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We have calculated thermodynamic and spectral properties of Ce metal over a wide range of volume and
temperature, including the effects of 4lectron correlations, by the merger of the local-density approximation
and dynamical mean-field theoffPMFT). The DMFT equations are solved using the quantum Monte Carlo
technique supplemented by the more approximate Hubbard-1 and Hartree-Fock methods. At a large volume we
find Hubbard split spectra, the associated local moment, and an entropy consistent with degeneracy in the
moment direction. On compression through the volume range of the obsgrwetlansition, an Abrikosov-
Suhl resonance begins to grow rapidly in thiesgpectra at the Fermi level, a corresponding peak develops in
the specific heat, and the entropy drops rapidly in the presence of a persistent, although somewhat reduced,
local moment. Our parameter-free spectra agree well with experiment ai-thed y-Ce volumes, and a
region of negative curvature in the correlation energy leads to a shallowness in the low-temperature total
energy over this volume range which is consistent with the transition. As measured by the double
occupancy, we find a noticeable decrease in correlation on compression across the transition; however, even at
the smallest volumes considered, Ce remains strongly correlated with residual Hubbard bands to either side of
a dominant Fermi-level structure. These characteristics are discussed in light of current theories for the volume
collapse transition in Ce.
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[. INTRODUCTION examples of the latter assume some kind of symmetry
breaking in thex phase: Eliashberg and Capellm&ramgue
A number of rare-earth metals undergo pressure inducethat «-Ce has a symmetry broken distorted structure mainly
first-order phase transitions with unusually large volumebased on the observation that tle phase shows large
changes of 9-15%for reviews see Refs. 1330f these changes of the compressibiliyiNikolaev and Michel® pro-
transitions the isostructurat« transition in Ce has received pose (hidden quadrupolar ordering. In these theories one
the most attentiof\.It was discovered first, has the largest must have a tricritical point a&f~600 K with a second-order
volume chang&15% at room temperatureand may also be phase transition line extending to higher temperature, which
accessed entirely at ambient pressgoe in vacuum by  disagrees with the common interpretation of the experi-
changing the temperature, thus, for example, allowing thorment?
ough spectroscopic investigation of both phases. The results The promotional modé&t introduced in 1947 was the first
of such photoemission and bremsstrahlung stddieew a  theory of electronic origin to describe thga transition,
dramatic transfer of spectral weight to the Fermi energy anéhissuming a change in electronic configuration from
the development of a large peak with its center of gravity4f(spd)® to 4f°(spd)*. Theories of this general typefol-
slightly above the Fermi energy when going from theto  lowed until Johansson’s 1974 analysis of cohesive energies
the «-Ce phase. Similarly, the optical conductivity is higher provided strong evidence that the promotional model could
in the & phase where the frequency dependent scattering ratet be rightt® as was also corrobborated by experimental
is characteristic for a Fermi-liquid behavior with an effective evidence that the number off 4electrons did not change
mass of about 2@,.° Also the magnetic susceptibility and significantly across the transitidnThese facts led Johansson
its temperature dependence change from a Curie-Weiss-like propose a Mott transitiofMT) scenaric:® Similar to the
behavior in they phase to a Pauli paramagnetic behavior inMT of the Hubbard model? the 4f electrons are considered
the @ phasé® Despite these dramatic differences, the numbeto be localized in they phase and to be itinerant in the
of 4f electrons does not change significantly and is close tphase, with this reduction in the degree df-dectron cor-
one across the-a phase transition liné,which ends in a relation being caused by the decrease in the ratio of Coulomb
critical point at T=600+50 K,* above which they- and interaction to kinetic energy under pressure. The phase tran-
a-Ce phases become indistinguishable. sition is then understood to arise from & dontribution to
Notwithstanding the considerable attention, there remainghe cohesive energy in the phase where the itinerantf 4
continued disagreement about the nature of the transition arslectrons participate in the crystal binding, in contrast to the
the a phase. In general, it is believed that the transitiony phase where the localized £lectrons do not. In a subse-
is driven by changes in thef4electron correlations, though quent analysis based on these ideas, Joharssal® em-
some alternative theories have been proposed. Two receployed a standard local-density approximat{@®A ) calcu-
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lation for thespdf electrons in thew phase, while treating recently found also in correlated solutions of the Hubbard
the 4f electrons as localizedf4 moments decoupled from model itself, which in infinite dimensions maps onto a self-
LDA spd bands in they phase. Evidence for the MT sce- consistent solution of an Anderson modkTherefore, if the
nario to be correct is taken from the considerable success T and KVC scenarios are based correlatedsolutions?33
LDA calculations and their generalized gradient improve-of the Hubbard and impurityor periodig Anderson models
ments for the structural and volume dependence of the totas respective paradigms, then these scenarios are not so dif-
energy ofa-Ce-like phase$®!’ Additional support appears ferent, as has been recently argdé&pecifically, the behav-
to come from orbitally polarizéd=2° and self-interaction ior of the local moment at the MT of the Hubbard model is
corrected’~??LDA modifications which obtain transitions in not so abrupt, nor is the appearance of a three peak structure
Ce and Pr at about the right pressures. Also 1#D4 calcu-  in the density of states unique to the impurity or periodic
lations have been reported for one or both Ce ph&s¥s. Anderson models. Whether for the Hubbard model or real
In the years following Johansson’s MT proposal, photo-materials, it is really the use of static mean-field approxima-
emission experimentSee discussion and references in Ref.tions(including LDA and its modificationswhich introduces
5) confirmed his estimate of thef oinding energy; however, the abrupt moment loss and single-peaked spectra in the itin-
these exhibited other features in thé dpectra which ap- erant phase of the MT transition as envisioned by
peared inconsistent with his MT picture. This led in 1982 toJohanssott and the LDA community®~>*
the Kondo volume collapséKVC) scenario of Allen and A new approach to describe Ce including both orbital re-
Martin®® and Lavagnaet al® which is based on the Ander- alism and electronic correlation effects is now available with
son impurity model, and to later improvements by Allen andthe recent merg&t—3’ of LDA and dynamical mean-field
Liu.2” Both MT and KVC pictures agree that, at the experi-theory (DMFT).***° This approach has been employed by
mental temperatures, the larger volumephase is strongly ZOlfl etal®® who used the noncrossing approximation
correlated(localized, has Hubbard split #: spectra, and ex- (NCA) to solve the DMFT equations in order to calculate the
hibits a Hund's rule 4 moment as reflected in the observed spectra, Kondo temperatures, and susceptibilitiesxfoand
Curie-Weiss magnetic susceptibility. But, while the MT sce-y-Ce. Independently, we treated the DMFT equations with
nario then envisages a rather abrupt transition on compre¢he more rigorous quantum Monte CAldQMC) simula-
sion to a weakly correlate@itinerand « phase, in which the tions and reported, as first results of the present effort, evi-
Hubbard split bands have coalesced together near the Ferg@nce for a Ce volume collapse in the total LBAMFT

level and the 4 moments are lost, the KVC picture assumese€nergy which coincides with dramatic changes in tHe 4
continued strong correlation in the phase with Kondo spectrunf? A similar transition was also described earlier in

screening by the valence electrons of the persisténnd- LDA-+DMFT calculations for Pd In all three cases, the
ments. The signature of this Kondo screening is a peak in thepectra showed Abrikosov-Suhl resonances lying in between
4f spectra at the Fermi level, the Abrikosov-Suhl or Kondoresidual Hubbard splitting for the smaller-volume, less-
resonance, which lies between the remaining Hubbard-splgorrelatede phases, in contrast to the LDA results men-
spectral weight characteristic of the local momentghe tioned above which only obtain the Fermi-level structure.
KVC model predicts in agreement with electron spectros-Related behavior is also observed for the Mott transition in
copy thatboth Ce phases show all three peaks in the 4 V2Os, Which was studied recently by LDADMFT.**

spectra, the Abrikosov-Suhl resonance and the two Hubbard In the present work we extend Ref. 42 to lower tempera-
side bands. The difference is that the former resonance hddres, complement it with Hubbard-I calculatioti$, and
small weight in they phase and dramatically larger weight in calculate the volume dependence of additional physical
the a phase, coming at the expense of reduced but still extarfiuantities including the entropy, specific heat, total spectrum,
Hubbard side bands in the latter case. It is this rapid volum@&rbital occupation, and the magnetic moment. In Sec. II, the
dependence of the Abrikosov-Suhl resonance and equivd-DA +DMFT technique is briefly described along with the
lently of the Kondo binding energy that is the driving mecha-Hubbard-I approximation and a faster implementation of the
nism for the phase transition in the KVC model, which is QMC treatment which is subsequently validated against es-
then intimately connected to the energy scale of the Konddablished approaches. In Sec. llI, thermodynamic resullts, i.e.,
screening®?” A genuine prediction of the KVC model the energy, specific heat, entropy, and free energy, are pre-
based on the nature of the Kondo entropy is the existence g€ented over a wide range of volume and temperature and the
an unusual second critical point at lofnegative pressure, Signatures for thex-y transition are discussed. We present
which was subsequently seen experimentally by using alloythe volume and temperature dependence of thedd the

ing to push it to observable positive pressuféSince the valencespdspectrum and compare to experiment in Sec. IV.
original KVC model incorporates only two bands, there haveThe 4f occupation, local magnetic moment, and related
been subsequent efforts to introduce more orbital realisnguantities are given in Sec. V. Finally, the results of this
from LDA.2"?°%0The work of Allen and Liu, for example, is Ppaper are summarized and discussed in Sec. VI.

quite realistic within the confines of the impurity model, in-

cluding the full 4 degeneracy, spin orpit. anq intra-ayomic Il THEORETICAL METHODS
exchange, as well as LDA-based hybridization matrix ele-
ments renormalized to spectroscopic ddta. The results in this paper have been obtained by the

