validate the faster QMC2 algorithm of Sec.
II C 1, used for much of the low-temperature thermodynam
results in this paper, against QMC1 that employs the Ulmke
smoothing. Such validation involves extrapolation to the li
its Nv , L→`, where the QMC1 approach should provide
exact results. Errors that vanish in these limits include th
arising from truncation of Matsubara sums~finite Nv), and
from the Trotter approximation~finite L).

Figure 1 compares the DMFT kinetic energy~see Sec.
II D for details of its calculation! obtained by QMC2 and
QMC1 as a function ofDt5b/L, at a temperatureT
50.54 eV and atomic volumeV516.8 Å3. ~Note that the
Dt dependence is largest at small volumes, as we shall
cuss further.! The line with open circles shows the QMC1
results with Matsubara sums truncated afterNv5L frequen-
cies under the application of Ulmke’s smoothing procedu
Eq. ~11!. Those with squares and open triangles show
results when these sums are extended toNv5` using the
Hartree-Fock~HF! Green function at high Matsubara fre
quencies; that is, using Eq.~2! with S→SHF5(13/14)nfU f
for 6vn5LpT, . . . ,̀ .51 In the first case~squares! the cur-
rent chemical potentialm andnf were used to defineSHF. In
the second case~open triangles! the whole procedure wa
made self-consistent: Fromnf , we calculate S( iv)
5(13/14)nfU f1DS( iv) for all frequencies at a fixed
DS( iv) which is defined in the preceding section. Th
S( iv) yields a newnf via Eq. ~4!, and so on until conver-
gence. As can be seen, the dependence onDt is greatly
reduced, as is also the case for the QMC2 implementation of
Sec. II C 1~filled circles! which also uses this self-consiste
treatment of the HF part of the the self-energy. To avoid
large Dt error, the large frequency part of the self-ener
and especially the constant HF part is important to the
ergy, and must be self-consistently correct.
8-5
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The inset of Fig. 1 shows the top two curves in an e
panded scale versusDt2, which indicates 0.035-eV agree
ment between the two QMC methods in the limitDt→0. We
believe that effects of Matsubara cutoff are largely elim
nated here and that Trotter errors predominate in th
curves, which are expected to be of leading orderDt2, at
least for the QMC calculation of lattice models without t
DMFT self-consistency complication.39,52 In order to keep
the Trotter errors under control, it is recommended thatDt
be constrained toDtU f /2,1,39 and we have done so in thi
work. In fact at small volumes where the Trotter correctio
are the largest, we would find the need to use three te
over this full range, with botha1bDt21cDt3 and a
1bDt1cDt2 providing reasonable fits to the energy. W
find the ratio c/b to be significantly smaller for the firs
choice, which is consistent with the expectations of a lead
Dt2 dependence. In our DMFT(QMC2) calculations we
have therefore chosen to use the two-term fita1bDt2, how-
ever, over a reduced range. The dotted line in the inse
Fig. 1, for example, suggests thatDtU f /2<0.4 might be a
reasonable range for this fit, givenU f55.05 eV for the vol-
ume in the figure. The two-term fit also makes more sens
the volume range of the transition, where the Trotter corr
tions are smaller, but there is also more scatter as a func
of Dt.

FIG. 1. ExtrapolationDt→0 of the kinetic energy atT
50.54 eV andV516.8 Å3, using the QMC2 ~filled circles! and the
QMC1 algorithms~open circles, squares, and triangles; differen
are due to whether and how Hartree-Fock results for the h
frequency tails of self-energy are included, see text!. The lines show
the extrapolations through the QMC data yieldingEkin(Dt50)
549.88860.003 eV ~filled circles! and 49.85360.022 eV ~open
triangles!, both with a mixed quadratic and cubic fit; and 49.9
60.271 eV ~open circles! and 49.71360.305 eV ~open squares!,
both with a linear fit. The results agree within twice the abo
standard deviation and, thus, validate the QMC2 algorithm. The
inset shows the two upper curves~filled circles and open triangles!
as a function ofDt2 over an expandedDt range. For the QMC2
~filled circles! it also compares the mixed quadratic/cubic fit~solid
line! with a purely quadratic fit to the data points which fulfi
DtU f /2<0.4 ~dotted line!.
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In DMFT(QMC2) calculations for the whole volume grid
we have used at least 1, 2, and 3Dt values for temperature
greater than, equal to, and less than 0.544 eV, respectivel
the first case it is easy to takeDt so small that really no
extrapolation is needed, or maybe one other value as a
check at the smallest volume. AtT50.054 eV~632 K! we
usedDtU f /250.417, 0.334, and 0.209.58 Our calculations at
T50.027 eV~316 K! were limited by expense to systema
cally larger values,DtU f /250.667, 0.477, and 0.334, so th
extrapolations toDt50 are more uncertain. Even the sma
est Dt here, which corresponds toL5320, leads to aDt2

value that is 2.6 times larger than its counterpart atT
50.054 eV. Fortunately, we see every indication that o
electronic Hamiltonian is already very close to its low
temperature limit byT50.054 eV ~632 K!, as these total
energies agree with those atT50.027 eV within their error
bars at the samefinite Dt values. TheDt→0 extrapolations
are more benign fornf andd which also agree well for the
two temperatures. Accordingly, we do not display theT
50.027 eV results in this paper, but do comment on
agreement between the two temperatures as specific qu
ties are presented.

We have alluded earlier to the fact that the Trotter a
proximation errors get larger at smaller volume in the pres
work. This makes sense as these are related to the com
tator of the kinetic and potential energies, and should t
depend on the size of the hybridization, which gets large
volume is reduced. We find no discernible dependence of
energy onDt for volumes in theg phase of Ce for the rang
of L investigated, but that for the smaller volumea phase,
we find dE/dDt2 to become significant and to increase
magnitude with decreasingV. Since theg-a transition is
intrinsically related to the growing importance of hybridiz
tion versus the Coulomb interaction as volume is decrea
this behavior is perhaps not surprising, although the eff
turns on rather abruptly, appearing as almost another sig
ture of the transition. Similar behavior has been seen for
periodic Anderson model.55,56

D. Calculation of the LDA¿DMFT energy

There are several possible expressions for the DMFT t
energy per site, depending on whether the potential energ
obtained using the self-energy

EDMFT5
T

N (
nks

TrF H HLDA
0 ~k!1

1

2
S~ ivn!J Gk~ ivn!Geivn01

,

~13!

or from a thermal average of the interaction in Eq.~1!,

EDMFT5
T

N (
nks

Tr@HLDA
0 ~k!Gk~ ivn!#eivn01

1U fd.

~14!

