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One-dimensional Hubbard-Holstein model with finite-range electron-phonon coupling
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The Hubbard-Holstein model describes fermions on a discrete lattice, with on-site repulsion between fermions
and a coupling to phonons that are localized on sites. Generally, at half-filling, increasing the coupling g to the
phonons drives the system towards a Peierls charge density wave state, whereas increasing the electron-electron
interaction U drives the fermions into a Mott antiferromagnet. At low g and U , or when doped, the system is
metallic. In one dimension, using quantum Monte Carlo simulations, we study the case where fermions have
a long-range coupling to phonons, with characteristic range ξ , interpolating between the Holstein and Fröhlich
limits. Without electron-electron interaction, the fermions adopt a Peierls state when the coupling to the phonons
is strong enough. This state is destabilized by a small coupling range ξ and leads to a collapse of the fermions,
and, consequently, phase separation. Increasing interaction U will drive any of these three phases (metallic,
Peierls, phase separation) into a Mott insulator phase. The phase separation region is once again present in the
U �= 0 case, even for small values of the coupling range.
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I. INTRODUCTION

Coupling between electrons and phonons is ubiquitous in
solid state physics, resulting in many important phenomena
such as polarons [1], effective Cooper pairing between elec-
trons [2], or density modulations such as the Peierls instabil-
ity [3]. The Holstein model [4] is a simple model describing
such coupling. It is especially amenable to numerical treat-
ment since it describes phonons as localized particles that
interact locally with free fermions on a lattice. At half-filling,
the Holstein model exhibits a transition between an homo-
geneous metallic phase and a gapped charge density wave
(CDW) Peierls insulating phase [5–9]. An effective attraction
between fermions, mediated by phonons, triggers this insta-
bility for large enough electron-phonon coupling [10–14].
In this work, we will concentrate on the one-dimensional
version of the model.

Many effects are not taken into account in the original
Holstein model that can alter the physics of fermion-phonon
systems. Nonlocal coupling between fermions and phonons is
expected in some materials and leads to the interpolation be-
tween Holstein’s local description and Fröhlich’s description
where electrons and phonons interact at long distances [1].
This problem has been studied in the context of polaron for-
mation [15–18], high-temperature superconductivity [19], and
recently [20] for its impact on the physics of Peierls instability.
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It was shown [20] that increasing the coupling range leads to
a collapse of the fermions causing them to clump together in
one part of the system, i.e., phase separation.

Direct interactions between fermions are not included in
the Holstein model, but a variant, dubbed the Hubbard-
Holstein model [21,22], includes local interactions between
fermions. At half-filling, onsite interactions drive the sys-
tem into an antiferromagnetic (AF) Mott insulator but there
is competition between the Peierls and Mott phases, than
can lead to the appearance of an intermediate metallic
phase [14,23–30].

The goal of this paper is to study both the effects of
the long-range e-p (electron-phonon) coupling and those of
direct e-e (electron-electron) repulsion in a one-dimensional
system. This leads to a rich phase diagram at half-filling
where four competing phases come into play: metallic,
Peierls, Mott phases, and phase separation. Other modi-
fications of the Hubbard-Holstein model have been envi-
sioned such as an anharmonicity of the phonons [31] or
the effect of different band structures on the pairing of the
fermions [25].

The paper is organized as follow. First, we introduce the
model and the quantum Monte Carlo (QMC) methods. Then
we study the system with long-range e-p coupling but without
e-e interactions to validate our approach and compare with
other work [20]. Finally, the main results concerning the
system with both e-e interactions and long-range e-p coupling
will be presented and compared with results obtained in the
on-site coupling limit [14,26,27].
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II. HAMILTONIAN AND METHODS

A. Model

We consider the following model:

H = −t
∑
r,σ

(c†
r,σ cr+1,σ + H.c.) + U

∑
r

nr,↑nr,↓

+ω
∑

r

nr,φ +
∑
r,R

G(R)
√

2 Xrnr+R. (1)

The fermionic operators c†
r,σ and cr,σ , respectively, create

and destroy a fermion with spin σ =↑,↓ on site r of a
one-dimensional periodic lattice containing L sites. Similarly,
a†

r and ar are phonon creation and annihilation operators on
site r. The operators nr,σ = c†

r,σ cr,σ , nr = nr,↑ + nr,↓ and
nr,φ = a†

r ar represent, on site r, the number of fermions
of spin σ , the total number of fermions and the number
of phonons, respectively. The corresponding densities will
be noted n↑, n↓, n = n↑ + n↓ and nφ (for example, nφ =∑

r〈nr,φ〉/L).
The first (second) term of Eq. (1) describes the fermionic

kinetic (potential) energy; together they give the conventional
fermionic Hubbard model. The hopping parameter sets the en-
ergy scale, t = 1. The additional terms are the diagonal energy
of phonons with frequency ω, and the coupling between the
displacement of the lattice at position r, Xr = (a†

r + ar )/
√

2,
and the density of fermions at site r + R, which describes
long-range electron-phonon coupling. The coupling G(R) is
characterized by its overall strength g and its range ξ and is
given by

G(R) = g
exp(−|R|/ξ )

(1 + R2)3/2
. (2)

Due to periodic boundary conditions, R is defined as the
minimum of R and L − R.