Many of the Kondo-like features just discussed in theLDA +DMFT method, that is, by the merger of the LDA and
context of the impurity Anderson model have been moredynamical mean-field theoryDMFT) which was recently
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introduced by Anisimovetal® and Lichtenstein and auxiliary impurity problem. Consequently, the DMFT self-
Katsnelsof® (for an introduction see Ref. 37The starting energy is diagonal(iw)l, at least in the paramagnetic
point of this method is a conventional LDA band-structurephase studied. The impurity problem is solved with one of
calculation. Since electronic correlations are only treated at the methods described in the following two sections and gen-
mean-field level within LDA, the most important term for erates a self-energ} (iw). This self-energy gives a new
electronic correlations, i.e., the local Coulomb interaction, isGreen function in Eq(2) and thus a new impurity problem
added explicitly. This defines a multiband many-body prob-and so on, iterating to self-consistendgr more details see
lem that is solved by DMFT. To solve the DMFT equations, Refs. 39 and 3 In this self-consistency cycle, the chemical
we employ two different implementations of the QMC tech- potentialu of Eq. (2) is adjusted so that the total number of
nique as well as the HubbarddRefs. 36 and 46(H-1) ap-  electrons described by Eql) is ni+n,=4 per Ce site.
proximation. This section describes the relevant computaHere, the number of #electronsn;, and similarly the num-
tional details of our calculations. bern, of valence(i.e.,spd) electrons, may be obtained from
the lattice Green function

A. LDA +DMFT approach

Scalar-relativistic, linear muffin-tin  orbital LDA T ) _
calculation§®*”were performed for face centered cubficc) N=N % T Gy(iwp)l]e" ™, 4)
Ce over a grid of volumes as described elsewfiérke as-
sociated (8,6p,5d,4f) one-electron Hamiltonians define
16X 16 matricesH?,, , after shifting the 4 site energies to
avoid double counting the Coulomb interaction between
4f electrons. The latter is explicitly taken into account in the
full second-quantized Hamiltonian for the electrons,

where T is the temperature and,=(2n+1)7T are the
Matsubara frequencies. To obtain the physically relevant
Green functionG(w), we employ the maximum entropy
method® for the analytic continuation to real frequencies

In principle, the LDA and DMFT parts of the calculation
should be mutually self-consistent, with DMFT changes in

H= > [HY%AK) limi mCh imoCk i 7mr o orbital occupationgespeciallyn;) feeding back into a new
kim,I'm’, o HYpa(k) and Uy, as argued by Savrasov and co-workErs.
1 oo ) Certainly the constrained occupation calculations used to fix
+5Us 2 Mmoo - (1) U and the 4 site energy inH’;,(k) should not be im-
Lmo,m’o’ pacted, as they are intended to be valid over the range 0

Here, k are Brillouin zone vectorsi are lattice sites)m <n;<2. These calculations provide what are, in effect, the
denote the angular momentum,is the spin quantum num- screened Coulomb energies for 0, 1, andl @ectrons per

ber, N fme=CmsCitme, and the prime signifiesmo site, which covers this range according to what fraction of
£m’o’. The many-body Hamiltonian, Eql), hasno free the sites are at one or another of the various occupations.

parameters since we employed constrained-occupation LDROWeVer, differences between the DMATand the LDAN
calculations to determing; and the 4 site energy shift for cou!d_, if the former were fed back_mto the LDA, chaqge the
all volumes consideretsee Fig. 5 of Ref. 3 for the valups Position of 4f level slightly, and with that the extension of
We did not take into account the spin-orbit interaction whichth€ 4 wave function, and thus ttfevalence hybridization. It
has a rather small impact on LDA results for Ce, and alsdS SIMPly not known at this point if such effects are impor-
neglected the intra-atomic exchange interaction which hal@nt, although we note that DMEQMC) and LDA-like (see

only an effect if there are more than onédlectrons on a Ce >¢C: Il D solutions of Eq.(1) generally yield values ofi;
atom. within 10% of one another. The additional cost on top of the

The DMFT maps the lattice problem, E€L), onto the ~aiready very expensive LDADMFT(QMC) method also
self-consistent solution of the Dyson equation makes such additional self-consistency impractical in the
' present case.

Gyliw)=[iol+ul —Hoa(k)—S(iw)I{]7% (2

and a seven-orbitaauxiliary) impurity problem defined by B. Hubbard-I approximation
the bath Green function, In the large-volume limit where intersite hybridization
1 1 vanishes, the auxiliary impurity problem is simply the iso-
N T Bl ; +3 (i), lated atom, i.e.g(iw)=1/(iw+ u—es), Wheree; is the 4f
Gliw) 7N ; TGkl i} 2(iw) @ site energy. In this limit the exact self-energy is known and

. . . . may, at finite volumes, be used as the H-I approximatffi:
Herel is the unit matrix,|{=[ &t 8|1 Smny | Projects onto the

sevenf orbitals, . is the chemical potential, Tr denotes the

trace over the orbital matrix, ard is the number ok points Siw)=io+uy—[GNiw)] ™, (5
(N=2048 for T<0.4 eV and N=256 for T>0.4 eV).

Within the LDA, there is a minor crystal-field splitting of the 14

seven 4 orbitals. However, in Eq(3) we average over the Giw)= E : Wi('“atl'T) (6)
seven 4 orbitals, i.e., we treat them as degenerate in the Srio+u,—(j—1)U¢’
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n2= 14T; G¥iw,)ee", 7)
wheree; has been absorbed injo,, which is set at each
iteration in such a way tha‘t?‘t of Eq. (7) equals the current
n¢ of Eq. (4). The positive weightsy; for transitions between
j—1 andj electrons are given by

14
Wj:[jUj+(15_j)Uj1]/<1"r|§) U|), (8)
wherev; are Boltzmann weights for havinglectrons on the
atom,

141 1 .
V= Ti1a— )1 & _(EJ(J_l)Uf_JMat]/T- ©

Our DMFT (H-1) procedure is in fact also correct al
volumes in the high-temperature limit. Noting that thes
sum to unity, one can see that

14 14
13 13
al = — I . L= —
p3 t(OO) 14UijO]UJ 120 Uj 14nfo, (10)

since we always chooge,; so thatni'=n; . This is the para-
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This approach generates smooth Green functiG(s))
and reproduces the correatr—0 limit. We use it in one
implementation of the QMC algorithm, referred to as QMC
in the following. Other approaches employed in the literature
are to fit splines toG(7) and, thus, to use more support
points thanA to do the Fourier transformatidhor to extend
the Matsubara frequency sums by employing the iterated per-
turbation theory result at high frequencfedviost results of
our paper were obtained by yet another QMC implementa-
tion (QMGC,) that uses a different way to Fourier transform
and which seems to be less sensitive to statistical noise. As
this modification is new, it is described in some detail in Sec.
Il C 1 and validated in Sec. Il C 2.

1. Modified QMC implementation
In the implementation QMg we use a constrained fit

G(r>=2 w; fi(7) (12)

to the output QMC impurity Green functio®(n), in
order to accomplish the Fourier transform &(i w,) for
n=—3N,,...,5N,—1 with N,>A. The basis functions
aref,(r)=—e ®"/(e P?i+1) and have Fourier transforms

magnetic Hartree-Fock value, which is also the correct highfi(iw) =1/(iw—&;). At real frequencies, Eq(12) corre-
temperature limit sinces,>T, and only the high-frequency Sponds to a set af functions with different spectral weights

tail of the self-energy is of importance.

C. QMC simulations

w;, and is capable in the limit of an infinite set of basis
functions of reproducing any given spectrum. In contrast to a
spline fit where every fit coefficient is determined by the
local behavior in an imaginary time interval, in our approach

~ Our main approach to solve the DMFT impurity problem every fit-coefficient is determined by the local behavior in
is the numerical QMC technique. We use two implementafrequency space.

tions that differ mainly by the Fourier transformation be-

The constraints to the fit Eq12) arew;=0, G(0") is

tween the Matsubara frequency representation employed igvecisely the QMC value,G(07)+G(B )=—1, and
the Dyson equation, Eq2), and the imaginary time repre- (q/q:)G(0")+(d/dr)G(8~)=g,, wheref =g—0" and
sentation employed for the QMC simulation of the impurity g is the (w) ™ high-frequency moment d&(i w). For the

problem, Eq.(3). Within QMC, the imaginary time interval
[0,8] (B=1/T) is discretized intoA Trotter slices of size
A7=pBIA. Since there are 91 Ising fielger time slice, the

last constraintg, is obtained from the relatiols (i w)
=G Yiw)—3(iw) which impliesg,= y,+s,, where these
are the indicated moments @(iw), G(iw), and 2 (i w),

number of time slices that are computationally manageabl?espectively. Herey, is known asg is input to the QMC
in the QMC is seriously restricted. Thus, if one employs agnq we takesozi(iw=oo)=(13/14)nfuf with nf=14{1,

discrete Fourier transformation betweé(i w,) at a finite
number of A Matsubara frequencies andj(m),m

+G(r=0")] for the present paramagnetic caSe.
Typically we use grids ofA/4 equally spaced;, and

=1A7, ..., AA7, the resulting Green function oscillates optimize the agreement with the QMC data as a function of

considerably around the corre€i(7). To overcome this

shortcoming, Ulmke and co-workéPssuggested using a

smoothing procedure that replacééi w,)— G(iw,), after
calculating the auxiliang(i w,) via Eg.(3), where

AT

Glwy)= l-exd —A7/G(iwy)]’

(11)

the centroid and width of these grids, in each case system-
atically eliminating basis functions for a given grid which
would otherwise yield negativey; . Because the QMC ex-
pense increases as’, we are forced to execute fewer Monte
Carlo sweeps for the largest’s, and the statistics become
less good than for smallek’s. However, the constrainy,

=0 still seems to provide a sensible interpolation through
the statistical noise, although this has the consequence that

It is G(iw,) that is Fourier transformed to imaginary time the number of surviving positive; increases more slowly
G(m), and once the QMC simulations of the Anderson im-than A. Nonetheless, we see a systematic evolution as a

purity problem have yielded the outpGf 7;), the process is
reversed: The Fourier transform @&(7), G(iw,) yields
G(iw,) from the inverse of Eq(1l). The new self-energy is
then (iw,)=G(iw,) - G(iw,) L.