In the latter expression,

d5
1

2N (
i

( 8
ms,m8s8

^n̂i f msn̂i f m8s8& ~15!

s
-
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THERMODYNAMIC AND SPECTRAL PROPERTIES OF . . . PHYSICAL REVIEW B 67, 075108 ~2003!
is a generalization of the one-band double occupation
multiband models, which may be calculated directly in t
QMC presuming the site average is given by the associ
impurity problem. If we were using theexact, k-dependent
self-energy in these equations, Eq.~13! would be equivalent
to Eq. ~14! and to the Galitskii-Migdal53 expression for the
total energy. We find Eq.~14! to be far superior in the presen
LDA1DMFT(QMC) calculations in regard to low
temperature stability and agreement with known limits, p
sibly not surprising in that it takes a thermal expectation
the true Coulomb interaction for the problem. We use E
~13! for the LDA1DMFT(H-I) energy in preference to Eq
~14! with a purely atomic calculation ofd. However, it
should be noted that for vanishing intersite hybridization
large volume, as well as at high temperatures, the H-I s
energy is exact, and indeed we find agreement between Q
and H-I results forEDMFT in these limits.

To evaluate the total LDA1DMFT energyEtot(T) includ-
ing all core and outer electrons, we add a correction to
paramagnetic all-electron LDA energyELDA(T),

Etot~T!5ELDA~T!1EDMFT~T!2EmLDA~T!, ~16!

which consists of the DMFT energyEDMFT(T) less an LDA-
like solution of the same many-body model Hamiltonian E
~1!, thus ‘‘model LDA’’ or EmLDA(T). The latter is achieved
by a self-consistent solution of Eqs.~2! and~4! for nf taking
a self-energySmLDA5U f(nf2

1
2 ). From this, the kinetic en-

ergy is calculated by the first term of Eq.~14! and the poten-
tial energy by 1

2 U fnf(nf21). Note that while all of these
expressions are explicitly temperature dependent,54 the
present calculations are electronic only and do not attemp
add lattice-vibrational contributions. Estimates of these c
tributions are similar for thea- andg-Ce phases, howeve
and appear to have little impact on the phase diagram.15

Finally, one virtue of the Hamiltonian, Eq.~1!, is that it is
possible to reach high-temperature limits where the entr
is precisely known. One may then calculate the entropy fr
the DMFT energy,

SDMFT~T!5S`2kBE
T

`

dT8
1

T8

dEDMFT~T8!

dT8
, ~17!

whereS`5kB@M ln M2n ln n2(M2n)ln(M2n)#512.057kB
for M532 states andn54 electrons per site for Ce.

III. THERMODYNAMICS

In this section we consider thermodynamic propert
of Ce, more specifically the energy, specific heat, entro
and free energy, over a wide range of volumeV and tem-
peratureT. Intercomparison of the HF, DMFT(H-I), an
DMFT~QMC! methods to solve the effective LDA Hami
tonian, Eq.~1!, here serves to validate all three calculatio
in limits where they should and do give the same answ
and also to point out shortcomings of the more approxim
techniques elsewhere. Then we turn specifically to thea-g
transition in Ce, and use the total energy, Eq.~16!, and en-
tropy, Eq.~17!, to present evidence for the volume collap
transition.
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A. Global behavior

Figure 2 shows the correlation energy of the effect
LDA Hamiltonian Eq.~1!, defined as the energyE of Eq. ~1!
minus the paramagnetic HF resultEPMHF for the same
Hamiltonian. Results for polarized HF, DMFT~H-I!, and
DMFT~QMC! as obtained from Eqs.~13! and~14! in the last
two cases, respectively, are compared in this manner fo
extended range of atomic volumes at five temperatures.
polarized HF solutions assume ferromagnetic spin order,
display both spin and orbital polarization, with onef
band depressed below the Fermi level and the other thir
lying above. These HF calculations~dash-dotted curves! are
seen to give good energies at large volume and low te
perature in comparison to the DMFT~QMC! ~solid lines
with data points!, as has been observed previously for t
Anderson Hamiltonian.55,56Thus, the polarized Hartree-Foc
solution and other polarized static mean-field methods s
as orbitally polarized LDA,18–20 self-interaction-corrected
LDA,20–22 and LDA1U23,24 can be expected to give goo
low-temperature total energies in the strong coupling lim

FIG. 2. Correlation energy, i.e., the difference between
LDA1DMFT and the paramagnetic HF~PMHF! energy, as a func-
tion of volume at five temperatures. At large volumes, the LD
1DMFT(QMC) energy agrees with the polarized HF and t
Hubbard-I (H-I) solutions. But the LDA1DMFT(QMC) energy
breaks away from the polarized HF energy for decreasing volu
leading to a region of negative curvature in the vicinity of the e
perimentally observeda-g transition~indicated by arrows! at low
temperature.
8-7
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A. K. McMAHAN, K. HELD, AND R. T. SCALETTAR PHYSICAL REVIEW B 67, 075108 ~2003!
As the atomic volume is reduced, the difference betwe
polarized and paramagnetic HF energy,EpolHF2EPMHF, be-
comes positive near 22 Å3, and the HF solution has a tran
sition from the polarized to the paramagnetic solution, wh
all fourteen bands have coalesced together above but slig
overlapping the Fermi level. The highest two temperature
Fig. 2 lie above the critical point for this transition, and
there is no polarized HF solution.

Turning to the Hubbard-I approximation, which becom
exact in the atomic limit, it is no surprise that th
DMFT(H-I) results~short-dashed curves! should agree well
with the DMFT~QMC! energies at large volume forall tem-
peratures. This approximation is also exact in the hi
temperature limit, as may be seen from Fig. 2, where ther
also increasingly good agreement at high temperature fo
volumes considered here. The agreement between the
distinct DMFT calculations in these limits provides a test
the reliability of both approaches used here.

A direct view of the temperature dependence is given
Fig. 3~a!, where the energyE of Eq. ~1! is plotted versusT
for an atomic volumeV of 46 Å3. At this relatively large
volume, the DMFT~QMC! and DMFT~H-I! results agree
closely and smoothly interpolate between the polarized
energy at low temperatures and the paramagnetic HF re
at high temperature~above about 15 eV, not shown!. There is
no temperature-induced transition in the DMFT results he
in contrast to the unphysical transition from the param
netic to the polarized phase within HF atT;1 eV. This

FIG. 3. Energy~upper figure! and entropy~lower figure! of the
LDA1DMFT Hamiltonian Eq.~1! vs temperature atV546 Å3. At
this relatively large volume, the DMFT~QMC! and DMFT~H-I! en-
ergies agree with each other and, at lower temperatures, also
the polarized Hartree-Fock solution. However, the entropy of
latter is completely wrong since the 14-fold degeneracy of the lo
magnetic moment is disregarded.
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transition is a shortcoming of the paramagnetic HF phas
which double occupations off electrons on the same Ce si
cannot be avoided such that the paramagnetic~interaction!
energy is too high.