B. Methods

We study the Hamiltonian (1), in the cases where the
electrons are interacting with each others (U �= 0) and where
they are not (U = 0), focusing on one value of ω = t/2. To
this end, we use the directed stochastic Green function algo-
rithm [32] (SGF), which allowed us to simulate systems with
size up to L = 42. The inverse temperature β was typically
chosen proportional to the size of the lattice βt = L, which
we found to be large enough to ensure convergence to ground-
state properties. The algorithm uses the mapping of fermionic
degrees of freedom onto hardcore bosons using the Jordan-
Wigner transformation [33]. The convergence to equilibrium
is sometimes quite difficult, especially when the system un-
dergoes phase separation. To circumvent this problem, we
performed simulations with different initial conditions and
accept the results corresponding to the lowest free energy. In
the most difficult cases, we could obtain reliable results for
sizes only up to L = 18, which does not allow a complete
finite size scaling analysis of the phase transitions.

To verify the SGF results, the Hamiltonian was also studied
for U = 0 using a new algorithm based on a Langevin simu-
lation technique initially used for lattice field theories [34,35].
The algorithms are presented in more detail in Appendix.

We will use static quantities and correlation functions to
analyze the system. The fermion densities nσ are fixed in
the canonical SGF algorithm, while the density of phonons
nφ fluctuates due to the Xr term in the Hamiltonian. We
concentrate on the half-filled case where n↑ = n↓ = 1/2.

The one particle Green functions Gσ (R), and Gφ (R) probe
the phase coherence of the different kinds of particles. They
are defined as

Gσ (R) = 〈c†
r+R,σ cr,σ + H.c.〉/2,

Gφ (R) = 〈a†
r+Rar + H.c.〉/2. (3)

For the fermions, we have an indirect access to the phase stiff-
ness through the Jordan-Wigner mapping to hardcore bosons:
as for fermions, the Green function becomes long-ranged or
quasi-long-ranged, it also does so for hardcore bosons and
the phase stiffness (superfluid density) of the bosons becomes
nonzero. This stiffness is calculated by the fluctuations of the
winding number of the bosons: ρs,σ = 〈W 2

σ 〉/2βt .
To identify the Peierls phase, we use density-density

correlations Dαβ (R) = 〈nr,αnr+R,β〉 − nαnβ , where α and β

correspond to particles species (electrons or phonons). The
corresponding structure factors, Fαβ (k), which are the Fourier
transforms of the density-density correlations functions, are
given by

Fαβ (k) =
∑

R

〈nr,αnr,β〉 exp(ikR)/L. (4)

k varies in the interval [−π, π ] with step size ε = 2π/L. The
Peierls phase, with alternating empty and filled sites shows
pronounced peaks of the structure factors at k = π .

Finally, in the case where U is different from zero, we
expect some antiferromagnetic correlations to appear, which
we will identify by using Szz(π ), the Fourier transform of the
spin-spin correlations along the z axis,

Szz(k) =
∑

R

〈Sr,zSr+R,z〉 exp(ikR)/L, (5)

where Sr,z = (nr,↑ − nr,↓)/2. The spin correlations in the xy
plane should be the same as the system has a SU(2) symmetry
and, with this continuous symmetry, we expect only quasi-
long-range ground-state order for the spin correlations.

In terms of hardcore bosons, the AF phase transforms
into a Mott phase with two species of bosons. The AF
correlations in the xy plane correspond to counter-superfluid
correlations [36,37]. In such a state, we have boson-hole
quasiparticles, corresponding to boson exchanges, that show
quasi-long-range phase order and give a nonzero stiffness
ρs,σ , despite the fact that individual particles are exponen-
tially localized in the Mott phase. In the Mott AF phase,
individual Green functions Gσ decay exponentially but ρs,σ

is still expected to be nonzero, due to quasi-long-range spin
correlations in the xy plane.

III. CASE WITH ZERO ELECTRON-ELECTRON
INTERACTION

The U = 0 case has already been studied in Ref. [20]
where it was shown that, at half-filling n↑ = n↓ = 1/2,
the system exhibits three phases; a metallic phase with
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FIG. 1. Phase diagram for the U = 0 system as a function of the
coupling strength, g, and range, ξ , of the fermion-phonon coupling.
The triangles correspond to three cases, which are studied in detail
in the text. The dashed line corresponds to the cut shown in Fig. 7.

quasi-long-range order for density and phase correlations,
a Peierls phase with a charge order with sites alternately
occupied by particles or almost empty and where movement
of fermions is suppressed, and finally, when ξ is large enough,
phase separation between regions that are almost completely
filled with fermions (〈nr,↑〉 = 〈nr,↓〉 = 1) and regions that are
empty.

As shown in Fig. 1, we found the same three phases.
However, our phase diagram is quite different from that of
Ref. [20]. In particular, we observe phase separation for ξ be-
low 0.3 whereas, in Ref. [20], it was only observed for ξ � 2.
To explain how we constructed the phase diagram, Fig. 1, we
will first present the properties of the three different phases,
using as examples the three points (triangles) represented in
Fig. 1.

In Fig. 2, we show the Green functions for the up fermions,
G↑, and phonons, Gφ , as well as fermion density-density
correlations, D↑↑, in the metallic phase for ξ = 0.4 and g/t =
0.5. As expected in a one-dimensional system [38], G↑ and
D↑↑ show an algebraic decay with distance R, typical of quasi-
long-range order. Here the dominant effect is the one particle
motion, as G↑ decays is slower than for D↑↑. On the contrary,
Gφ shows that the phonons adopt a long-range ordered phase.
This is expected as the coupling to the fermion density acts
as an external field for the phonon displacement Xr and thus
provides an explicit symmetry breaking. A simple coherent
state approximation shows that for a homogeneous density
of fermions n, φ=〈a〉=−n

∑
R G(R)/ω and nφ =Gφ =φ2.