function of A and extrapolations\ — agree with large-
volume and high-temperature limitdiHubbard-) and the
QMC,; (see Sec. Il CR Note that while we find the fit Eq.
(12) to be very useful for functional behavior along the
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imaginary time and frequency axes, and for integral quantirate kinetic energies (larger N,). Most of our
ties such a®; and the total energy, it is not useful in practice DMFT(QMC,) calculations took N,=256 for T

for directly obtaining real frequency behavior in the presence=0.054 eV andN, =512 forT=0.027 eV. In the course of

of typical QMC statistical uncertainties. The maximum en-this work we realized that there is a volume dependence to

tropy method is far superior here as it folds these uncertainthe error in the kinetic energy from the Matsubara cutoff, and
ties into calculation of the spectf. while the N,=256 choice afl=0.054 eV leads to a small

In order to accelerate the convergence of our0-04-eV error in the vicinity of the transition, it becomes

DMFT(QMC,) method we carry out cheap iterations on theMore si_gnificant, 0.11 eV, at the smallest volumes consid-
constant part of the self-energy in between each expensiv@/€d: Since our DMFT(H-I) and DMFT(QMZ codes have

QMC iteration. That is, we subtract a constant Hartree-Focidentical kinetic-energy treatment, we used the former to cor-
contributiors® from t,he QMC self-energy: A3 (iw) rect the present DMFT(QMg results to effective values of

_ QMG oMC QMC_ N, four times those just noted, which should give better than
E+ (i) (.13/14)qf Ui where ny 141+ _G(T 0.01-eV accuracy at all volumes. We verified this by selected
=0")]. Following every QMC cycle, then, one hagiw)

7 P DMFT(QMC,) tests with the largemN,. Note that this
=(13/14)n;U;+ A3 (i) in Eg.(2) which is iterated to self-

X ! ) ; ; kinetic-energy treatment includgsnd the cited errors re-
consistency witm; from Eq. (4), while keepingAX fixed.  fact) an approximate evaluation of the full infinite Matsub-

MC . N . .
The resultant values of; andnP"“ agree within statistical ara sum. Specifically, we approximate the high-frequency be-
uncertainties. These uncertainties can be significantly smallgfavior of a quantity F(io) by Fo(iw)=w;/(io—e;)
for ny than forn?"® at the smallest volumes. +w,/(iw—&,), with parameters chosen to reproduce its

We find G(7) to converge quickly as a function of QMC  1/(i»)™ moments form=1-4. Then we approximate the
iteration for all7 at small volume, and for close to 0 ang8 infinite Matsubara sum of (iw) by the analytic result for
at large volume. For intermediateat large volume and low  the infinite sum ovefF, plus the finite sum over the differ-
temperature, however, whef®(7) is generally quite small, enceF—F,,.
convergence appears to result from the average of frequent
small values ofG(r) with occasional large values as the 2. Validation
Ising configurations are sampled, with the large-volume Here we validate the faster QMCalgorithm of Sec.
atomic limit approached by the latter becoming statisticallyll C 1, used for much of the low-temperature thermodynamic
unimportant. results in this paper, against QN@hat employs the Ulmke

In order to improve the statistics given by this behavior,smoothing. Such validation involves extrapolation to the lim-
we have chosen to include sweeps from all previous QMGts N,,, A —x, where the QMG approach should provide
iterations (excluding warm-up sweepslong with the new  exact results. Errors that vanish in these limits include those
sweeps inG{"*"( ) in arriving at the QMG result for itera-  arising from truncation of Matsubara surtfiite N,), and
tioni: Gi(7)=[G"™"(7)+(i—1)G;_1(7)]/i. Note that the from the Trotter approximatioffinite A).
warm-up sweeps themselves are already started with a rea- Figure 1 compares the DMFT kinetic ener@see Sec.
sonable self-energy, such as a converged DMFT(H-I) resuli D for details of its calculatioph obtained by QMG and
or a DMFT(QMG,) result for anotheA. We have tested this QMC; as a function ofAr=pB/A, at a temperaturel
treatment at both small and large volumes by starting anew at 0.54 eV and atomic volum&=16.8 A>. (Note that the
i=1 from the converged DMFT(QMG self-energy, and A7 dependence is largest at small volumes, as we shall dis-
have found agreement with the previous results to withincuss furthey. The line with open circles shows the QNIC
statistical uncertainties. results with Matsubara sums truncated agr= A frequen-

We used 10000 sweeps per QMC iteration for-80, cies under the application of Ulmke’s smoothing procedure,
decreasing systematically to 1000 far=256, and carried Eq. (11). Those with squares and open triangles show the
out from 20 to over 100 QMC iterations for eadh V results when these sums are extendedNje=~ using the
point. At small V even at T=0.054 eV we found the Hartree-Fock(HF) Green function at high Matsubara fre-
DMFT(QMC,) energy to settle down generally after a few quencies; that is, using EQ) with 2 — 3= (13/14)n:U;
QMG, iterations to maximal excursions of abotD.02 eV for = w,=A =T, ... »©.°}In the first casdsquaresthe cur-
(+=0.05 eV} for A=80 (256), with the root-mean-square rent chemical potentigk andn; were used to definE y¢. In
uncertainties much smaller. Such benign behavior extendhe second casépen triangles the whole procedure was
to increasingly large volumes at highdr, where these made self-consistent: Fronrm;, we calculate 3 (iw)
DMFT(QMC,) results begin to agree closely with =(13/14)n:U;+A3(iw) for all frequencies at a fixed
DMFT(H-1). At low temperature, the scatter in our measure-A>, (iw) which is defined in the preceding section. This
ments as a function of iteration grows as volume is in-3(iw) yields a newn; via Eq. (4), and so on until conver-
creased, especially in the transition region and beyond; howgence. As can be seen, the dependencelenis greatly
ever, the Trotter corrections also diminish here so there iseduced, as is also the case for the QM@plementation of
less need for largeA. Sec. Il C 1(filled circles which also uses this self-consistent

Finally, we turn to the issue of performing the Fourier treatment of the HF part of the the self-energy. To avoid a
transform from imaginary time to Matsubara frequencieslarge A error, the large frequency part of the self-energy
The virtue of the fit, Eq(12), is that it decoupled. andN,,  and especially the constant HF part is important to the en-
allowing manageable QMC costsmallerA) and yet accu- ergy, and must be self-consistently correct.
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50 ] In DMFT(QMCGC,) calculations for the whole volume grid
N we have used at least 1, 2, and\3 values for temperatures
greater than, equal to, and less than 0.544 eV, respectively. In
the first case it is easy to takker so small that really no
extrapolation is needed, or maybe one other value as a spot
check at the smallest volume. At=0.054 eV (632 K) we
usedA rU;/2=0.417, 0.334, and 0.208.Our calculations at
T=0.027 eV(316 K) were limited by expense to systemati-
™ cally larger valuesA 7U/2=0.667, 0.477, and 0.334, so that
extrapolations ta\ 7=0 are more uncertain. Even the small-
estAr here, which corresponds th=320, leads to a\ 7°
value that is 2.6 times larger than its counterpartTat
=0.054 eV. Fortunately, we see every indication that our
. L : electronic Hamiltonian is already very close to its low-
ooo 002 004 006 008 a.10 temperature limit byT=0.054 eV (632 K), as these total
Ar(eV7) energies agree with those at=0.027 eV within their error
FIG. 1. ExtrapolatonA7—0 of the kinetic energy aff ~ bars at the samfinite A7 values. Thed 7—0 extrapolations
=0.54 eV andvV=16.8 A3, using the QMG (filled circles and the ~ are more benign fon; andd which also agree well for the
QMC; algorithms(open circles, squares, and triangles; differencestwo temperatures. Accordingly, we do not display the
are due to whether and how Hartree-Fock results for the high=0.027 eV results in this paper, but do comment on the
frequency tails of self-energy are included, see)téikte lines show agreement between the two temperatures as specific quanti-
the extrapolations through the QMC data yieldigg;,(A7=0) ties are presented.
=49.888+0.003 eV (filled circles and 49.8530.022 eV (open We have alluded earlier to the fact that the Trotter ap-
triangles, both with a mixed quadratic and cubic fit; and 49.944 proximation errors get larger at smaller volume in the present
+0.271 eV (open circley and 49.713:0.305 eV (open squargs  work. This makes sense as these are related to the commu-
both with a linear fit. The results agree within twice the abovetator of the kinetic and potentia| energiesy and should thus
standard deviation and, thus, validate the QMigorithm. The  gepend on the size of the hybridization, which gets larger as
inset shows the two upper curvéled circles and open triangles  yolume is reduced. We find no discernible dependence of the
as a function ofA7* over an expanded 7 range. For the QMg energy omA 7 for volumes in they phase of Ce for the range
e bttt Of A Invsigated. bu hal o th smaller volumephase
. we find dE/dA 72 to become significant and to increase in
A7U;/2<0.4 (dotted ling. . . . ; .. .
magnitude with decreasiny. Since they-« transition is
intrinsically related to the growing importance of hybridiza-
The inset of Fig. 1 shows the top two curves in an ex-tion versus the Coulomb interaction as volume is decreased,
panded scale versus7?, which indicates 0.035-eV agree- this behavior is perhaps not surprising, although the effect
ment between the two QMC methods in the liddit—0. We  turns on rather abruptly, appearing as almost another signa-
believe that effects of Matsubara cutoff are largely elimi-ture of the transition. Similar behavior has been seen for the
nated here and that Trotter errors predominate in thesperiodic Anderson modéf->®
curves, which are expected to be of leading ordef, at
least for the QMC calculation of lattice models without the D. Calculation of the LDA+DMFT energy

i i aati 39,52
DMFT self-consistency complicatiofi>* In order to keep There are several possible expressions for the DMFT total

the Trotter errors under cor;tgrol, it is recommended hat o010y per site, depending on whether the potential energy is
be constrained td 7U¢/2<1,” and we have done so in this 5pisined using the self-energy

work. In fact at small volumes where the Trotter corrections

48

46

Ekin

44

42 + \\
0.000 0.0220 2.040 0.060
At (eV™)

are the largest, we would find the need to use three terms T o 1 _ -
over this full range, with botha+bA7r*+cA7® and a EDMFT:NI; Tr | Hipa(K) + 52 (1) [ Gyliwp) 0™,
+bA7+cA 7 providing reasonable fits to the energy. We 7 (13)

find the ratioc/b to be significantly smaller for the first
choice, which is consistent with the expectations of a leadin@r from a thermal average of the interaction in Et),
A7? dependence. In our DMFT(QME calculations we T
have therefore chosen to use the two-terrafitbA 72, how- _ 0 ; iwn0F
ever, over a reduced range. The dotted line in the inset of Eomrr = r% TTH (k) Giliwn) Jer™ +Uyd.
Fig. 1, for example, suggests that-U:/2<0.4 might be a (14
reasonable range for this fit, givésy=5.05 eV for the vol- .