Additional insight is provided by the corresponding e
tropy in Fig. 3~b!. The DMFT~H-I! entropy approaches
kBln(14) at low temperature, which is effectively the dege
eracy of the Hund’s rules magnetic momentkBln(2J11),
where without intra-atomic exchange and spin-orbit inter
tion we get the full 14-fold degeneracy of thef level rather
than the proper sixfold degeneracy forJ55/2. At still lower
temperatures, crystal-field effects are known to reduce
entropy.57

Figure 3 illustrates two important aspects in which H
and more rigorous techniques differ. First, the HF transit
at about 1 eV corresponds tosimultaneousmoment forma-
tion and magnetic ordering. In contrast, the two processes
distinct in more rigorous treatments, with the moment form
tion occurring in a continuous fashion at higher tempe
tures, culminating in the low-T plateau in Fig. 3~b!, with the
onset of magnetic order~if it occurs! coming at yet lower
temperatures off the scale of the plot. Second, polarized
gives goodlow-T energies at large volumes because one
the Hund’s rules multiplet states will be a single Slater d
terminant. However, its broken symmetry mistreats the
tropy at lower temperatures, giving zero instead of, e
kBln(2J11) for nf51 in the atomic limit, so that the finite-T
thermodynamics are incorrect.

B. Transition

We now consider thermodynamic evidence for thea-g
transition in Ce. While the QMC error bars restrict us fro
making a quantitative prediction, we argue that the pres
results do suggest the transition. Evidence is already ap
ent in Fig. 2, where the DMFT~QMC! correlation energy is
seen to bend away from the polarized HF result as temp
ture is lowered, leading to a region of negative curvature
the vicinity of the observed transition~arrows!. As the other
terms (ELDA and EPMHF2EmLDA) contributing to the total
energy Eq.~16! all have positive curvature throughout th
range considered in this work, this correlation contribution
then the only candidate to create a region of negative b
modulus in the low-temperature total energy, i.e., a therm
dynamic instability, and thence a first-order phase transit
given by the Maxwell common tangent.

Figure 4 shows total energies Eq.~16! for the DM-
FT~QMC! and polarized HF methods at the three lowest te
peratures of Fig. 2. The region of negative curvature j
noted in the correlation energy is seen to cause a substa
depression of the DMFT~QMC! total energies~solid curves
with symbols! away from the polarized HF results~dashed
curves! below 35 Å3, which is most pronounced at the low
est temperature,T50.054 eV. The consequent shallowne
in the DMFT~QMC! curve at this temperature persists ov
the observed range of the two-phase region~arrows!, al-
though statistical uncertainties preclude any claim of see
negative curvature. The slope is also consistent with
20.6-GPa pressure~long-dashed line!, which is the extrapo-
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THERMODYNAMIC AND SPECTRAL PROPERTIES OF . . . PHYSICAL REVIEW B 67, 075108 ~2003!
lated transition pressure atT50.15 We suggest in fact tha
theseT50.054-eV~632-K! total electronic energies are a
ready close to the low-T limit. Both the DMFT~H-I! and HF
energies at this temperature differ by less than 0.006 eV f
corresponding results at half this temperature, throughout
volume range in Fig. 4. Our DMFT~QMC! calculations at
T50.027 eV ~316 K! are also consistent with this conclu
sion, as discussed in Sec. II C 2.

That the electronic contribution to the total energy mig
be close to its low-temperature limit below about 600 K
also consistent with the analysis of thea-g transition by
Johanssonet al.,15 who attribute the temperature dependen
of the transition pressure primarily to the difference in e
tropy, which is zero andkBln(2J11) for thea andg phases,
respectively. That is, for temperatures larger than both
Kondo temperature and the crystal-field splitting57 in the g
phase, yet still fairly low~say 200–600 K!, the temperature
dependence of theg-phase free energy may be dominated
the linear term2kBln(2J11)T arising from a plateau such a
in Fig. 3~b!, while presumably the total energies~botha and
g) are closer to the low-T limit due to their fasterT2 depen-
dence.

We have calculated both the DMFT~QMC! specific heat
C(V,T) and entropyS(V,T) for the effective Ce LDA
Hamiltonian, Eq.~1!. We first calculated DMFT~H-I! ener-
gies, Eq.~13!, on a logarithmic temperature grid up to th
high-T limit ( ;103 eV) where the entropy is known to b
12.057kB . As noted earlier, the DMFT~H-I! method is cor-
rect at high temperatures, and indeed the DMFT~QMC! en-

FIG. 4. Total LDA1DMFT(QMC) and polarized HF energy a
a function of volume at three temperatures. While the polarized
energy has one pronounced minimum in theg-Ce phase, the nega
tive curvature of the correlation energy of Fig. 2 results in t
development of a side structure (T50.14 eV), and finally a shal-
lowness (T50.054 eV), which is consistent with the observeda-g
transition~arrows! within our error bars. These results are also co
sistent with the experimental pressure given by the negative s
of the dashed line.
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ergies obtained via Eq.~14! closely approach the H-I result
as T is increased, e.g., lying above by only 0.024 and th
0.004 eV at T55.4 and 13.6 eV, respectively, forV
516.8 Å3. We therefore fit the difference between the QM
and H-I energies at eight temperatures from 0.054 to 5.4
to the forma1(nbn /(11nD/T2), n51 –3, which has aT2

behavior at low temperatures, and is benign at high temp
tures. These smoothed and interpolated differences w
added to the DMFT~H-I! energies to create a fine grid o
‘‘DMFT ~QMC!’’ energies from which C(V,T)
5]E(V,T)/]TuV was calculated by numerical differentia
tion, andS(V,T) by integration down from the high-T limit
according to Eq.~17!. Note that while the finite nature of Eq
~1! is unphysical at very high temperatures, these results
nonetheless entirely meaningful at more modest temp
tures where the omitted core and higher-lying valence st
will be frozen out, e.g., below;3 eV near thea-g transi-
tion, given a spectrum of Eq.~1! that extends to nearly 30 eV
above the Fermi level in that volume range.

The challenging need for accurate energy derivatives
well as the sensitivity of Eq.~17! to the lowest temperature
given the 1/T factor, requires a stringent convergence cri
rion for the kinetic-energy Matsubara sums. Otherwise
observe unphysical negative low-T limits of the entropy for
V,25 Å3. We have also constrained the fits to smooth o
the value of this low-T limit as a function of volume over
this same range. In all cases it is to be emphasized tha
fits give excellent representation of features
EDMFT(QMC)(T)2EDMFT(H-I) (T), ranging in size from 0.1 to
0.24 eV upon decreasing the volume fromV535 to 25 Å3,
and are well within the60.03 eV error bars in the data. Th
same fits were used to obtain bothC(V,T) andS(V,T).