This simple ansatz yields Gφ = nφ = 1.12 for the case con-
sidered here, whereas our simulation gives a slightly lower
value Gφ (L/2) = 1.016 ± 0.007. As the number of phonons
increases, the coherent state approach describes the system
more accurately. For example, for ξ = g/t = 0.6, it predicts
nφ = Gφ = 1.87, while the numerical value is Gφ (L/2) =
1.91 ± 0.02.

Turning now to the Peierls phase, we observe that, when g
is large enough (ξ = 0.2, g/t = 1.0) the homogeneous metal-
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|G↑(R)|
Gφ(R)

|D↑↑(R)|

L=βt=42, ωt=0.5, g/t=0.5, ξ=0.4, n↑=n↓=1/2

FIG. 2. The one-body Green functions for up fermions G↑(R),
phonons Gφ (R), and the fermion density-density correlations D↑↑(R)
as functions of distance in the metallic phase. Logarithmic scales
are used on both axes. The phonon Green function, Gφ , shows long-
range order while for fermions, G↑ and D↑↑ show quasi-long-range
order.

lic phase is destabilized and changes into a Peierls state with
a modulation of densities (a charge density wave, CDW).
All the density-density correlation functions exhibit the same
characteristic oscillations with wave vector k = π (Fig. 3).
Following the previous ansatz, the coupling energy between
the fermions and the phonons on a site is roughly proportional
to −n2

r g2/ω. The electron-phonon coupling energy will then
be multiplied by approximately two when the system under-
goes a transition from a homogeneous phase where nr � 1 on
each site to a state where nr � 2 every other site. This happens
for large enough g as the transition increases the hopping
energy: delocalized particles occupy long-wavelength states

0 5 10 15 20
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-1.0

-0.5

0.0

0.5

1.0

1.5

D↑↑(R)/n↑
2

Dφφ(R)/nφ
2

D↑↓(R)/n↑n↓
D↑φ(R)/n↑nφ

L=βt=42, ωt=0.5, g/t=1, ξ=0.2, n↑=n↓=1/2, nφ=6.22(6)

FIG. 3. Behavior of different density-density correlation func-
tions with distance in the Peierls phase. The Peierls phase shows
an alternation of sites that are occupied by fermions and phonons
with sites that are almost empty. The functions have been rescaled
by respective densities for better visibility.
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FIG. 4. Behavior of Green functions in the Peierls phase. The
fermion Green functions, G↑(R) and G↓(R), decay rapidly to zero,
while the phonon Green function Gφ (R) goes to a plateau when
R becomes large. This plateau is modulated by the CDW density
oscillations.

with negative energies, while localized particles have a hop-
ping energy which is approximately zero. The decrease of
the coupling energy should then compensate for this hopping
energy increase.

The alternation of occupied and empty sites is similar to
what is observed in the attractive Hubbard model, with the
major difference that the attractive effect between fermions is
mediated by the phonon field. The CDW structure is stabilized
as it offers the largest amount of virtual hopping possibilities
for the fermions.

The localization of the fermions is immediately visible in
the behavior of G↑(R) and G↓(R) which decay exponentially.
However, Gφ (R) still shows a plateau at long distances, which
shows the condensation of phonons (Fig. 4), albeit modulated
by the density wave.

Finally, when the range of the coupling is large enough
(ξ = 0.6, g/t = 0.8), the Peierls phase is destabilized and the
system collapses, forming a plateau of fermions and phonons
surrounded by empty space [Fig. 5(a)]. This happens as the
long-range coupling energy overcomes the quantum pressure
due to virtual hopping.

The fermionic Green function G↑(R) decays exponen-
tially as the system is either empty or in a state where the
movements of the particles are forbidden by Pauli principle
(Fig. 5(b)). The phonons remain coherent throughout the
plateau. Gφ (R) then shows some long-range modulations
when averaged over all starting sites. If the plateau is lo-
cated between r = 0 and L/2, Gφ (R) (R positive and smaller
than L/2) receives nonzero contributions from 〈(ara†

r+R +
H.c.)/2〉 only if both r and r + R are located in the plateau,
that is if 0 � r < L/2 − R. Each nonzero contribution is
roughly equal to the density of phonons in the plateau. Then
Gφ (R) ∝ (L/2 − R)/L = 1/2 − R/L decreases linearly with
R for R < L/2. The same happens for density-density corre-
lation functions, as exemplified by D↑↑(R) [Fig. 5(b)].
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nr,φ/10
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Gφ(R)/10

|D↑↑(R)|

L=βt=42, ωt=0.5,

g/t=0.8, ξ=0.6

(a) (b)

FIG. 5. (a) For ξ large enough, the fermions and phonons col-
lapse, forming density plateaus in half the system. (b) In that case,
the fermionic Green function G↑(R) decays exponentially to zero,
while the density-density correlations and phonon Green functions
show characteristic long-range modulations, due to the plateaus in
the density distributions.

We see that, in all three phases, the phonons retain some
form of phase coherence, whereas the fermions exhibit quasi-
long-range coherence only in the metallic phase. In the follow-
ing, we will use the stiffness ρs,σ and the behavior of Gσ (R)
to identify the metallic phase.