. . . .In the latter expression,
ume in the figure. The two-term fit also makes more sense in
the volume range of the transition, where the Trotter correc- 1
tions are smaller, but there is also more scatter as a function d= 55 > > (MmN o) (15)
of A7, [

mo,m’ o’
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is a generalization of the one-band double occupation for 0 X
multiband models, which may be calculated directly in the

\

QMC presuming the site average is given by the associatet - TeV)=54 T =5 :la\:\ 0.14
impurity problem. If we were using thexact k-dependent 4L ui N
self-energy in these equations, Ef3) would be equivalent - + N\

to Eq. (14) and to the Galitskii-Migdaf expression for the i T
total energy. We find Eq14) to be far superior in the present S, + AN
LDA +DMFT(QMC) calculations in regard to low- -2 B '*'*~,N~\ . T A

temperature stability and agreement with known limits, pos-
sibly not surprising in that it takes a thermal expectation of
the true Coulomb interaction for the problem. We use Eq.

o
A

Illllllll__l/llllllllll

(13) for the LDA+ DMFT(H-I) energy in preference to Eq. I )\ 14 T ;l?—fsr‘;}\ 0.054
(14) with a purely atomic calculation ofl. However, it g -1+ \ -+ *?Tt:
should be noted that for vanishing intersite hybridization at i \‘\ T N
large volume, as well as at high temperatures, the H-l selfw’ - \ - \
energy is exact, and indeed we find agreement between QMW oL ™~ Hi \\
and H-I results folEpyer in these limits. . \T\.:-\-- & 7 ]
To evaluate the total LDA DMFT energyE(T) includ- 6 Dppma Loy ol g ol amy Toon s ollly o J L ‘ i
ing all core and outer electrons, we add a correction to the L ""\' ST 20 30 40 50
paramagnetic all-electron LDA enerd@pa(T), i "\L\;\ ‘\ 6,54 i Vv (A
L O\ ]
Eiof T)=ELpa(T) + Epmrr(T) — Emipa(T),  (16) =l I \\\“\\\\ 7]
which consists of the DMFT enerdypyer(T) less an LDA- i “\ 1 - polarized HF
like solution of the same many-body model Hamiltonian Eq. - A\ . T DRFT{H-1)
(1), thus “model LDA’ or E pa(T). The latter is achieved -2 - . 1 DMFT(QMC)
by a self-consistent solution of Eq®) and(4) for n; taking - TSy
a self-energy® . pa=U¢(nN;— 3). From this, the kinetic en- 10 '2'0' = '3'0' = '4'0' 50
ergy is calculated by the first term of E{.4) and the poten- V(&)
tial energy bysUn¢(n;—1). Note that while all of these
expressions are explicitly temperature dependénthe FIG. 2. Correlation energy, i.e., the difference between the

present calculations are electronic only and do not attempt tbDA + DMFT and the paramagnetic HPMHF) energy, as a func-
add lattice-vibrational contributions. Estimates of these contion of volume at five temperatures. At large volumes, the LDA
tributions are similar for thev- and y-Ce phases, however, +DMFT(QMC) energy agrees with the polarized HF and the
and appear to have little impact on the phase diagram. ~ Hubbard-1 (H-I) solutions. But the LDADMFT(QMC) energy
Finally, one virtue of the Hamiltonian, E@l), is that it is breaks away from the polarized HF energy for decreasing volume,
possible to reach high-temperature limits where the entropiﬁa(_jing to a region of negative_ curvature in the vicinity of the ex-
is precisely known. One may then calculate the entropy fronPerimentally observed-y transition(indicated by arrowsat low
the DMFT energy, temperature.

A. Global behavior

» 1 dEpuer(T') . _ .
Somer(T)=S.—kg [ dT T ar 17 Figure 2 shows the correlation energy of the effective
T T T LDA Hamiltonian Eq.(1), defined as the enerdyof Eq. (1)
whereS,,=kg[M In M—nIn n—(M—n)In(M—n)]=12.05%kz minus the paramagnetic HF resulipyye for the same
for M =32 states and=4 electrons per site for Ce. Hamiltonian. Results for polarized HF, DM-I), and
DMFT(QMC) as obtained from Eq$13) and(14) in the last
IIl. THERMODYNAMICS two cases, respectively, are compared in this manner for an

extended range of atomic volumes at five temperatures. The

In this section we consider thermodynamic propertiespolarized HF solutions assume ferromagnetic spin order, and
of Ce, more specifically the energy, specific heat, entropydisplay both spin and orbital polarization, with ond 4
and free energy, over a wide range of voluMend tem- band depressed below the Fermi level and the other thirteen
peratureT. Intercomparison of the HF, DMFT(H-I), and lying above. These HF calculatioidash-dotted curveésre
DMFT(QMC) methods to solve the effective LDA Hamil- seen to give good energies at large volume and low tem-
tonian, Eq.(1), here serves to validate all three calculationsperature in comparison to the DMEJMC) (solid lines
in limits where they should and do give the same answersyith data pointg as has been observed previously for the
and also to point out shortcomings of the more approximatéAnderson Hamiltoniaf>>® Thus, the polarized Hartree-Fock
techniques elsewhere. Then we turn specifically todhe  solution and other polarized static mean-field methods such
transition in Ce, and use the total energy, Etf), and en- as orbitally polarized LDAZ~?° self-interaction-corrected
tropy, Eq.(17), to present evidence for the volume collapseLDA,?°~?? and LDA+U?%*?* can be expected to give good
transition. low-temperature total energies in the strong coupling limit.
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eracy of the Hund’s rules magnetic momein(2J+1),
where without intra-atomic exchange and spin-orbit interac-
tion we get the full 14-fold degeneracy of tlidevel rather
than the proper sixfold degeneracy fbe 5/2. At still lower
temperatures, crystal-field effects are known to reduce the
entropy®’

Figure 3 illustrates two important aspects in which HF

25 T T transition is a shortcoming of the paramagnetic HF phase in
[ (@) —— PMHF /] which double occupations dfelectrons on the same Ce site
- —-—- pol HF 7o cannot be avoided such that the paramagntieraction
s T DMFT(H-I) - energy is too high.
L ¢ DMFT(QMC) o ] Additional insight is provided by the corresponding en-
s | ] tropy in Fig. 3b). The DMFTH-I) entropy approaches
E - 7 kgIn(14) at low temperature, which is effectively the degen-

= - and more rigorous techniques differ. First, the HF transition
S T at about 1 eV corresponds simultaneousnmoment forma-
E 5 0 tion and magnetic ordering. In contrast, the two processes are

distinct in more rigorous treatments, with the moment forma-
tion occurring in a continuous fashion at higher tempera-
tures, culminating in the lowi- plateau in Fig. &), with the
onset of magnetic ordd(if it occurs) coming at yet lower
temperatures off the scale of the plot. Second, polarized HF
gives goodlow-T energies at large volumes because one of
the Hund’s rules multiplet states will be a single Slater de-
LDA +DMFT Hamiltonian Eq(1) vs temperature ar=46 A%. At terminant. However, its broken symmetry mistreats the en-
this relatively large volume, the DMRQMC) and DMFTH-I) en-  tropy at lower temperatures, giving zero instead of, e.g.,
ergies agree with each other and, at lower temperatures, also withgIn(2J+1) for ng=1 in the atomic limit, so that the finité-

the polarized Hartree-Fock solution. However, the entropy of thehermodynamics are incorrect.

latter is completely wrong since the 14-fold degeneracy of the local

magnetic moment is disregarded.

0 = _+—|—rTrT|1/ 1 Ll L1 1aan
10 107 10° 10’
Temperature (eV)

FIG. 3. Energy(upper figurg¢ and entropy(lower figure of the

B. Transition

As the atomic volume is reduced, the difference between We now consider thermodynamic evidence for thaey
polarized and paramagnetic HF enerByor— Epupr, be-  transition in Ce. While the QMC error bars restrict us from
comes positive near 223A and the HF solution has a tran- making a quantitative prediction, we argue that the present
sition from the polarized to the paramagnetic solution, whergesults do suggest the transition. Evidence is already appar-
all fourteen bands have coalesced together above but slightgnt in Fig. 2, where the DMRQMC) correlation energy is
overlapping the Fermi level. The highest two temperatures iseen to bend away from the polarized HF result as tempera-
Fig. 2 lie above the critical point for this transition, and soture is lowered, leading to a region of negative curvature in
there is no polarized HF solution. the vicinity of the observed transitioarrows. As the other
Turning to the Hubbard-1 approximation, which becomesterms €, pa and Epyur— Emipa) contributing to the total
exact in the atomic limit, it is no surprise that the energy Eq.(16) all have positive curvature throughout the
DMFT(H-I) results(short-dashed curvishould agree well range considered in this work, this correlation contribution is
with the DMFT(QMC) energies at large volume fail tem-  then the only candidate to create a region of negative bulk
peratures. This approximation is also exact in the highimodulus in the low-temperature total energy, i.e., a thermo-
temperature limit, as may be seen from Fig. 2, where there idynamic instability, and thence a first-order phase transition
also increasingly good agreement at high temperature for afiiven by the Maxwell common tangent.
volumes considered here. The agreement between the two Figure 4 shows total energies E@L6) for the DM-
distinct DMFT calculations in these limits provides a test of FT(QMC) and polarized HF methods at the three lowest tem-
the reliability of both approaches used here. peratures of Fig. 2. The region of negative curvature just
A direct view of the temperature dependence is given imoted in the correlation energy is seen to cause a substantial
Fig. 3(@), where the energf of Eq. (1) is plotted versu§  depression of the DMRRMC) total energiegsolid curves
for an atomic volumeV of 46 A3. At this relatively large  with symbol$ away from the polarized HF resultdashed
volume, the DMFTQMC) and DMFTH-I) results agree curves below 35 &, which is most pronounced at the low-
closely and smoothly interpolate between the polarized HFest temperatureél =0.054 eV. The consequent shallowness
energy at low temperatures and the paramagnetic HF resuti the DMFT(QMC) curve at this temperature persists over
at high temperatur@bove about 15 eV, not showThere is  the observed range of the two-phase regiamrows, al-
no temperature-induced transition in the DMFT results herethough statistical uncertainties preclude any claim of seeing
in contrast to the unphysical transition from the paramaghnegative curvature. The slope is also consistent with a
netic to the polarized phase within HF @t-1 eV. This  —0.6-GPa pressurgong-dashed ling which is the extrapo-

075108-8



THERMODYNAMIC AND SPECTRAL PROPERTIES B. ..