The temperature dependence of the DMFT~QMC! specific
heat is shown in Fig. 5 at six volumes. The most signific
feature is the appearance of the low-temperature peak in
range T50.1–0.2 eV, which coincides precisely wit
growth of the quasiparticle peak or Abriksov-Suhl resonan
at the Fermi level in the 4f spectra, as will be seen in th
following section. Analogous behavior has been discus
for the one-band Hubbard model.39 The low-temperature
peak in the specific heat is just barely discernible at
g-phase volume of 34 Å3 in Fig. 5, but becomes rathe
prominent by 29 Å3, which is slightly larger than the
a-phase volume, and then continues to broaden and shi
higher temperatures as volume is further reduced. The br
peak near 1 eV, which appears at all volumes, is due to b
the 4f charge fluctuations, and also tospd-valence to 4f
excitations, given thatnf increases by;20% on raising the
temperature to 1.4 eV. Note also in regard to the cha
fluctuations that the peak inC(T) should occur at signifi-
cantly smallerT than the Coulomb repulsionU f;6 eV, as
may be seen in the case of the half-filled one-band Hubb
model. Here, the specific-heat peak occurs atT50.208U in
the absence of hoppingt50, and the location of the peak i
also depressed by the band width.39

The volume dependence of our DMFT~QMC! entropy is
shown in Fig. 6 for six temperatures. The rapid increase
the entropy over thea-g transition (28.2–34.4 Å3) is due

F

-
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A. K. McMAHAN, K. HELD, AND R. T. SCALETTAR PHYSICAL REVIEW B 67, 075108 ~2003!
precisely to the low-temperature peak inC(T), which con-
tributes to the entropy via its weighted area*dTC(T)/T.
Thus, at large volumes where the 4f spectral weight is Hub-
bard split with no contribution at the Fermi level, the low-T
entropy is pinned atkBln(2J11) ~ignoring effects of crystal
field at yet lowerT). Then, as the volume is reduced, th
quasiparticle peak begins to grow at the Fermi level,
weighted area of its associated heat-capacity peak red

FIG. 5. Specific heat as a function of temperature for differ
volumes ~offset as indicated!. At smaller volumes, an additiona
low-energy peak develops, coinciding with the formation of
Abrikosov-Suhl resonance~see Fig. 8!.

FIG. 6. Entropy as a function of volumes for different tempe
tures. In the vicinity of thea-g transition (28.2–34.3 Å3), the en-
tropy increases rapidly.
07510
e
es

the low-T entropy belowkBln(2J11) via Eq. ~17!. The
physical interpretation is of course that the degeneracy a
ciated with the 2J11 directions of the Hund’s rules momen
disappears as this moment is either screened or collapse
reducing the volume.

For completeness, we conclude this section by provid
the free energyF5Etot2ST in Fig. 7, although the uncer
tain errors in the entropy and the fact that the large-V, low-
T value is 50% too large@taking into account the spin-orbi
coupling will givekBln(6) instead ofkBln(14)] make this an
estimate. Given that the electronic total energyEtot is near its
low-T limit by T50.054 eV, we consider that curve as ‘‘T
50,’’ and then include it again asF5Etot2ST for T
50.054 eV. The error bars on all curves are just from
energy. The slopes of the two straight lines give the exp
mental transition pressures atT50 and 0.054 eV, and arrow
mark the observed boundaries of thea-g transition at room
temperature. It is obvious that the curvature ofF(V) is in-
deed smaller on thea-Ce side than on theg-Ce side, i.e., the
compressibility is larger. This was found experimentally9 and
motivated Eliashberg and Capellmann8 to put forward their
theory with symmetry breaking and a diverging compre
ibility on only the a-Ce side of the critical point. Unfortu-
nately, the QMC error bars prevent us from a quantitat
estimate of the compressibility, and the behavior we see n
not imply any symmetry breaking. The essential conclus
of Fig. 7 is that these results are consistent with experim
though stronger claims are precluded by the statistical un
tainties. Nonetheless, the results of this section which
find compelling are the way in whichEtot(V) systematically

t

-

FIG. 7. Free energy as a function of volume at three tempe
tures, compared to lines whose negative slopes give the experim
tal a-g transition pressures atT50 ~solid line! and 0.054 eV
~dashed line!. Given the statistical uncertainties, the results are c
sistent with experiment and show that a shift of thea-g transition
volumes is primarily due to the entropy.
8-10
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develops a shallowness in the vicinity of thea-g transition
as temperature is lowered, and the structure in the spe
heat and entropy.

IV. SPECTRA

In this section, we discuss the spectral changes thro
the a-g transition. To obtain the physical spectrumA(v)
52(1/p)Im G(v), one has to analytically continue th
QMC data from the imaginary time~Matsubara frequency!
representation to real frequenciesv:

G~t!5E
2`

`

dv
et(m2v)

11eb(m2v)
A~v!. ~18!

As one can see in Eq.~18!, the values ofA(v) at large
~positive or negative! frequencies affectG(t) only weakly
because the integral kernel is exponentially small in this
gime. To deal with this ill-conditioned problem that is pa
ticularly cumbersome in the presence of the statistical Q
error, we employ the maximum entropy method.48 When in-
terpreting the results later on, we have to keep in mind, h
ever, that there is a significant error at larger frequenc
which tends to smear out fine features such that, e.g., in
structures of Hubbard bands are not necessarily resolve
Sec. IV A, we present the spectra of thef and valence elec
trons of fcc Ce as a function of volume and discuss
changes at thea-g transition. The spectra obtained are co
pared to photoemission and bremsstrahlung experimen
Sec. IV B.

A. Change of the spectra at thea-g transition

In Sec. III we noted a region of negative curvature in t
correlation energy at volumes consistent with the experim
tal a and g volumes, leading to a shallowness in the to
energy and suggesting a first-order phase transition at lo
temperatures. To further elucidate the nature of the ongo
changes, we study the evolution of thef-electron spectrum a
a function of volume for fcc Ce atT50.054 eV~632 K! in
Fig. 8. This temperature is close to the critical pointT
5600650 K) at which the first-ordera-g transition disap-
pears experimentally.4 From the continuous evolution of th
energy versus volume curves, we expect, however, sim
changes above the critical point, which are not yet stro
enough to cause a first-order phase transition. At a very s
volume,V520 Å3, most of the spectral weight is seen to
in a big quasiparticle peak or Abrikosov-Suhl resonance
the Fermi energy, but some spectral weight has already b
transferred to side structures which would be interpreted
upper and lower Hubbard bands in a Hubbard model. M
ing closer to thea-g transition~between 28.2 and 34.4 Å3 at
room temperature!, thea-Ce-like spectra atV529 Å3 show
this three peak structure to become more pronounced w
sharp Abrikosov-Suhl resonance and well-separated Hub
bands. The spectral weight of the Abrikosov-Suhl resona
is further reduced and smeared out when going to thg
phase (V534 Å3) and finally disappears at large volum
(V546 Å3), at least atT50.054 eV.
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Altogether, we observe, as a function of volume, t
crossover from a structure that differs only slightly from
one-peak structure, to a three-peak structure, and finally
two-peak structure. The physical interpretation is that thf
electrons are somewhat correlated at low volumes, where
large quasiparticle peak above the Fermi energy resem
~to a first approximation! the one-peak structure of the un
correlated one-particle theory or the LDA. At larger volume
the system is highly correlated, there is a magnetic mom
imposed by the electrons in the lower Hubbard band, but
f electrons at the Fermi energy are still itinerant. Finally
the largest volumes, thef electrons are localized and the loc
magnetic moment is fully developed. Here, the most d
matic change of the weight of the quasiparticle peak co
cides with the observed region of negative curvature in
correlation energy. We thus conclude that the drastic red
tion of the weight of the quasiparticle peak is related to
energetic changes in the correlation and total energies
are consistent with the first-ordera-g transition.