To distinguish between the Peierls phase and phase separa-
tion, we consider the behavior of the structure factors (Fig. 6).
In all three phases, we observe a peak at k = 0, which simply
corresponds to the average density. As expected, in the Peierls
phase, F↑↑(k) shows a strong peak at k = π . The metallic

0 1
k/π

10-5

10-4

10-3

10-2

10-1

F
↑↑

(k
)

ξ=0.2, g/t=1.0
ξ=0.4, g/t=0.5
ξ=0.6, g/t=0.8

L=βt=42, ωt=0.5, n↑=n↓=1/2

ε

FIG. 6. Comparison of the behavior of the structure factor F↑↑(k)
in the three phases. In the metallic phase (squares), we only ob-
serve a peak at k = 0 corresponding to the average density. In the
Peierls phase (circles), a strong peak appears at k = π . In the phase
separation region (diamond), the peak at k = 0 is enlarged, giving
significantly larger values for F↑↑(ε) where ε = 2π/L.
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nφ/20
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Full: L=26, Dotted: L=30, Dashed: L=42

FIG. 7. The stiffness ρs↑, phonon density nφ , and structure factor
F↑↑ as functions of g for ξ = 0.35. We observe three phases: a metal-
lic phase where ρs,↑ �= 0 and F↑↑(π ) remains small (g/t � 0.65);
an intermediate Peierls phase where ρs,↑ = 0 and F↑↑(π ) is larger
(0.65 � g/t � 0.9); and phase separation, ρs,↑ = 0, F↑↑(π ) = 0 and
F↑↑(ε) �= 0 (0.9 � g/t). Upon entering the phase separation region,
the density of phonons nφ becomes larger.

phase shows no particular structure. Finally, the collapsed
phase shows a rather irregular form, which is the effect of the
frozen plateau observed in Fig. 5. However, the long-range
modulation induced by the plateau enlarges the k = 0 peak,
which is not observed in the other phases. As such, the value
of F↑↑(k) for small values of k is much larger for the collapsed
state. Then we can use a large value of F↑↑(ε), where ε =
2π/L, as an indicator that the system has undergone phase
separation.

Using these quantities, we build the phase diagram of
the system by doing systematic cuts in the phase space and
analyzing the stiffness ρs,↑, structure factors F↑↑(π ) and
F↑↑(ε), as well as the phonon density, nφ . We also analyze
similar quantities for other types of particles (down fermions,
phonons).

A typical cut, for a fixed value of ξ = 0.35, varying g/t ,
and three sizes L = 26, 30, and 42 is shown in Fig. 7. We
observe successively the three phases. The metallic phase
is characterized by a nonzero stiffness ρs,↑. In the metal-
lic phase, F↑↑(π ) takes a small although nonzero value as
there are quasi-long-range density-density correlations in this
phase. In the Peierls phase, ρs,↑ is zero and F↑↑(π ) becomes
larger as there is true long-range order for the density-density
correlations. Finally, at large g, F↑↑(π ) becomes suddenly
zero, while F↑↑(ε) rises. This is accompanied by an abrupt
increase of the density of phonons and signals the occurrence
of the phase separation. Using these signals, we can plot the
phase diagram shown in Fig. 1. It is quite difficult to locate
precisely the boundaries of the different regions. As can be
observed in Fig. 7, the value of g at which the transition
from the Peierls phase to the phase separation regime occurs
increases between L = 26 and 30 and then decreases between
L = 30 and 42, offering no clear systematic scaling behavior.

0 0.01 0.02 0.03 0.04 0.05 0.06
1/L

0.45

0.5

0.55

0.6

0.65

0.7

g c(L
)/

t

ξ=0.01
ξ=0.10
Linear fit

t=1, βt=L, ω=0.5, n↑=n↓=0.5

FIG. 8. Finite-size scaling extrapolation of the transition point
between the metallic and Peierls phases for low values of ξ = 0.01
and 0.1.

At low ξ , the simulations are easier to perform and allow a
finite-size scaling analysis. We identified the transition point
gc between the metal and Peierls phases as the point where
ρs,↑ reaches half its maximum low g value. Plotting gc(L) as
a function of 1/L (Fig. 8), we can extrapolate to L → ∞.
For ξ = 0.01 � 0, we find gc(∞)/t = 0.53 ± 0.03 which is
compatible with previously known results [20,27]. For ξ =
0.1, we find gc(∞)/t = 0.49 ± 0.02. We performed similar
analyses with a Langevin algorithm [35] and found equivalent
results (see, for example, Fig. 20 in Appendix).

IV. CASE WITH NONZERO ELECTRON-ELECTRON
INTERACTION

We now turn to the case where U �= 0. In addition to the
three phases already observed, we expect an antiferromagnetic
phase to appear in the system at half-filling. We will concen-
trate on the g = 1 and g = 0.4 cases as they correspond to the
two typical behaviors observed in the U = 0 phase diagram
(Fig. 1). In the first case, we have a transition from a Peierls
to phase separation for ξ � 0.3. In the second, we have a
metallic phase for all the values of ξ we examined, i.e., up
to ξ = 0.8.

A. g = 1, half-filled case

Figure 9 shows the evolution of the system for a fixed
g = 1 and ξ = 0.2 as U is increased. Starting from a Peierls
phase at U = 0 (Fig. 1), we go through a phase separated
state and, finally, an antiferromagnetic Mott phase at large
U . The presence of the AF phase is demonstrated by the fact
that Szz(π ) is nonzero. We also observe that F↑↑(π ) and the
stiffness ρs,↑ are nonzero in the AF phase, as expected. The
change in behavior of nφ also marks the transitions between
the different states, as nφ is generally larger in the collapsed
state.

We analyze the AF phase by studying the correlation
functions (Fig. 10). As in the other phases, the phonons
develop a long-range phase coherence shown by the behav-
ior of Gφ (R). The fermionic Green function G↑(R) decays
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FIG. 9. Cut in the phase diagram for fixed g = 1 and ξ = 0.2.
We observe three different phases. At low U � 2.8, the system is
in a Peierls phase as the only nonzero structure factor is F↑↑(π ).
A phase separated state is found for 2.8 � U � 4.2, marked by
the larger value of F↑↑(ε). Finally, for U � 4.2, the system is in
an antiferromagnetic state characterized by Szz(π ), F↑↑(π ), and ρs↑
being nonzero.

exponentially with R, as expected in a Mott-like phase, while
the spin-spin correlations 〈Sr,zSr+R,z〉 reach a constant value.
In one dimension, one would rather expect a quasi-long range
order with an algebraic decay of 〈Sr,zSr+R,z〉, because of the
continuous symmetry of the spin degrees of freedom, but it
is not visible here, due to the limited size of the system. A
finite-size analysis is needed to determine the exact nature of
the spin correlations.