25

2.0

E, (eV)

15

1.0

PHYSICAL REVIEW B 67, 075108 (2003

ergies obtained via Eq14) closely approach the H-I results
asT is increased, e.g., lying above by only 0.024 and then

————— polarized HF ;
— DMFT(QMC) - 0.004 eV atT=5.4 and 13.6 eV, respectively, fov
-0.6 GPa | =16.8 A. We therefore fit the difference between the QMC

and H-I energies at eight temperatures from 0.054 to 5.4 eV
to the forma+ 3 ,b,/(1+nA/T?), n=1-3, which has a2
behavior at low temperatures, and is benign at high tempera-
tures. These smoothed and interpolated differences were
added to the DMF{H-1) energies to create a fine grid of
“DMFT (QMC)”  energies from  which C(V,T)
=JE(V,T)/dT|y was calculated by numerical differentia-
tion, andS(V,T) by integration down from the higfi-limit
according to Eq(17). Note that while the finite nature of Eq.
(1) is unphysical at very high temperatures, these results are
nonetheless entirely meaningful at more modest tempera-
tures where the omitted core and higher-lying valence states
will be frozen out, e.g., below-3 eV near thex-vy transi-
tion, given a spectrum of Eq1) that extends to nearly 30 eV

Vv (R) above the Fermi level in that volume range.
The challenging need for accurate energy derivatives, as

FIG. 4. Total LDA+DMFT(QMC) and polarized HF energy as L
a function of volume at three temperatures. While the polarized HléN_e” as the sensitivity of Eq17) to the lowest temperatures

energy has one pronounced minimum in f€e phase, the nega- 91Ven the 1T fact(_)r, requires a stringent convergence crite-
tive curvature of the correlation energy of Fig. 2 results in thefiOn for the kinetic-energy Matsubara sums. Otherwise we

development of a side structur@£0.14 eV), and finally a shal- Observe unphysical negative lolimits of the entropy for
lowness =0.054 eV), which is consistent with the observedy V<25 A3. We have also constrained the fits to smooth out
transition(arrows within our error bars. These results are also con-the value of this lowF limit as a function of volume over
sistent with the experimental pressure given by the negative slopthis same range. In all cases it is to be emphasized that the
of the dashed line. fits give excellent representation of features in
Eomer(ome)(T) — Epmern-n(T), ranging in size from 0.1 to

lated transition pressure @t=0.1° We suggest in fact that 0.24 eV upon decreasing the volume frafe35 to 25 &,
theseT=0.054-eV(632-K) total electronic energies are al- and are well within the-0.03 eV error bars in the data. The
ready close to the low- limit. Both the DMFT(H-1) and HF  same fits were used to obtain bdit{V,T) andS(V,T).
energies at this temperature differ by less than 0.006 eV from The temperature dependence of the DNIBVIC) specific
corresponding results at half this temperature, throughout thieeat is shown in Fig. 5 at six volumes. The most significant
volume range in Fig. 4. Our DMRQMC) calculations at feature is the appearance of the low-temperature peak in the
T=0.027 eV (316 K) are also consistent with this conclu- range T=0.1-0.2 eV, which coincides precisely with
sion, as discussed in Sec. Il C 2. growth of the quasiparticle peak or Abriksov-Suhl resonance

That the electronic contribution to the total energy mightat the Fermi level in the # spectra, as will be seen in the
be close to its low-temperature limit below about 600 K isfollowing section. Analogous behavior has been discussed
also consistent with the analysis of they transition by for the one-band Hubbard mod&l.The low-temperature
Johanssoet al.*® who attribute the temperature dependencepeak in the specific heat is just barely discernible at the
of the transition pressure primarily to the difference in en-y-phase volume of 34 Ain Fig. 5, but becomes rather
tropy, which is zero anétgIn(2J+1) for thea andy phases, prominent by 29 A which is slightly larger than the
respectively. That is, for temperatures larger than both ther-phase volume, and then continues to broaden and shift to
Kondo temperature and the crystal-field splitfihin the y  higher temperatures as volume is further reduced. The broad
phase, yet still fairly low(say 200—600 KK the temperature peak near 1 eV, which appears at all volumes, is due to both
dependence of thg-phase free energy may be dominated bythe 4f charge fluctuations, and also spdvalence to 4
the linear term—KkgIn(2J+1)T arising from a plateau such as excitations, given that; increases by-20% on raising the
in Fig. 3(b), while presumably the total energiésoth« and  temperature to 1.4 eV. Note also in regard to the charge
v) are closer to the low- limit due to their fastel? depen-  fluctuations that the peak i€(T) should occur at signifi-
dence. cantly smallerT than the Coulomb repulsiod;~6 eV, as

We have calculated both the DMEJMC) specific heat may be seen in the case of the half-filled one-band Hubbard
C(V,T) and entropyS(V,T) for the effective Ce LDA model. Here, the specific-heat peak occur3 &t0.208J in
Hamiltonian, Eq.(1). We first calculated DMF{H-I) ener-  the absence of hoppirig=0, and the location of the peak is
gies, Eq.(13), on a logarithmic temperature grid up to the also depressed by the band width.
high-T limit (~10° eV) where the entropy is known to be  The volume dependence of our DMEIMC) entropy is
12.057kg . As noted earlier, the DMRH-1) method is cor- shown in Fig. 6 for six temperatures. The rapid increase in
rect at high temperatures, and indeed the DMBVIC) en-  the entropy over ther-vy transition (28.2—34.4 & is due
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FIG. 5. Specific heat as a function of temperature for different

volumes (offset as indicated At smaller volumes, an additional

FIG. 7. Free energy as a function of volume at three tempera-

low-energy peak develops, coinciding with the formation of antures, compared to lines whose negative slopes give the experimen-

Abrikosov-Suhl resonancgsee Fig. 3.

precisely to the low-temperature peak@{T), which con-
tributes to the entropy via its weighted ar¢dTC(T)/T.

Thus, at large volumes where thé dpectral weight is Hub-
bard split with no contribution at the Fermi level, the Idw-
entropy is pinned akgIn(2J+1) (ignoring effects of crystal
field at yet lowerT). Then, as the volume is reduced, the
guasiparticle peak begins to grow at the Fermi level, th

50
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tal a-y transition pressures at=0 (solid line) and 0.054 eV
(dashed ling Given the statistical uncertainties, the results are con-
sistent with experiment and show that a shift of they transition
volumes is primarily due to the entropy.

the low-T entropy belowkgIn(2J+1) via Eq. (17). The
physical interpretation is of course that the degeneracy asso-
ciated with the 2+ 1 directions of the Hund’s rules moment

i . . . e'disappears as this moment is either screened or collapses on
weighted area of its associated heat-capacity peak reduc?

(g'ducing the volume.

For completeness, we conclude this section by providing
the free energfr=E,;— ST in Fig. 7, although the uncer-
tain errors in the entropy and the fact that the lavgdeow-

T value is 50% too larggtaking into account the spin-orbit
coupling will givekgIn(6) instead okgln(14)] make this an
estimate. Given that the electronic total enelgy; is near its
low-T limit by T=0.054 eV, we consider that curve ag “
=0,” and then include it again a&=E;,;—ST for T
=0.054 eV. The error bars on all curves are just from the
energy. The slopes of the two straight lines give the experi-
mental transition pressures Bt 0 and 0.054 eV, and arrows
mark the observed boundaries of they transition at room
temperature. It is obvious that the curvatureFqlV) is in-
deed smaller on the-Ce side than on the-Ce side, i.e., the
compressibility is larger. This was found experimenthiind
motivated Eliashberg and Capellm&ro put forward their
theory with symmetry breaking and a diverging compress-
ibility on only the «-Ce side of the critical point. Unfortu-
nately, the QMC error bars prevent us from a quantitative
estimate of the compressibility, and the behavior we see need
not imply any symmetry breaking. The essential conclusion
of Fig. 7 is that these results are consistent with experiment,

FIG. 6. Entropy as a function of volumes for different tempera- though stronger claims are precluded by the statistical uncer-

tures. In the vicinity of thex-v transition (28.2—-34.3 &, the en-
tropy increases rapidly.

tainties. Nonetheless, the results of this section which we
find compelling are the way in which,.(V) systematically
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develops a shallowness in the vicinity of they transition 4.0
as temperature is lowered, and the structure in the specific
heat and entropy.
by 35t
IV. SPECTRA
_ , . 3.0 | :
In this section, we discuss the spectral changes through
the a-v transition. To obtain the physical spectruifw)
=—(1/7)ImG(w), one has to analytically continue the 25 r V=24Z\3M \ T~
QMC data from the imaginary timéMatsubara frequengy 1 ]
representation to real frequencies 2 20k )
z2
% eT(n—o)
G(r)zf do——A(w). (19 15 .
— 1+eﬁ(l’«_w) V=29;&3
As one can see in Eq18), the values ofA(w) at large 1.0 | yosai® i
(positive or negativefrequencies affecG(7) only weakly
because the integral kernel is exponentially small in this re- Va0A®
gime. To deal with this ill-conditioned problem that is par- 05T VN ]
ticularly cumbersome in the presence of the statistical QMC [ voaBR? 1
error, we employ the maximum entropy mettf§dhen in- 0.0 LoD -, .
terpreting the results later on, we have to keep in mind, how- -60 -30 00 30 60 90
ever, that there is a significant error at larger frequencies o(eV)

which tends to smear out fine features such that, e.g., inner
structures of Hubbard bands are not necessarily resolved. Ipn_ ., K: offset as indicated. When going from small to large
Sec. IV A, we present the S.peCtra of thend Va'e”Pe elec- volume, the weight of the central Abrikosov-Suhl resonance de-
trons of fcc Ce as a TL%”C“O” of volume and discuss thecreases and practically fades away at the/ transition fromV
changes at the-y transition. The spectra obtained are com- _>g 15 34 £ The residual weight around the Fermi energyat
pared to photoemission and bremsstrahlung experiments in34 A3 indicates a smeared out Abrikosov-Suhl resonance as is to
Sec. IVB. be expected if the Kondo temperature gtCe is below T
=632 K.