These features and also the three-peak~Kondo-like! struc-
ture of thea and g phases agree with the Kondo volum
collapse scenario.25–27 On the other hand, many-body calcu
lations show that the behaviors of the Anderson and Hubb
models—paradigms for the Kondo volume collapse25–27and
Mott transition13 scenarios, respectively—are remarkab
similar in regard to their spectra and other properties at fin
temperatures.34 One important difference, however, is the a

FIG. 8. Evolution of the 4f electron spectrum with volume a
T5632 K; offset as indicated. When going from small to lar
volume, the weight of the central Abrikosov-Suhl resonance
creases and practically fades away at thea-g transition fromV
529 to 34 Å3. The residual weight around the Fermi energy atV
534 Å3 indicates a smeared out Abrikosov-Suhl resonance as
be expected if the Kondo temperature ofg-Ce is below T
5632 K.
8-11
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sence of spectral weight at the Fermi level in the ‘‘lar
volume’’ phase of the Mott-Hubbard transition, as, for e
ample, in V2O3,44 in contrast to the reduced but still exta
spectral weight in ourg-Ce results and the experiment5

which is a more Kondo-like feature.
In Fig. 9, we compare the 4f spectrum in thea and g

phases to results at higher temperatures (T50.14 eV) from
Ref. 42. Most notably, the Abrikosov-Suhl resonance in
a-phase (V529 Å3) becomes much sharper when goi
from T50.14 eV to 0.054 eV. The reason for this is that t
Abrikosov-Suhl resonance is smeared out thermally aT
50.14 eV~1580 K! since this temperature is comparable
the Kondo temperature, which we estimate to be 0.18
~2100 K! from the full width at half maximum@LDA
1DMFT(NCA) calculations yield 1000 K, see Ref. 40#.
This Kondo temperature is only a crude estimate that m
also be somewhat reduced if the spin-orbit coupling, wh
splits off states from the Fermi energy, is taken into accou
Nonetheless, it reasonably agrees with experimental e
mates ofTK5945 K and 1800–2000 K for the Kondo tem
perature obtained from electronic5 and high-energy neutron
spectroscopy,59 respectively. In contrast, the peak in theg
phase remains smeared out such that one would assu
Kondo temperature lower than 0.054 eV~632 K!; the experi-
mental estimates areTK595 K ~Ref. 5! and 60 K~Ref. 59!.
The changes in the rest of the spectrum are much less
matic. The position of the upper Hubbard band is fixed wh
the lower Hubbard band, which has a very small spec
weight, moves closer to the Fermi energy upon decrea
the temperature.

While the f electrons undergo a transition from itinera
character at low volumes with a quasiparticle resonanc

FIG. 9. 4f electron spectrum fora-Ce (V529 Å3) and g-Ce
(V534 Å3) at two temperatures (T5632 K, solid line; T
51580 K, dashed line!. The Abrikosov-Suhl resonance ofa-Ce is
smeared out when increasing the temperature fromT5632 to 1580
K, indicating that the Kondo temperature is in between.
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the Fermi energy, to localized character at larger volum
without such a resonance, the (spd) valence electrons re
main metallic at all volumes. This can be seen in Fig. 1
which shows the valence spectral functionA(v) averaged
over thespd orbitals. It is finite at the Fermi energy for a
volumes, such that Ce is always a metal. The biggest cha
in the spectrum is the decreasing valence bandwidth w
increasing the volume, which is simply due to the reduc
overlap of the valence orbitals as interatomic distances
crease. The effect of electronic correlations is less obvio
But, one can note a dip in the valence spectrum in the vic
ity of the Fermi energy which is to be expected to coinci
with the Abrikosov-Suhl resonance in thef spectrum. This
dip is most pronounced at lower volumes where t
f-electron Abrikosov-Suhl resonance has most spec
weight.

B. Comparison to experiment

The LDA1DMFT(QMC) calculation of fcc Ce suggest
a volume collapse approximately at the experimental v
umes. To further test whether this theory actually descri
fcc Ce, we now compare oura- andg-Ce spectra with pho-
toemission spectroscopy60 and bremsstrahlung isochromat
spectroscopy.61 To this end, we combined thef andspdspec-
tra of Sec. IV A with areas normalized to 14 and 18, resp
tively, to yield the fullspd f density of states, and smoothe
it with the experimental resolution of approximately 0.4 e

The comparison is shown in Fig. 11 fora and g Ce.
Although there are no free parameters in our LD

FIG. 10. Evolution of thespdelectron spectrum with volume a
T5632 K; offset as indicated. Note the wider energy window
comparison to Figs. 8 and 9. The main effect to be seen is
decrease of the bandwidth upon increasing the volume.
8-12
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1DMFT~QMC! results,62 the agreement between theory a
experiment is very good. Particularly good is the agreem
of the spectrum around the Fermi energy for botha and g
Ce; this part of the spectrum consists of the Abrikosov-S
resonance of thef-electron spectrum and the valence sp
trum. Also the position of the upper and lower Hubba
bands and the relative weight of these peaks and
Abrikosov-Suhl resonance is correctly predicted by
theory. Less good is the agreement with respect to the w
of the upper Hubbard band which is too narrow in o
theory; the experimental upper Hubbard bands extend to
ergies 1–2 eV higher than our theory. As has been argue
Ref. 40, this can be understood by the Hund’s rules excha
coupling that has not been taken into account in our calc
tion. We justified this by noting that the exchange coupling
only effective if there are more than two electrons on one
site, which happens only rarely. However, the excited sta
of the upper Hubbard band correspond to just such dou
occupied states. For these, the Hund’s rules coupling
comes important and will split the upper Hubbard band i
multiplets. With this shortcoming resolved, the comparis
to the experimental spectrum suggests that our L
1DMFT(QMC) calculation describesa andg Ce very well.

The a and g spectra of previous LDA1DMFT(NCA)
calculations by Zo¨lfl et al.40 are considerably different from
ours and the experimental spectra, in particular the weigh
the upper Hubbard bands was much higher in Ref. 40.
temperature of Ref. 40 is very close to ours (T5580 K) and

FIG. 11. Comparison of the LDA1DMFT(QMC) spectra with
experiment~circles!.5 Although there are no free parameters in t
calculated spectrum, the agreement is very good, in particular a
Fermi energy (v50). The additional structure in the upper Hu
bard band which is seen in the experiment is likely due to
exchange interaction that was neglected in our calculation.
07510
nt

l
-

e
e
th
r
n-
in
ge
a-
s
e
s
le
e-
o
n

of
e

also the 4f -electron Coulomb interaction valueU f is com-
parable, at least for theg phase; Zo¨lfl et al.employed a fixed
value of U f56 eV whereas the constrained LDA values
our calculations areU f55.72 eV and 5.98 eV fora and g
Ce, respectively. In view of this we tend to explain the d
ferences, at least forg-Ce, by the different method employe
to solve the DMFT equations, in particular, since the NCA
a resolvent perturbation theory for strong coupling.