To confirm the presence of three different phases, we
perform a finite size analysis (Fig. 11). In the Peierls phase
[Fig. 11(a)], F↑↑(π ) extrapolates to a nonzero value in the
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L=30, βt=50, t=1, ω=0.5, g/t=0.5, ξ=0.2, U=6

FIG. 10. Behavior of correlations as functions of distance R
in the antiferromagnetic Mott phase. Gφ (R) shows the long-range
phase coherence of the phonons. G↑(R) shows the localisation of the
individual fermions in the Mott phase. The spin-spin correlations
〈Sr,zSr+R,z〉 decay slowly with a behavior that is compatible with
long-range or quasi long-range orders.

0.04 0.06 0.08 0.10

0.1

0.2
ρs↑
F↑↑(π)
F↑↑(ε)
Szz(π)

0.04 0.06 0.08 0.10

0.1

0.2

0.04 0.06 0.08 0.1
1/L

0

0.1

0.2

n↑=n↓=1/2, t=1, g=1, ω=0.5, βt=50

U=2, ξ=0.2 - Peierls

U=5, ξ=0.4 - Antiferro.

U=3, ξ=0.4 - Phase sep.

(a)

(b)

(c)

FIG. 11. Finite-size behavior of the structure factors and stiffness
in three different regions: Peierls (a), antiferromagnetic (b), and
phase separation (c). While in the Peierls and phase separated state
cases F↑↑(π ) and F↑↑(ε), respectively, extrapolates to nonzero values
when L → ∞, Szz(π ) and F↑↑(π ) extrapolate to a value compatible
with zero in the AF case.

large L limit, which signals long-range order, while the other
structure factors and the stiffness go to zero. The same is true
for F↑↑(ε) in the phase separated state [Fig. 11(c)]. In contrast,
in the AF phase [Fig. 11(b)], the leading structure factors
Szz(π ) and F↑↑(π ) decrease with size. A linear fit gives a
value in the L → ∞ limit that is compatible with zero. At the
same time, the stiffness ρs,↑ extrapolates to a nonzero value.
This is characteristic of the quasi-long-range AF order that
one expects in one dimension.

Using cuts similar to Fig. 9 for three different sizes, L =
10, 14, and 18, at βt = 50, we draw the phase diagram for
g = 0.1 in the (ξ,U ) plane at half-filling (Fig. 12). We find
the three phases presented before. The phase separated region
extends between the Peierls and AF phase, down to ξ � 0.1.
To confirm the presence of a direct Peierls AF transition
at low ξ we performed simulations at fixed small values
of ξ = 0, 0.025 and 0.05 (Fig. 13). In all these cases, we
found that F↑↑(ε) always remains zero, indicating that there
is no phase separation and indeed a direct transition from the
Peierls phase to the AF phase. In the ξ = 0 limit, our system
is the conventional Hubbard-Holstein model. We observe a
transition from the Peierls to the Mott insulator for U � 5.4
but in this regime, we are limited to small sizes (L up to 18
only). Previous studies [14,26,27] located this transition at
a lower value, slightly above U = 4. For larger values of ω,
there may be an intermediate metallic phase but this is not the
case for ω = t/2 [14,26,27].

To locate better the left boundary of the phase separation
region, we did some simulations with parameters U and ξ

chosen along diagonal lines in the phase diagram (see the
dotted dashed line in Fig. 12) as shown in Fig. 14. We again
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0 0.1 0.2 0.3 0.4 0.5 0.6
ξ

0

1

2

3

4

5

6

U

Peierls - Phase Sep
Phase Sep - AF
Peierls - AF

L=βt, t=1,ω=0.5, g=1.0, n↑=n↓=1/2

Phase Sep

Peierls

Mott antiferromagnetic

FIG. 12. Phase diagram for g = 1 and ω = 0.5 in the half-filled
case in the (ξ,U ) plane. We observe three phases: a Peierls phase
at low U and ξ , phase separation at low U and large ξ , and an AF
Mott insulator state at large U . The dotted line corresponds to the cut
shown in Fig. 9, the dashed line to Fig. 13, and the dotted dashed line
to Fig. 14.

note an absence of phase separation for ξ � 0.1. As in the
U = 0 case, the phase separation does not seem to persist
down to ξ = 0. This is not surprising as the range needs to
be long enough to collapse the system.

B. g = 0.4, half-filled case

For a lower value, g = 0.4, the situation is simpler. As
observed in the U = 0 case, for low g, the system does not
show phase separation. When electron-electron interactions
are increased the system then simply undergoes a transition
from a metallic state to a Mott antiferromagnet.

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
U

0

0.05

0.1

0.15
ρs↑
nφ/40

F↑↑(π)
F↑↑(ε)
Szz(π)

n↑=n↓=1/2, ω=0.5, t=1, ξ=0.05, L=14, 18, βt=50

L=18, full, L=14, dashed.

FIG. 13. Cut in the phase diagram at small ξ = 0.05 to observe
the direct transition from Peierls to AF. F↑↑(ε) always remains zero
and there is no sign of a phase separation. The transition from Peierls
to AF is difficult to observe but is visible in the small jump in the
value of Szz(π ).