FIG. 8. Evolution of the 4 electron spectrum with volume at

A. Change of the spectra at thea-y transition .
g P Y Altogether, we observe, as a function of volume, the

In Sec. Ill we noted a region of negative curvature in thecrossover from a structure that differs only slightly from a
correlation energy at volumes consistent with the experimenone-peak structure, to a three-peak structure, and finally to a
tal « and y volumes, leading to a shallowness in the totaltwo-peak structure. The physical interpretation is thatfthe
energy and suggesting a first-order phase transition at loweflectrons are somewhat correlated at low volumes, where the
temperatures. To further elucidate the nature of the ongoingarge quasiparticle peak above the Fermi energy resembles
changes, we study the evolution of thelectron spectrum as (to a first approximationthe one-peak structure of the un-

a function of volume for fcc Ce at=0.054 eV (632 K) in  correlated one-particle theory or the LDA. At larger volumes,
Fig. 8. This temperature is close to the critical poifit ( the system is highly correlated, there is a magnetic moment
=600+50 K) at which the first-order-y transition disap- imposed by the electrons in the lower Hubbard band, but the
pears experimentalfyFrom the continuous evolution of the f electrons at the Fermi energy are still itinerant. Finally at
energy versus volume curves, we expect, however, similaghe largest volumes, theelectrons are localized and the local
changes above the critical point, which are not yet strongnagnetic moment is fully developed. Here, the most dra-
enough to cause a first-order phase transition. At a very smathatic change of the weight of the quasiparticle peak coin-
volume,V=20 A3, most of the spectral weight is seen to be cides with the observed region of negative curvature in the
in a big quasiparticle peak or Abrikosov-Suhl resonance atorrelation energy. We thus conclude that the drastic reduc-
the Fermi energy, but some spectral weight has already beeion of the weight of the quasiparticle peak is related to the
transferred to side structures which would be interpreted asnergetic changes in the correlation and total energies that
upper and lower Hubbard bands in a Hubbard model. Movare consistent with the first-ordesy transition.

ing closer to thex-v transition(between 28.2 and 34.4%4t These features and also the three-p@adndo-like) struc-
room temperatuje the a-Ce-like spectra av=29 A*> show  ture of thea and y phases agree with the Kondo volume
this three peak structure to become more pronounced with @ollapse scenari®’ =2’ On the other hand, many-body calcu-
sharp Abrikosov-Suhl resonance and well-separated Hubbaigtions show that the behaviors of the Anderson and Hubbard
bands. The spectral weight of the Abrikosov-Suhl resonancenodels—paradigms for the Kondo volume collz3sé” and

is further reduced and smeared out when going to ¥he Mott transitiort® scenarios, respectively—are remarkably
phase ¥=34 A% and finally disappears at large volumes similar in regard to their spectra and other properties at finite
(V=46 A3, at least alf=0.054 eV. temperatured! One important difference, however, is the ab-
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FIG. 9. 4f electron spectrum for-Ce (V=29 A%) and y-Ce 0.0 ——— B e —
(V=34 A% at two temperatures T=632 K, solid line; T -80 -40 00 40 80 120 160
=1580 K, dashed line The Abrikosov-Suhl resonance afCe is w(eV)

smeared out when increasing the temperature ffegn632 to 1580

K, indicating that the Kondo temperature is in between. FIG. 10. Evolution of thespd electron spectrum with volume at

T=632 K; offset as indicated. Note the wider energy window in
comparison to Figs. 8 and 9. The main effect to be seen is the
sence of spectral weight at the Fermi level in the “largedecrease of the bandwidth upon increasing the volume.
volume” phase of the Mott-Hubbard transition, as, for ex-
ample, in \4O3,** in contrast to the reduced but still extant the Fermi energy, to localized character at larger volumes
spectral weight in oury-Ce results and the experimént, without such a resonance, thep(d) valence electrons re-
which is a more Kondo-like feature. main metallic at all volumes. This can be seen in Fig. 10,
In Fig. 9, we compare thef4spectrum in thew andy  which shows the valence spectral functiéifw) averaged
phases to results at higher temperatures: (.14 eV) from  over thespd orbitals. It is finite at the Fermi energy for all
Ref. 42. Most notably, the Abrikosov-Suhl resonance in thevolumes, such that Ce is always a metal. The biggest change
a-phase =29 A®) becomes much sharper when goingin the spectrum is the decreasing valence bandwidth when
from T=0.14 eV to 0.054 eV. The reason for this is that theincreasing the volume, which is simply due to the reduced
Abrikosov-Suhl resonance is smeared out thermallyTat overlap of the valence orbitals as interatomic distances in-
=0.14 eV (1580 K) since this temperature is comparable tocrease. The effect of electronic correlations is less obvious.
the Kondo temperature, which we estimate to be 0.18 e\But, one can note a dip in the valence spectrum in the vicin-
(2100 K) from the full width at half maximum[LDA ity of the Fermi energy which is to be expected to coincide
+DMFT(NCA) calculations yield 1000 K, see Ref. U0 with the Abrikosov-Suhl resonance in tliespectrum. This
This Kondo temperature is only a crude estimate that mightlip is most pronounced at lower volumes where the
also be somewhat reduced if the spin-orbit coupling, whicH-electron Abrikosov-Suhl resonance has most spectral
splits off states from the Fermi energy, is taken into accountweight.
Nonetheless, it reasonably agrees with experimental esti-
mates ofTx =945 K and 1800—-2000 K for the Kondo tem-
perature obtained from electroniand high-energy neutron
spectroscopy’ respectively. In contrast, the peak in the The LDA+DMFT(QMC) calculation of fcc Ce suggests
phase remains smeared out such that one would assumeaavolume collapse approximately at the experimental vol-
Kondo temperature lower than 0.054 é882 K); the experi- umes. To further test whether this theory actually describes
mental estimates afBc=95 K (Ref. 5 and 60 K(Ref. 59.  fcc Ce, we now compare our- and y-Ce spectra with pho-
The changes in the rest of the spectrum are much less drésemission spectroscoffyand bremsstrahlung isochromatic
matic. The position of the upper Hubbard band is fixed whilespectroscop§* To this end, we combined tHends pdspec-
the lower Hubbard band, which has a very small spectratra of Sec. IV A with areas normalized to 14 and 18, respec-
weight, moves closer to the Fermi energy upon decreasintively, to yield the fullspdf density of states, and smoothed
the temperature. it with the experimental resolution of approximately 0.4 eV.
While thef electrons undergo a transition from itinerant The comparison is shown in Fig. 11 fer and y Ce.
character at low volumes with a quasiparticle resonance although there are no free parameters in our LDA

B. Comparison to experiment
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FIG. 12. Number of 4 electronsn; vs volume at four tempera-
w(eV) . . o
tures. At low temperatures and in the vicinity of they transition,

FIG. 11. Comparison of the LDADMFT(QMC) spectra with Ny is very close to 1.
experiment(circles.> Although there are no free parameters in the
calculated spectrum, the agreement is very good, in particular at thalso the 4-electron Coulomb interaction valug; is com-
Fermi energy &=0). The additional structure in the upper Hub- parable, at least for the phase; Ztl et al. employed a fixed
bard band which is seen in the experiment is likely due to thevalue of Us=6 eV whereas the constrained LDA values in
exchange interaction that was neglected in our calculation. our calculations aréJ;=5.72 eV and 5.98 eV for and y
Ce, respectively. In view of this we tend to explain the dif-

+DMFT(QMC) results®? the agreement between theory andferences, at least fo;f-Ce,_by th_e differ_ent met_hod employeo_l

experiment is very good. Particularly good is the agreemerif SCIve the DMFT equations, in particular, since the NCA s

of the spectrum around the Fermi energy for batand y @ resolvent perturbation theory for strong coupling.

Ce; this part of the spectrum consists of the Abrikosov-Suhl

resonance of thé-electron spectrum and the valence spec- V. LOCAL MOMENT AND 4 f OCCUPATIONS

trum. Also the position of the upper and lower Hubbard

bands and the relative weight of these peaks and the Important additional information about they transition

Abrikosov-Suhl resonance is correctly predicted by theand the effects of electron correlation in Ce is contained in

theory. Less good is the agreement with respect to the widtthe number of 4 electrons per sit@;, the double occupa-

of the upper Hubbard band which is too narrow in ourtiond, and quantities derived from these such as the fraction

theory; the experimental upper Hubbard bands extend to e®f sitesw(f") with n=0,1,2f electrons, and the local mag-

ergies 1-2 eV higher than our theory. As has been argued ipetic moment. These parameters can discriminate between

Ref. 40, this can be understood by the Hund’s rules exchange various models, as, for example, the promotional nfodel

coupling that has not been taken into account in our calculaassumes a considerable change in the numbef efettrons

tion. We justified this by noting that the exchange coupling isat the a-y transition, in contrast to the Kondo volume

only effective if there are more than two electrons on one Ceollapsé® and Mott transitiof® scenarios which do not. The

site, which happens only rarely. However, the excited statektter two, on the other hand, distinguish themselves by as-

of the upper Hubbard band correspond to just such doubleuming a small and large change of the magnetic moment,

occupied states. For these, the Hund's rules coupling begespectively.

comes important and will split the upper Hubbard band into Figure 12 givesn¢ as a function of volume at four

multiplets. With this shortcoming resolved, the comparisontemperatureg?’ The lowest curve at=0.054 eV(632 K) is

to the experimental spectrum suggests that our LDAalready very close to the loW-limit, as our results at half

+ DMFT(QMC) calculation describes andy Ce very well.  this temperature are the same to within generally 0.004, or at
The a and y spectra of previous LDADMFT(NCA) most 0.01 electrons per site. There are two main tendencies:

calculations by Ztl et al*° are considerably different from With decreasing/, n; increases due to the upward motion of

ours and the experimental spectra, in particular the weight afhe 6s,p levels relative to the #level under compression; it

the upper Hubbard bands was much higher in Ref. 40. Thalso increases witil due to the thermal occupation of the

temperature of Ref. 40 is very close to ous<(580 K) and large 4f density of states lying above the Fermi level. Super-
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10 —— 71—z atT=0.054 eV, which are also close to the low-temperature

T=0.054 eV . limit. At large volume one sees that each site nearly always

' /P —f | has onef electron, and that empty or doubly occupied sites

08 ¥ s o--—of | are rare, as would be expected for~1 in the absence of

s so-aaff significant hybridization to move these electrons to eiftar

- o 1 v (spdvalence states on neighboring sites. For thelec-

ha trons to begin to move around from one site to another in any

independent fashion under the influence of larbehybrid-

ization, or for there to be virtual charge fluctuations of the

form f1p3— %% and flv3— %2 due to increasedv hy-

] bridization, it is clear in each case that both empty and dou-

! %\ bly occupied sites must become more common at the ex-

rod | pense of singly occupied sites if the volume is reduced, as

evident in Fig. 13. Note that these changes are especially

dramatic over the experimental two-phase redioarked.