V. LOCAL MOMENT AND 4 f OCCUPATIONS

Important additional information about thea-g transition
and the effects of electron correlation in Ce is contained
the number of 4f electrons per sitenf , the double occupa-
tion d, and quantities derived from these such as the frac
of sitesw( f n) with n50,1,2 f electrons, and the local mag
netic moment. These parameters can discriminate betw
the various models, as, for example, the promotional mod11

assumes a considerable change in the number of 4f electrons
at the a-g transition, in contrast to the Kondo volum
collapse25 and Mott transition13 scenarios which do not. The
latter two, on the other hand, distinguish themselves by
suming a small and large change of the magnetic mom
respectively.

Figure 12 givesnf as a function of volume at fou
temperatures.63 The lowest curve atT50.054 eV~632 K! is
already very close to the low-T limit, as our results at half
this temperature are the same to within generally 0.004, o
most 0.01 electrons per site. There are two main tendenc
With decreasingV, nf increases due to the upward motion
the 6s,p levels relative to the 4f level under compression; i
also increases withT due to the thermal occupation of th
large 4f density of states lying above the Fermi level. Sup

he

e

FIG. 12. Number of 4f electronsnf vs volume at four tempera
tures. At low temperatures and in the vicinity of thea-g transition,
nf is very close to 1.
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imposed on this behavior is, at low temperatures, an ab
reduction ofnf in the observed two-phase region~marked! as
volume is reduced, an anomaly that is annealed away bT
50.5 eV similar to the case of the total energy. This eff
leads to a number of 4f electrons close to 1, ruling out th
promotional model11 and suggesting Kondo physics give
the sharp quasiparticle peak seen in the preceding sec
Quantitatively, we get a 4% reduction innf across the two-
phase region from 1.03560.017 to 0.99360.010 at T
<0.054 eV. Similar behavior is seen in the 10% drop fro
1.014 to 0.908 of Zo¨lfl et al.40 in their LDA
1DMFT(NCA) calculations, and the 11% reduction fro
0.97160.006 to 0.86160.015 electrons/site of Liu and
co-workers,5 who fitted a single impurity Anderson model t
the experimental 4f spectrum. The reason for the drop innf
is a systematic increase in the double occupationd under
compression. Sinced is the potential energy divided byU f ,
the energy cost associated with increasingd can be amelio-
rated by reducingnf .

Since there is little chance of more than doubly occup
sites in Ce at low temperature,nf and d provide sufficient
information to obtain the fractions of sites with various int
gral f n occupations,

w~ f 0!512nf1d,

w~ f 1!5nf22d,

w~ f 2!5d. ~19!

Figure 13 shows our DMFT~QMC! results for these weight

FIG. 13. Fraction of empty (f 0), singly occupied (f 1), and dou-
bly occupied sites (f 2) vs volume as calculated by LDA1DMFT
~QMC! ~open symbols with lines! at T50.054 eV in comparison to
LDA1DMFT(NCA) ~large open symbols!40 and impurity Ander-
son model results~filled symbols!.5 While the DMFT results agree
very well for theg phase, there are significant differences in thea
phase as discussed in the text.
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at T50.054 eV, which are also close to the low-temperat
limit. At large volume one sees that each site nearly alw
has onef electron, and that empty or doubly occupied sit
are rare, as would be expected fornf;1 in the absence o
significant hybridization to move these electrons to eitherf or
v (spd valence! states on neighboring sites. For thef elec-
trons to begin to move around from one site to another in
independent fashion under the influence of largerf f hybrid-
ization, or for there to be virtual charge fluctuations of t
form f 1v3→ f 0v4 and f 1v3→ f 2v2 due to increasedf v hy-
bridization, it is clear in each case that both empty and d
bly occupied sites must become more common at the
pense of singly occupied sites if the volume is reduced,
evident in Fig. 13. Note that these changes are espec
dramatic over the experimental two-phase region~marked!.

The filled symbols in Fig. 13 show the impurity Anderso
model results of Liuet al.5 at the observeda- and g-Ce
volumes; the large open symbols, the DMFT~NCA! results
of Zölfl and co-workers.40 Our DMFT~QMC! values are
w( f 0),w( f 1),w( f 2)50.01360.019 (0.11860.025), 0.939
60.028 (0.77160.033), and 0.04860.009 (0.11160.008)
for the g (a) volumes, respectively. The two DMFT calcu
lations agree well within these uncertainties for all thr
populationsw( f n) at the largerg-phase volume, and als
with the impurity Anderson model value forw( f 1); although
for the two small populations, they obtainw( f 0),w( f 2) in
reverse order to the values of Liu and co-workers.5 The most
significant difference at thea-Ce volume is the rather large
double occupancy,d5w( f 2)50.11160.008, obtained by
our DMFT~QMC! calculations in comparison to smaller va
ues 0.044 and 0.026 obtained by the the DMFT~NCA! and
impurity Anderson model, respectively. Temperature is u
likely to be a factor here, as we obtainnf andd unchanged
within our error bars at half the temperature of the DM
FT~QMC! results in Fig. 13, e.g.,d5w( f 2)50.10860.008
at T50.027 eV ~316 K!. Note that there is an asymmetr
betweenf 1v3→ f 0v4 and f 1v3→ f 2v2 fluctuations in the im-
purity model, with the former predominating in the Kond
effect and the later leading to less spin-dependent eff
~Appendix B, Ref. 27!. Since the extent of these fluctuation
are measured byw( f 0) and w( f 2), respectively, these rela
tive differences ind5w( f 2) have direct physical meaning
As will be seen shortly, larger values ofd also indicate less
correlation.

There are some differences between the three calc
tions, however, which might account for differingw( f n) pre-
dictions.

~i! Our calculated Coulomb interaction fora-Ce, U f
55.7 eV, is slightly smaller than theU f56 eV employed in
Refs. 40 and 5, and there may also be small differences in
one-particle part of the effective Hamiltonian, Eq.~1!, due to
the use of different LMTO approaches.64

~ii ! Liu et al. employ an impurity Anderson mode
whereas both we and Zo¨lfl et al. use a periodic Anderson
type of model includingf -f as well asf-valence hybridiza-
tion. All three calculations extract some or all of their effe
tive Hamiltonian parameters from LDA. The two DMFT ca
culations also deal with an auxiliary impurity Anderso
8-14
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model in the course of their solution, and all three impur
Anderson models yield the local 4f density of states of the
lattice LDA calculation whenU f50. However, for finite
U f , the f-valence hybridization in the impurity Anderso
model of Liu et al. remains, in principle, unchanged
whereas that of the DMFT auxiliary impurity models b
comes strongly renormalized by the presence of the s
energy, as evident in Fig. 1 of Zo¨lfl and co-workers.40 It
should be noted, however, that Liuet al. do not simply use
the LDA hybridization in their finite-U f calculations, but
rather rescale so as to obtain excellent agreement with s
troscopy data, giving their hybridization some experimen
justification.