0 0.05 0.1 0.15 0.2
ξ

0

0.02

0.04

0.06

0.08

0.1

ρs↑
nφ/40

F↑↑(π)
F↑↑(ε)
Szz(π)

n↑=n↓=1/2, L=14, β=50, ω=0.5, t=1

U/t=5 - 6.7 ξ

FIG. 14. Cut in the phase diagram along the dotted dashed diag-
onal line in Fig. 12 where U/t = 5 − 6.7 ξ . We observe a transition
from Peierls to phase separation. For ξ � 0.1, F↑↑(ε) is negligible
while F↑↑(π ) is large, which signals the Peierls phase. For ξ � 0.1,
F↑↑(ε) becomes nonzero and marks the entry into the phase separated
region.

This is first observed in the evolution of the structure
factors in Fig. 15: as U increases, so do Szz(R) and F↑↑(π ). In
contrast, the stiffness ρs↑, while nonzero in both the metallic
and AF phases, drops when one enters the second.

It is a bit difficult to distinguish the AF phase from the
metallic one in one dimension. Indeed, we do not expect long-
range magnetic order for the AF phase and, in one dimension,
the metallic phase should be described by Luttinger physics
and also shows some quasi-long range order for the density
and spin correlations.

This is indeed what is observed in Fig. 16, which shows
different correlation functions for weak (U = 1) and strong
(U = 6) interactions [Figs. 16(a) and 16(b), respectively]. For

0 2 4 6
U

0

0.01

0.02

0.03

0.04

0.05

0.06
ρs↑/6
nφ/10

F↑↑(π)
F↑↑(ε)
Szz(π)

n↑=n↓=1/2, ω=0.5, t=1,

g=0.4, ξ=0.2, βt=L=26

FIG. 15. Structure factors, density of phonons nφ , and stiffness
ρs,↑ as functions of U for g = 0.4. The system goes from a metallic to
an AF phase as U is increased without experiencing phase separation.
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(a) U=1 - Metal

(b) U=6 - AF

FIG. 16. Correlations as functions of distance for g = 0.4 and
ξ = 0.2 in the metallic phase at low U = 1 (a) and in the antifer-
romagnetic phase at U = 6 (b).

U = 1, we observe quasi-long-range order for the fermion
Green function G↑(R), the spin-spin correlation 〈Sz,rSz,r+R〉,
and the density-density correlation D↑↑(R), although the
fermion Green function is clearly the leading correlation in
that case. We also observe, as mentioned before, a true long-
range order for the phonon phase coherence Gφ (R).

On the contrary, for U = 6 [Fig. 16(b)], we observe that the
spin-spin and density-density correlations remain quasi-long
ranged, while the fermionic Green function decays exponen-
tially, which is the sign that we are in a Mott insulating phase.
This time, the leading effects are clearly spin correlations. The
phonons still show long-range phase order.

Looking at the scaling of these quantities as a function of
size L in the metal U = 1 phase [Fig. 17(a)] and AF phase
[Fig. 17(b)], we observe that all quantities scale to zero, except
for the stiffness. This was expected for a one dimensional
system, as all correlation functions show at most quasi-long-
range order. In the metallic phase, we observe a sizable one
particle Green function at long distances G↑(L/2) as well as
noticeable spin-spin Szz(π ) and density correlations F↑↑(π ).
In the AF phase, Szz(π ) and F↑↑(π ) become the leading
correlations while G↑(L/2) is exponentially suppressed in that
case.

As we do not have true long-range order in these two
phases, the only behavior that allows their identification is that
of the correlation functions, especially G↑(R) that changes
from an algebraic to an exponential decay (Fig. 18). Exam-
ining simulations on a L = 38 system, we find a transition
around U � 4 for g = 0.4 and ξ = 0.2. This, unsurprisingly,
corresponds to the point where the stiffness ρs↑ drops in
Fig. 15. Finally, F↑↑(ε) decays rapidly to zero in both cases,
which shows that there is no tendency towards phase separa-
tion for g = 0.4.

V. SUMMARY

We studied a one-dimensional Hubbard-Holstein model
with long-range coupling between fermions and phonon,
and on-site interaction between fermions. The results
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0.08

0 0.02 0.04 0.06 0.08

ρs↑/4
|G↑(L/2)|
F↑↑(π)
F↑↑(ε)
Szz(π)

0 0.02 0.04 0.06 0.08
1/L

0

0.02

0.04

0.06

0.08

n↑=n↓=1/2, βt=L, t=1, ω=0.5, g=0.4, ξ=0.2

(a) U=1 - Metal

(b) U=6 - AF

FIG. 17. Scaling of different quantities with size L for g = 0.4
and ξ = 0.2 in the metallic phase at low U = 1 (a) and in the anti-
ferromagnetic phase at U = 6 (b). In both, all quantities extrapolate
to zero except for the stiffness ρs↑. In the metal (a), the one body
Green function G↑(R) is the leading correlation, whereas in the AF
(b), Szz(π ) and F↑↑(π ) are the leading correlations. The stiffness is
difficult to measure in this second case.

presented here are limited to the case of phonon frequency
ω = t/2. The physics of the Hubbard-Holstein with on-site
phonon coupling for larger values of ω has been studied in
Refs. [14,26,27].

For U = 0, the Holstein model, we observed, at half-
filling, three different phases: A metal at low g and, for larger
g, a transition from a Peierls CDW phase at small coupling
range ξ to a phase separation region for larger values of ξ

(Fig. 1). This is reminiscent of the results found in a previous
study [20] although we found the phase separation region to
extend to much smaller values of ξ .