] The filled symbols in Fig. 13 show the impurity Anderson

——— model results of Liuet al® at the observedr- and y-Ce

volumes; the large open symbols, the DMNCA) results

of Zolfl and co-worker$® Our DMFT(QMC) values are

w(f%,w(fl),w(f?)=0.013:0.019 (0.118:0.025), 0.939
FIG. 13. Fraction of emptyfC), singly occupied {*), and dou-  +0.028 (0.771-0.033), and 0.0480.009 (0.11% 0.008)

bly occupied sites f¢) vs volume as calculated by LDADMFT  for the y () volumes, respectively. The two DMFT calcu-

(QMC) (open symbols with lingsat T=0.054 eV in comparison to  |ations agree well within these uncertainties for all three

LDA +DMFT(NCA) (large open symbo$® and impurity Ander-  populationsw(f") at the largery-phase volume, and also

son model resultgfilled symbolg.> While the DMFT results agree with the impurity Anderson model value fw(fl); although

very well fo.r they phgse, there are significant differences in¢he  {or the two small populations, they obta'm(fo)<w(f2) in

phase as discussed in the text. reverse order to the values of Liu and co-workeThe most

. . . significant difference at the-Ce volume is the rather larger
imposed on this behavior is, at low temperatures, an abrupj; pje occupancyd=w(f2) =0.111+0.008, obtained by

reductio_n ofn; in the observed tWO'Phﬁse regignarked as our DMFT(QMC) calculations in comparison to smaller val-
volume is reduced, an anomaly that is annealed away by ;o5 0044 and 0.026 obtained by the the DNIWTA) and
=0.5 eV similar to the case of the total energy. This eﬁeCtimpurity Anderson model, respectively. Temperature is un-

leads to a number of f4electrons close to 1, ruling out the likely to be a factor here, as we obtain andd unchanged
promotional modef and suggesting Kondo physics given yiiin our error bars at half the temperature of the DM-

the sharp quasiparticle peak seen in the preceding sectiogT(QMC) results in Fig. 13, e.gd=w(f2)=0.108*0.008
Quantitatively, we get a 4% reduction m across the two- o+ 17— 027 eV (316 K). Note that there is an asymmetry
phase region from 1.0350.017 to 0.9930.010 atT betweenf1p3— %4 andflv®— 2,2 fluctuations in the im-
<0.054 eV. Similar behavior is seen in the 10% drop fromy ity model, with the former predominating in the Kondo
1014 to 0908 of Zfi etal™ in their LDA  gfect and the later leading to less spin-dependent effects

+DMFT(NCA) calculations, and the 11% reduction from (apnendix B, Ref. 27. Since the extent of these fluctuations
0.971+0.006 to 0.86%+0.015 electrons/site of Liu and 46 measured bw(f% andw(f2), respectively, these rela-

co-worker_s’? who fitted a single impurity Anderson modgl t0 tive differences ind=w(f2) have direct physical meaning.
the experimental #spectrum. The reason for the droprin  ag will be seen shortly, larger values dfalso indicate less

is a systematic increase in the double occupationnder . relation.

compression. Since is the potential energy divided Hy;, There are some differences between the three calcula-

the energy cost associated with increasihgan be amelio- tions, however, which might account for differing(f") pre-
rated by reducing; . dictions.

Since there is little chance of more than doubly occupied (i) Our calculated Coulomb interaction fae-Ce, U;
sites in Ce at low temperature; andd provide sufficient _g 7 eV, is slightly smaller than tHg;=6 eV employed in
information to obtain the fractions of sites with various inte- Refs 40 and 5, and there may also be small differences in the
gral f™ occupations, one-particle part of the effective Hamiltonian, i), due to
the use of different LMTO approaché&s.

(i) Liu etal. employ an impurity Anderson model

o
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Fraction of f" sites w(f")
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w(f%=1-n;+d,

w(fh=n,—2d whereas both we and '#b et al. use a periodic Anderson
f ' type of model includingf-f as well asf-valence hybridiza-
w(f2)=d (19) tion. All three calculations extract some or all of their effec-

tive Hamiltonian parameters from LDA. The two DMFT cal-
Figure 13 shows our DMRDQMC) results for these weights culations also deal with an auxiliary impurity Anderson
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model in the course of their solution, and all three impurity 1.0
Anderson models yield the localf 4ensity of states of the

lattice LDA calculation whenU;=0. However, for finite

U;, the f-valence hybridization in the impurity Anderson 0.8
model of Liu etal. remains, in principle, unchanged;
whereas that of the DMFT auxiliary impurity models be- I
comes strongly renormalized by the presence of the self-
energy, as evident in Fig. 1 of Eband co-workerg? It
should be noted, however, that L&t al. do not simply use

the LDA hybridization in their finited; calculations, but
rather rescale so as to obtain excellent agreement with spec-
troscopy data, giving their hybridization some experimental
justification.

(i) Finally, in contrast to the DMFRQMC), both 0.2 .
DMFT(NCA)*® and the 1N approacP® of Ref. 5 are based PR
on perturbation expansions in the hybridization strength, a i

. . : S T=0.054 eV
quantity that gets larger with reduced volume. Thus, while Yo J) A R R N I
these two approximations are controlled by the smallness of 10 20 30 40 50
the hybridization strength and also byNl/(we haveN V(R
=14f orbitalg, there are nonetheless larger corrections , .
when the hyb?idization is increased, i.e., Whgen going to the 'G- 14 Double occypation ralilfa,— d)/(Gnax—dmin) and lo-
more itineranta-Ce. Note in this context that the ratio of cal magnetic momermy) (triangles as a function of volume at

. . . . .~ T=0.054eV. In the former case, we compare the LDA
Coulomb interaction to an effective bandwidth determined, DMFT(QMC) results with our HF and LDA DMFT(H-I) re-
by the totalf-f andf-valence hybridization changes from 3.8 _ ;ic 25 well as with the LDA DMFT(NCA) by Zoifl et al*0 and

06 -

—-—- DMFT(H-I)

o——o DMFT(QMC)
e Liu et al. 411
O Zolfl et al.

z

<m_2>

04 -

(dmax_d)/(dmax_dmin)

- 1.0

g 3
to 2.5 across the-« transition: the Anderson model calculations by Let al® The double occu-
_ Itis possible to quantify the degree belectron correla-  pancy increases when going from to a-Ce (experimental vol-
tion by noting certain limiting values od. A natural mini-  ;mes as indicatgdi.e., the electrons become more itinerant or less

mum is provided by the strongly correlated ground state Otorrelated. This effect is most pronounced in our LDA
Eqg. (1) in the atomic limit, whered is a piecewise linear +DMFT(QMC) results; however, the ratio is still far from the
function of n;, with d=d,,,=max(0n;—1) for n;=<2. uncorrelated value=d,,,, i.e., a-Ce is still strongly correlated.
Similarly, dmax=(1:~’./28)1f2 from Eq.(15) in the uncorrelated

limit (n1N,)=(n;)(N,), which is approached for volum¢  €nce of significant correlation, which is entirely consistent
—0 leading to a vanishing ratio of Coulomb interaction to With the remnant Hubbard sidebands in this range as dis-
bandwidth. Figure 14 shows a plot of the ratid,, CcuSSed in the preceding section. Most Snota_ble_ in the
—d)/(dy—0m) for the present Ce calculations a  DMFT(H-I) curve is a glitch at abour'=17 A which is a
=0.054 eV, which reflects strong and weak correlation lim-conseduence of the behavior im (not shown: Within
its at 1 and 0, respectively. Note the polarized to paramagDMFT(Hgl)’ ny is pinned at 1 for decreasing volume until
netic HF transition al/~ 20 A3 for decreasing volume, and V=17 A% at which point it increases and the system be-
the fact that the paramagnetic HF result is completely uncoromes mixed valent. _ _
related @~d.,5,) as expected. The fact that tHeatio in this ~_ TUrning to the local magnetic moment, our approxima-
case is not precisely zero is due to a small amount of orbitdions [neglect of spin orbit, intra-atomic exchange, and the
polarization arising from the fact thatf 4ands of different 4f crystal-field splitting in Eq(3)] have more serious impli-

symmetry overlap the Fermi level to slightly different extent, Cations for this quantity than others, and so we can provide
whereadd,,, was defined for all spin-orbital occupations to f[)”kly an estimate. Consistent with these approximations we

be n;/14. ake

The combination of increasingjand decreasing; causes n/l4 if mo=m'o’
a sharp decrease in correlati¢elocalization of the DM- <ﬁifmgﬁifm,a, I _ (20)
FT(QMC) result for decreasing volume through the observed d91  if me#m'o’,

y-a transition (marked, in agreement with tenets of the g ,ch that the local magnetic moment becomes
Mott-transition modet>® The value of the DMFTQMC) d