~iii ! Finally, in contrast to the DMFT~QMC!, both
DMFT~NCA!40 and the 1/N approach65 of Ref. 5 are based
on perturbation expansions in the hybridization strength
quantity that gets larger with reduced volume. Thus, wh
these two approximations are controlled by the smallnes
the hybridization strength and also by 1/N ~we have N
514 f orbitals!, there are nonetheless larger correctio
when the hybridization is increased, i.e., when going to
more itineranta-Ce. Note in this context that the ratio o
Coulomb interaction to an effective bandwidth determin
by the totalf -f andf-valence hybridization changes from 3
to 2.5 across theg-a transition.3

It is possible to quantify the degree off-electron correla-
tion by noting certain limiting values ofd. A natural mini-
mum is provided by the strongly correlated ground state
Eq. ~1! in the atomic limit, whered is a piecewise linear
function of nf , with d5dmin5max(0,nf21) for nf<2.
Similarly, dmax5(13/28)nf

2 from Eq. ~15! in the uncorrelated

limit ^n̂1n̂2&5^n̂1&^n̂2&, which is approached for volumeV
→0 leading to a vanishing ratio of Coulomb interaction
bandwidth. Figure 14 shows a plot of the ratio (dmax
2d)/(dmax2dmin) for the present Ce calculations atT
50.054 eV, which reflects strong and weak correlation li
its at 1 and 0, respectively. Note the polarized to param
netic HF transition atV;20 Å3 for decreasing volume, an
the fact that the paramagnetic HF result is completely unc
related (d'dmax) as expected. The fact that thed ratio in this
case is not precisely zero is due to a small amount of orb
polarization arising from the fact that 4f bands of different
symmetry overlap the Fermi level to slightly different exte
whereasdmax was defined for all spin-orbital occupations
be nf /14.

The combination of increasingd and decreasingnf causes
a sharp decrease in correlation~delocalization! of the DM-
FT~QMC! result for decreasing volume through the observ
g-a transition ~marked!, in agreement with tenets of th
Mott-transition model.13,66 The value of the DMFT~QMC! d
ratio is 0.7660.08 at thea volume, combining all of the
uncertainties in bothd andnf . While this value is certainly
less correlated than the DMFT~NCA!40 ~large open circles!
and impurity Anderson model5 ~filled circles! predictions at
0.89 and 0.92, respectively, it is far from the kind of unco
related behavior seen in the paramagnetic HF of Fig. 14
presumably also, in the LDA. Even at the smallest volum
considered, the DMFT~QMC! d ratio still suggests the pres
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ence of significant correlation, which is entirely consiste
with the remnant Hubbard sidebands in this range as
cussed in the preceding section. Most notable in
DMFT~H-I! curve is a glitch at aboutV517 Å3 which is a
consequence of the behavior innf ~not shown!: Within
DMFT~H-I!, nf is pinned at 1 for decreasing volume un
V517 Å3, at which point it increases and the system b
comes mixed valent.

Turning to the local magnetic moment, our approxim
tions @neglect of spin orbit, intra-atomic exchange, and t
4 f crystal-field splitting in Eq.~3!# have more serious impli-
cations for this quantity than others, and so we can prov
only an estimate. Consistent with these approximations
take

^n̂i f msn̂i f m8s8&5H nf /14 if ms5m8s8

d/91 if msÞm8s8,
~20!

such that the local magnetic moment becomes

^mz
2&[(

m
^~ n̂i f m↑2n̂i f m↓!2&5nf2~2/13!d, ~21!

indicating whether a local spin moment exists. Note that t
quantity does not contain information about long-range m
netic order, aside from the fact that a finite moment would
required for such order. Also note that^mz

2& is unlikely to
vanish. Even if one just statistically distributes electrons w

FIG. 14. Double occupation ratio (dmax2d)/(dmax2dmin) and lo-
cal magnetic moment̂mZ

2& ~triangles! as a function of volume at
T50.054 eV. In the former case, we compare the LD
1DMFT(QMC) results with our HF and LDA1DMFT(H-I) re-
sults as well as with the LDA1DMFT(NCA) by Zölfl et al.40 and
the Anderson model calculations by Liuet al.5 The double occu-
pancy increases when going fromg- to a-Ce ~experimental vol-
umes as indicated!, i.e., the electrons become more itinerant or le
correlated. This effect is most pronounced in our LD
1DMFT(QMC) results; however, thed ratio is still far from the
uncorrelated valued5dmin , i.e., a-Ce is still strongly correlated.
8-15
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arbitrary i, m, ands, some sites will have electrons with th
same spin and thuŝmz

2& will be finite, but it will be smaller
than its maximal value obtained in the localized regim
whered is minimal.

The spin, orbital, and total angular momentum expec
tions can be expressed aŝŜi f

2 &5(3/4)^mz
2&, ^L̂ i f

2 &
512̂ mz

2&, and^Ĵi f
2 &5(51/4)̂ mz

2& due to the degeneracies
Eq. ~20!. Note that in the atomic limit (nf;1,d;0) these
expressions correctly giveSi f 51/2 and Li f 53, although

^Ĵi f
2 & averages over the two spin-orbit multiplets. Our DM

FT~QMC! result for^mz
2& at T50.054 eV is also provided in

Fig. 14~bottom dotted curve with open triangles!, where this
quantity is seen to drop by 5% from theg to thea volume.
This may be compared to 11% and 12% drops for
DMFT~NCA!40 and impurity Anderson model5 calculations,
respectively, based on their values ofnf and d5w( f 2).
High-energy neutron scattering experiments observe sin
ion magnetic response from 0.860.1 4f electrons in thea
phase, suggesting also that much of the local moment
sists into that phase.59 Such high-energy or ‘‘fast’’ probes ca
detect a local moment even if it appears screened ou
‘‘slower’’ measurements like magnetic susceptibility. No
that the, at first view unexpected, increase in the D
FT~QMC! ^mz

2& for the smallest volumes in Fig. 14 onl
reflects this same behavior innf ~Fig. 12!.

The persistence of a still robust~albeit slightly reduced!
local 4f moment into thea phase as suggested here suppo
the Kondo volume collapse scenario,25–27 in that the ob-
served temperature-independent Pauli-like paramagnetis
thea phase can then arise when the valence electrons sc
out these local moments. Orbitally polarized18–20 and self-
interaction corrected20–22 LDA results suggest that the mo
ment actually collapses to nothing in thea phase of Ce and
its analog in Pr. However, these calculations really meas
spin and orbital polarization analogous to^mz&, and there-
fore describe a loss of magnetic order in thea-like phases
without providing information about the local moment itse
Indeed, there can be a local moment^mz

2& even in the fully
uncorrelated limit, as noted earlier, sincêmz

2&5nf

2(2/13)dmax5nf(12nf/14) can be significant away from
empty or filled bands. Note that one may have temperat
independent paramagnetism in the presence of local
ments both if there is correlated Kondo screening of th
moments, as noted above, as well as by Pauli’s original o
electron process in which only electrons in states near
Fermi level are free to respond to the field. The latter m
dominate as one approaches the uncorrelatedV50 limit.