Introducing strong enough electron-electron interac-
tions, U , drives the half-filled system towards a Mott

1 2 4 8 16
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U=2
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n↑=n↓=1/2, L=βt=38,

t=1, ω=0.5, g=0.4, ξ=0.2

FIG. 18. Behavior of the one particle Green function G↑(R) for
g = 0.4 and ξ = 0.2 and different values of U . The behavior changes
from an algebraic decay for U � 4 to an exponential one for U � 4.
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antiferromagnetic phase. For large g = 1, the Peierls phase or
phase separated region will transform into a Mott for U � 5.
However, we observe, as in the non U = 0 case, that the phase
separation region extends to low ξ � 0.1, coming in between
the Peierls and Mott phases (Fig. 12). A direct Peierls-Mott
transition is observed only for small values of ξ . For g =
0.4, the metallic phase present for all studied values of ξ is
transformed into an AF Mott phase without an intermediate
phase (Fig. 15).
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APPENDIX: NUMERICAL METHODS

1. Stochastic Green function (SGF) algorithm

The SGF algorithm, introduced in Refs. [32,39], is a
quantum Monte Carlo algorithm which evolved from the
Worm [40] and canonical Worm algorithms [41]. The main
interest of the SGF algorithm is to allow the measurement
of n points equal time Green functions and the simulation of
complex models, especially models that do not conserve the
number of particles.

If the Hamiltonian is written as the sum of two parts
H = V − K , where V is diagonal (in a chosen basis) and K
nondiagonal, the partition function can then be expressed as
an expansion in powers of K [40]

Z = Tr
∞∑

n=0

∫
0<τ1<τ2···<τn<β

dτ1 · · · dτn e−βV K (τn) · · · K (τ1),

(A1)

where K (τ ) = eτV Ke−τV . Here we will choose the occupation
number basis. We then have V = U

∑
r nr,↑nr,↓ + ω

∑
r nr,φ

and K = t
∑

r,σ c†
r,σ (cr+1,σ + H.c.) − ∑

r,R G(R)
√

2Xrnr+R.
Introducing complete sets of states |ψτ 〉 between nondiag-

onal operators, we obtain

Z =
∞∑

n=0

∑
{|ψτ 〉}

∫
0<τ1<τ2···<τn<β

dτ1 · · · dτn 〈ψ0|e−βV

×K (τn)|ψn−1〉〈ψn−1|K (τn−1)|ψn−2〉〈ψn−2|
×K (τn−2)|ψn−3〉 · · · 〈ψ2|K (τ2)|ψ1〉〈ψ1|K (τ1)|ψ0〉.

If the product of the matrix elements of the form
〈ψk|K (τk )|ψk−1〉 is positive, it can be used as a weight with
which to sample all the variables ({τk}, {|ψk〉} and the ex-
pansion order n). In practice, we resort to the Jordan-Wigner
mapping of fermions onto hardcore bosons to simulate this
one-dimensional fermionic system and avoid a sign problem
for the weight.

In order to sample Z , an extended partition function is
introduced Z (τ ) = Tre−(β−τ )HGe−τH , where G is the Green

operator defined by

G =
∞∑

p,q=0

wpq

∑
{ck |dl }

p∏
k=1

b†
ck√

nck + 1

q∏
l=1

bdl√
ndl + 1

. (A2)

Here the b†
c operator creates a particle in state c. State c is

specified by the type of particle that is created (in our case, two
kinds of hardcore bosons, representing spin up and spin down
fermions, or phonons) and by the site on which it is created.
The bd operator destroys a particle in state d , in the same way.
In the Green operator, the c and d states should be different, so
that there are no diagonal contributions in the Green operator,
except for q = p = 0 which gives the identity operator. As the
terms in G are products of creation and destruction operators,
G is then the sum of all possible n-point Green functions,
weighted by the matrix wpq. The Green functions that have
large weights wpq will appear more often is the sampling of
Z (τ ).

Z (τ ) is expressed in the same way as Z , introducing an
additional set of complete states,

Z (τ ) =
∞∑

n=0

∑
{|ψτ 〉}

∫
0<τ1<τ2···<τn<β

dτ1 · · · dτn 〈ψ0|e−βV K (τn)

×|ψn−1〉 · · · × 〈ψL+1|K (τL )|ψL〉 × 〈ψL|G(τ )|ψR〉
×〈ψR|K (τR)|ψR−1〉 × · · · × 〈ψ1|K (τ1)|ψ0〉, (A3)

where we used labels L and R to denote the states appearing
on the left and right of G.

Whenever |ψL〉 = |ψR〉 during the sampling, the contribu-
tion of the Green operator is the simple constant w00. The
configuration that is then obtained by sampling Z (τ ) also
contributes to the original partition function Z . When |ψL〉 �=
|ψR〉, only one of the terms present in G gives a nonzero
contribution to 〈ψL|G|ψR〉. In that case, the configuration
obtained contributes to the sampling of one peculiar Green
function.

In practice, the sampling of the extended partition function
is made by using the Green operator. In the simplified update
scheme introduced in Refs. [32], two possible “movements”
of G are shown to allow an ergodic sampling of the con-
figurations. First a shift direction is chosen for G(τ ) (left
if τ is increased, right if τ is decreased). Then moving in
this direction, two different situations can occur: the Green
operator can create a K operator at its imaginary time and
then be shifted or the Green operator can be shifted to the
imaginary time of the next K operator and destroy it. Creating
a K operator requires to choose a new |ψR〉 state, assuming
that a left move is chosen. Depending on the chosen |ψR〉, the
Green operator is modified accordingly and only one of the
terms appearing in K gives a nonzero contribution. The choice
between all possible new |ψR〉 is made with a probability
chosen to respect detailed balance. For example, in our case,
the K operator comprises two kinds of operators: jumps of
particles from one site to the next or creation or destruction
of a phonon. The creation of such operators and the corre-
sponding modifications of the states and Green operator are
illustrated in Fig. 19. The destruction of a K operator modifies
in the same way G and the states.
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FIG. 19. Schematic representation of the movement of the Green
operator G. Starting from an initial configuration (a) where G = I and
where there is one up particle (blue thick line) and a phonon (orange
thick dashed line) on site r, G is shifted to the left (τ increasing),
and a K operator is created. In (b), a jump of the particle has been
created, which modified the state on the right of G and the G operator
itself. In (c), a destruction operator for the phonon has been created
and G is a phonon creation operator.