ratio is 0.76£0.08 at thea volume, combining all of the ) - - )

uncertainties in botll andn; . While this value is certainly <mz>E§ ((Nifmy = Nitm)))=n¢—(2/13d,  (21)

less correlated than the DMENCA)* (large open circles

and impurity Anderson modeffilled circles predictions at  indicating whether a local spin moment exists. Note that this
0.89 and 0.92, respectively, it is far from the kind of uncor-quantity does not contain information about long-range mag-
related behavior seen in the paramagnetic HF of Fig. 14 ometic order, aside from the fact that a finite moment would be
presumably also, in the LDA. Even at the smallest volumesequired for such order. Also note thén?) is unlikely to
considered, the DMHRMC) d ratio still suggests the pres- vanish. Even if one just statistically distributes electrons with
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arbitraryi, m, ando, some sites will have electrons with the of correlation effects in compressed Ce, and their fundamen-
same spin and thusn?) will be finite, but it will be smaller tal role in the first-order-y transition. First results of this
than its maximal value obtained in the localized regimeeffort have been published in Ref. 42.
whered is minimal. At a large volume, we find a Hubbard-split 4pectrum,
The spin, orbital, and total angular momentum expectathe associated local magnetic moment, and an entropy re-
tions can be expressed a$§ﬁ>z(3/4)<m§>, <|:i2’f> flecting the degeneracy in the moment direction. This phase
= 12(m?), and(32)=(51/4Xm?) due to the degeneracies in is well described by the Hubbard-I approximation and its
Eq. (20). Note that in the atomic limitr{;~1,d~0) these energy, but not its entropy, also agrees with the polarized
expressions correctly giv&=1/2 and L;;=3, although Hartree-Fock solution. As volume is reduced, a quasiparticle

a2 i ) i or Abrikosov-Suhl resonance begins to develop at the Fermi
(Jif) averages over the two spin-orbit multiplets. Our DM- jgyq| in the vicinity of thea-y transition, and the entropy

FT(QMC) result for(mJ) at T=0.054 eV is also provided in  starts to drop. At the same time, thé double occupation
Fig. 14 (bottom dotted curve with open triangleshere this  grows whereas the number of lectrons remains close to
quantity is seen to drop by 5% from theto thea volume. 1 The temperature dependence of the quasiparticle peak is
This may be compared to 11% and 12% drops for thesgnsistent with a significantly larger Kondo temperature in
DMFT(NCA)* and impurity Anderson modetalculations,  the o phase than in they phase, and the parameter-free
respectively, based on their values of and d=w(f?). | pA+DMFT spectra are in good agreement with experi-
!—hgh-energy neutron scattering experiments ob;erve singl&nent for botha- and y-Ce. In the range where the quasipar-
ion magnetic response from @-:®.14f electrons in thex  tjcle peak grows dramatically, the correlation energy as a
phase, suggesting also that much of the local moment pefynction of volume is seen to have a negative curvature. This
sists into that phas¥.Such high-energy or “fast” probes can |eads to a growing shallowness in the total energy as tem-
detect a local moment even if it appears screened out iBerature is reduced and is consistent with the first-oader
“slower” measurements like magnetic susceptibility. Note yransition within our error bars. Our results suggest that the
that the, at first view unexpected, increase in the DM-emperature dependence of the transition pressure is prima-
FT(QMC) (m3) for the smallest volumes in Fig. 14 only rjly due to the entropy. Finally, if the volume is reduced
reflects this same behavior m (Fig. 12. below that of the ambientr phase, the quasiparticle peak
The persistence of a still robuglbeit slightly reduced  grows at the expense of the Hubbard sidebands, yet these

local 4f moment into thex phase as suggested here supportHubbard sidebands persist even at the smallest volumes con-
the Kondo volume collapse scenaffo?’ in that the ob-  sidered.

served temperature-independent Pauli-like paramagnetism of The MT and KVC®~27 scenarios are based on the one-
the a phase can then arise when the valence electrons scregand Hubbard and the periodier more approximate impu-
out these local moments. Orbitally polarizéd® and self-  rity) Anderson models as paradigms. The classification of
interaction correctéd~>* LDA results suggest that the mo- our results in terms of these two standard theories requires
ment actually collapses to nothing in thephase of Ce and distinguishing between the more general interpretation of the
its analog in Pr. However, these calculations really measurg|T in the many-body communiti? e.g., applied to such
spin and orbital polarization analogous (), and there-  materials as YO;,* and the ideas of Johans$dand mem-
fore describe a loss of magnetic order in tedike phases bers of the local-density functional community as applied to
without providing information about the local moment itself. the f-electron metald®=2* In the former case, correlated
Indeed, there can be a local moméntZ) even in the fully  solutiong® of both model Hamiltonians show similar fea-
uncorrelated limit, as noted earlier, sincém?)=n; tures at finite temperature such as persistence into the more
—(2/13)dmax=ns(1—n/14) can be significant away from weakly correlated regime of the local moment and residual
empty or filled bands. Note that one may have temperaturedubbard splitting?* just as seen here far-Ce. The similar-
independent paramagnetism in the presence of local madty between the two models can be understood from the fol-
ments both if there is correlated Kondo screening of theséowing consideration. The conduction electrons in the peri-
moments, as noted above, as well as by Pauli’s original oneadic Anderson model are noninteracting. Thus, they only
electron process in which only electrons in states near thenter quadratically in the effective action and can be inte-
Fermi level are free to respond to the field. The latter musgrated out by a simple Gauss integration. This results in an
dominate as one approaches the uncorrelsted limit. effective one-band model for thfeelectrons of the periodic
Anderson model which can behadfevery much like the
Hubbard model not only at finite temperature, but, depending
on the choice of-d hybridization, also aT =0.

We have calculated thermodynamic, spectral, and other One might try to distinguish between the two scenarios by
properties of Ce metal over a wide range of volumes andvhether the transition is caused by changes offtfigMT)
temperatures using the merger of the local-density approxier f-valence(KVC) hybridization. But, since realistic calcu-
mation and dynamical mean field theory (LBAMFT). lations like the present include both, this distinction is rather
The DMFT self-energy was generated by rigorous QMCproblematic. Another difference can be addressed unambigu-
techniques, including a faster implementation that has faciliously, i.e., whether the low-temperatuse phase has an
tated lower-temperature results and is described in detaiAbrikosov-Suhl resonancé&VC) or not (MT). We observe
Our LDA+ DMFT results provide a comprehensive picture the former, in agreement with experimérthe energy scale

VI. SUMMARY AND DISCUSSION
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of this y-Ce Abrikosov Suhl resonance is very small suchmodel®* This correlated solution would also have preformed
that we obtain a thermally smeared out structure instead of Kcal magnetic moments, which would be screened at small
sharp resonance. The smallness of the energy scale also iP€ergies on the scale of the width of the Abrikosov-Suhl
plies that the effect on the total energy is very minor. Be-"éSonance, as in the KVC picture, whereas the uncorrelated
cause of this, the low-temperature enefgyit not the en- MT Solution does not develop such local moments.
tropy) of y-Ce may also be adequately described by static Slr_lce we find a strongly correlated phase, the question
mean-field techniques like our HF calculation as well as §€Mains why the structural and volume dependence of the
number of local-density functional modifications: orbitally ol €nergy in thea-Ce regime is so extremely well de-
polarized LDA-2self-interaction corrected LDA’22and scribed by normal paramagnetic LDA and its gradient cor-
1 1 . 17 . . .

: imati r improvements.~" Thi int is one of the strongest
LDA+U.% These approximations have a ffequency-[ecte? IPIOWmen™t Thio pomi s ofe oling songes
independentstatid self-energy and provide a splitting of the &rg4m¢ y X
4f band into two bands by artificial) symmetry breaking. a-Ce-like phases should be weakly correlated. A logical ex-

While our HF calculations as well as LDAU work? for Ce planation WOUId. be 'that LDA may get the interactiops be-
give a transition at too small volume, one may drive thefween the quasiparticles correct but not their formation en-

onset of the symmetry breaking closer to the volume of thé®9y- The interactions are perhaps governed by the significant
a-y transition by reducing the thef4Coulomb interaction weight in the central Fermi-level-peak, which resembles the

U;. Such a reduced interaction strength is naturally achieveancl)rreltited L%A sloll_lthlgg, V(\j’h'l.z tBe fgrmanon energy ?ﬁy
within the orbitally polarized LDA calculations that ontik Involve the residual Fubbard sidebands in some way. 1hus,

and employ the weaker intra-atomic exchange interaction tahe stil Very significant correlation may provide only acon-
achieve the symmetry breaking stant contribution to the total energy in theCe regime, so

A major point of debate between the KVC scenario andthat the volume and structural dependence is still well repre-

Johansson’s interpretation of the MT picture is whetherthe sented. This would be consistent with the energylgh_lft be-
phase of Ce is strongly correlatédVC) or not (MT). Our twe_en a and y phases_employed by QOansml. n
results suggest that-Ce is strongly correlated with a three- their LDA-based modeling of the transition.

peak structure consisting of the two Hubbard peaks and cen-
tral quasiparticle bands as in the KVC pictdre?’ In con-
trast, the MT model as advocated by JohansSand Work by A.K.M. was performed under the auspices of the
otherd®=23 predicts a single peak associated with uncorreU. S. Department of Energy by the University of California,
lated, bandlikef electrons. We do see a rapid increase inLawrence Livermore National Laboratory under Contract
double occupatiod across the transition, which is consistent No. W-7405-Eng-48. K.H. acknowledges support by the Al-
with the delocalization ideas of this MT scenario. However,exander von Humboldt foundation, and R.T.S. from NSF-
the actual value ofl in the « phase is far from uncorrelated, DMR-9985978. We are grateful for the QMC code of Ref. 39
although it indicates considerably less correlation than in théAppendix D which was modified for use in part of the
KVC picture? It appears that this perspective of the MT is present work. We thank A. Sandvik for making available his
motivated by the LDA results, and that if one were to fully maximum entropy code, I. A. Nekrasov for providing the
take into account electronic correlations, one would also obdigitized experimental spectra, and G. Esirgen, J. W. Allen,
serve a correlated three-peak solution as in the Hubbardnd O. Gunnarsson for useful discussions.
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