VI. SUMMARY AND DISCUSSION

We have calculated thermodynamic, spectral, and o
properties of Ce metal over a wide range of volumes a
temperatures using the merger of the local-density appr
mation and dynamical mean field theory (LDA1DMFT).
The DMFT self-energy was generated by rigorous QM
techniques, including a faster implementation that has fa
tated lower-temperature results and is described in de
Our LDA1DMFT results provide a comprehensive pictu
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of correlation effects in compressed Ce, and their fundam
tal role in the first-ordera-g transition. First results of this
effort have been published in Ref. 42.

At a large volume, we find a Hubbard-split 4f spectrum,
the associated local magnetic moment, and an entropy
flecting the degeneracy in the moment direction. This ph
is well described by the Hubbard-I approximation and
energy, but not its entropy, also agrees with the polari
Hartree-Fock solution. As volume is reduced, a quasipart
or Abrikosov-Suhl resonance begins to develop at the Fe
level in the vicinity of thea-g transition, and the entropy
starts to drop. At the same time, the 4f double occupation
grows whereas the number of 4f electrons remains close t
1. The temperature dependence of the quasiparticle pea
consistent with a significantly larger Kondo temperature
the a phase than in theg phase, and the parameter-fre
LDA1DMFT spectra are in good agreement with expe
ment for botha- andg-Ce. In the range where the quasipa
ticle peak grows dramatically, the correlation energy a
function of volume is seen to have a negative curvature. T
leads to a growing shallowness in the total energy as t
perature is reduced and is consistent with the first-ordera-g
transition within our error bars. Our results suggest that
temperature dependence of the transition pressure is pr
rily due to the entropy. Finally, if the volume is reduce
below that of the ambienta phase, the quasiparticle pea
grows at the expense of the Hubbard sidebands, yet th
Hubbard sidebands persist even at the smallest volumes
sidered.

The MT14 and KVC25–27 scenarios are based on the on
band Hubbard and the periodic~or more approximate impu
rity! Anderson models as paradigms. The classification
our results in terms of these two standard theories requ
distinguishing between the more general interpretation of
MT in the many-body community,32 e.g., applied to such
materials as V2O3,44 and the ideas of Johansson13 and mem-
bers of the local-density functional community as applied
the f-electron metals.18–24 In the former case, correlate
solutions33 of both model Hamiltonians show similar fea
tures at finite temperature such as persistence into the m
weakly correlated regime of the local moment and resid
Hubbard splitting,34 just as seen here fora-Ce. The similar-
ity between the two models can be understood from the
lowing consideration. The conduction electrons in the pe
odic Anderson model are noninteracting. Thus, they o
enter quadratically in the effective action and can be in
grated out by a simple Gauss integration. This results in
effective one-band model for thef electrons of the periodic
Anderson model which can behave34 very much like the
Hubbard model not only at finite temperature, but, depend
on the choice off -d hybridization, also atT50.

One might try to distinguish between the two scenarios
whether the transition is caused by changes of thef -f ~MT!
or f-valence~KVC! hybridization. But, since realistic calcu
lations like the present include both, this distinction is rath
problematic. Another difference can be addressed unamb
ously, i.e., whether the low-temperatureg phase has an
Abrikosov-Suhl resonance~KVC! or not ~MT!. We observe
the former, in agreement with experiment.5 The energy scale
8-16
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THERMODYNAMIC AND SPECTRAL PROPERTIES OF . . . PHYSICAL REVIEW B 67, 075108 ~2003!
of this g-Ce Abrikosov Suhl resonance is very small su
that we obtain a thermally smeared out structure instead
sharp resonance. The smallness of the energy scale als
plies that the effect on the total energy is very minor. B
cause of this, the low-temperature energy~but not the en-
tropy! of g-Ce may also be adequately described by st
mean-field techniques like our HF calculation as well a
number of local-density functional modifications: orbital
polarized LDA,18–20self-interaction corrected LDA,20–22and
LDA1U.23,24 These approximations have a frequenc
independent~static! self-energy and provide a splitting of th
4 f band into two bands by an~artificial! symmetry breaking.
While our HF calculations as well as LDA1U work23 for Ce
give a transition at too small volume, one may drive t
onset of the symmetry breaking closer to the volume of
a-g transition by reducing the the 4f Coulomb interaction
U f . Such a reduced interaction strength is naturally achie
within the orbitally polarized LDA calculations that omitU f
and employ the weaker intra-atomic exchange interactio
achieve the symmetry breaking.

A major point of debate between the KVC scenario a
Johansson’s interpretation of the MT picture is whether tha
phase of Ce is strongly correlated~KVC! or not ~MT!. Our
results suggest thata-Ce is strongly correlated with a three
peak structure consisting of the two Hubbard peaks and
tral quasiparticle bands as in the KVC picture.25–27 In con-
trast, the MT model as advocated by Johansson13 and
others18–23 predicts a single peak associated with uncor
lated, bandlikef electrons. We do see a rapid increase
double occupationd across the transition, which is consiste
with the delocalization ideas of this MT scenario. Howev
the actual value ofd in thea phase is far from uncorrelated
although it indicates considerably less correlation than in
KVC picture.5 It appears that this perspective of the MT
motivated by the LDA results, and that if one were to fu
take into account electronic correlations, one would also
serve a correlated three-peak solution as in the Hubb
J

tie
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model.34 This correlated solution would also have preform
local magnetic moments, which would be screened at sm
energies on the scale of the width of the Abrikosov-Su
resonance, as in the KVC picture, whereas the uncorrel
MT solution does not develop such local moments.

Since we find a strongly correlateda phase, the question
remains why the structural and volume dependence of
total energy in thea-Ce regime is so extremely well de
scribed by normal paramagnetic LDA and its gradient c
rected improvements.16,17 This point is one of the stronges
arguments advanced by Johansson13 and others16–23 that
a-Ce-like phases should be weakly correlated. A logical
planation would be that LDA may get the interactions b
tween the quasiparticles correct but not their formation
ergy. The interactions are perhaps governed by the signifi
weight in the central Fermi-level-peak, which resembles
uncorrelated LDA solution, while the formation energy m
involve the residual Hubbard sidebands in some way. Th
the still very significant correlation may provide only a co
stant contribution to the total energy in thea-Ce regime, so
that the volume and structural dependence is still well rep
sented. This would be consistent with the energy shift
tween a and g phases employed by Johanssonet al.15 in
their LDA-based modeling of the transition.
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