The Green operator is moved until it becomes the identity
operator, at which point the measurement of diagonal quanti-
ties can be performed. To sample efficiently Z (τ ), a directed
propagation [32] is generally used to avoid G going back
and forth in imaginary time. In that case, there is a stronger
probability for the operator to continue its movement in the
same direction as in the previous step.

2. Langevin algorithm

The Langevin method we used is introduced and bench-
marked in Ref. [35] where some additional results for U =0
are also presented. The method initially proceeds in a way that
is similar to a determinant quantum Monte Carlo method [42]
(DQMC). We first rewrite the phonon diagonal energy of
Hamiltonian (1) as ωnr,φ = ωx2

r /2 + p2
r/2 and add a chem-

ical potential term −μ
∑

r nr to the Hamiltonian as the
algorithm works in the grand canonical ensemble. When
μ = −[

∑
R G(R)]2/ω, the resulting Hamiltonian is particle-

hole symmetric and 〈n↑〉 = 〈n↓〉 = 1/2.
The partition function is written as a discrete path integral,

where inverse temperature β is divided into Lτ steps of
size 
τ = β/Lτ and complete sets of states {xr,τ , pr,τ } are

introduced at each imaginary time step τ . When U = 0, the
fermionic terms in the Hamiltonian (1) are quadratic and can
be traced out, and the momentum dependence of the phonons
can be integrated out, leading to an expression of the partition
function that depends only on the phonon field xr,τ [5]

Z =
∫

Dxr,τ exp(−SBose({xr,τ }))[det M({xr,τ })]2

=
∫

Dxr,τ exp(−S({xr,τ })). (A4)

Detailed expressions for SBose and matrix M are found in
Refs. [35,42]. M is a large sparse matrix of dimension LLτ

and the method is free of the sign problem as the determinant
of M is squared.

The algorithm then proceeds by using a fictitious stochastic
dynamics, governed by the Langevin equation

dxr,τ (t )

dt
= − ∂S

∂xr,τ (t )
+

√
2ηr,τ (t ), (A5)

where ηr,τ (t ) are stochastic variables satisfying

〈ηr,τ (t )〉 = 0, 〈ηr,τ (t )ηr′,τ ′ (t ′)〉 = δr,r′δτ,τ ′δ(t − t ′).

The Langevin dynamics assures that, when t → ∞, variables
are distributed according to P = exp(−S).

Two main technical difficulties need to be overcome in
order to integrate the Langevin equations efficiently. First, cal-
culating ∂S/∂xr,τ (t ) involves [35] a trace over an expression
containing the inverse of matrix M. This would be extremely
taxing in terms of simulation time, as inverting a matrix scales
as the cube of its dimension. This trace is then calculated using
a stochastic estimator, which allows to replace the matrix
inversion problem with a much simpler solution of a linear

0.2 0.4 0.6 0.8 1
g/t

0

0.2

0.4

0.6

0.8

n↑=n↓
F(π)
F(ε)x20

L=26, ω=0.5, t=1, ξ=0.35, βt=L

FIG. 20. Langevin simulations results for a cut in the phase
diagram using the same parameters as in Fig. 7. Chemical potential is
set to μ = −[

∑
R G(R)]2/ω to impose particle-hole symmetry. F (k)

is the Fourier transform of 〈nrnr+R〉. We observe a homogeneous
metallic phase for g/t � 0.6 where the density structure factors are
small. A Peierls phase is observed for 0.6 � g/t � 0.9, marked by
a large value of F (π ). Finally, a phase separated region is obtained
for g/t � 0.9 as shown by the increase of F (ε) and by the average
densities 〈n↑〉 = 〈n↓〉 that are no longer 1/2.
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system. This solution is obtained by a conjudate gradient
method that scales linearly with the dimension of M, LLτ .
This is a big advantage of this method as other techniques,
such as the conventional DQMC algorithm, scale as L3Lτ . The
second difficulty comes from the autocorrelation times of the
Langevin dynamics, which are generally very long. This is
solved by the so-called Fourier acceleration of the Langevin
dynamics [35].

3. Langevin simulations results

Using this algorithm, we confirmed the results obtained
with the SGF algorithm at U = 0, especially the fact that a

phase separation is present for small values of ξ . Figure 20
shows a cut in the phase diagram for the same parameters as
in Fig. 7. As with SGF simulations, we observe a transition
from the metal to the Peierls phase for g/t � 0.6 and from the
Peierls phase to a phase separated behavior for g/t � 0.9. The
Peierls phase is here signalled by the large value of F (π ) in
the intermediate region, where F (k) is the Fourier transform
of 〈nrnr+R〉. The phase separation is marked by the increased
value of F (ε) and, because the simulations are performed in
the grand canonical ensemble, by the fact that the densities
〈n↑〉 = 〈n↓〉 departs from their expected value of 1/2. Indeed,
the density of particles in the system becomes arbitrary in
the phase separation region despite the fact that the chemical
potential has been chosen to ensure particle-hole symmetry.
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