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The noninteracting electronic structures of tight-binding models on bipartite lattices with unequal numbers
of sites in the two sublattices have a number of unique features, including the presence of spatially localized
eigenstates and flat bands. When a uniform on-site Hubbard interaction U is turned on, Lieb proved rigorously
that at half-filling (ρ = 1) the ground state has a nonzero spin. In this paper we consider a “CuO2 lattice”
(also known as “Lieb lattice,” or as a decorated square lattice), in which “d orbitals” occupy the vertices of the
squares, while “p orbitals” lie halfway between two d orbitals; both d and p orbitals can accommodate only up
to two electrons. We use exact determinant quantum Monte Carlo (DQMC) simulations to quantify the nature
of magnetic order through the behavior of correlation functions and sublattice magnetizations in the different
orbitals as a function of U and temperature; we have also calculated the projected density of states, and the
compressibility. We study both the homogeneous (H) case, Ud = Up , originally considered by Lieb, and the
inhomogeneous (IH) case, Ud �= Up . For the H case at half-filling, we found that the global magnetization rises
sharply at weak coupling, and then stabilizes towards the strong-coupling (Heisenberg) value, as a result of the
interplay between the ferromagnetism of like sites and the antiferromagnetism between unlike sites; we verified
that the system is an insulator for all U . For the IH system at half-filling, we argue that the case Up �= Ud falls
under Lieb’s theorem, provided they are positive definite, so we used DQMC to probe the cases Up = 0,Ud = U

and Up = U,Ud = 0. We found that the different environments of d and p sites lead to a ferromagnetic insulator
when Ud = 0; by contrast, Up = 0 leads to to a metal without any magnetic ordering. In addition, we have also
established that at density ρ = 1/3, strong antiferromagnetic correlations set in, caused by the presence of one
fermion on each d site.
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I. INTRODUCTION

Within early mean-field theories (MFTs), the ground state
of the single band Hubbard Hamiltonian [1], e.g., on a
square lattice, was predicted to support both long range
ferromagnetism (FM) and antiferromagnetism (AFM), with
the two ordering wave vectors each occupying broad regions
in the density (ρ)–interaction strength (U ) phase space [2,3].
However, when treated with more accurate methods like
quantum Monte Carlo (QMC) simulations and generalized
Hartree-Fock approaches [4,5], this parity is broken. FM
proves to be much more elusive [6,7], and indeed seems to
be entirely absent from the square lattice phase diagram [8]
except in “extreme” situations such as the Nagaoka regime of
doping with a single electron away from half-filling at very
large U (many times the kinetic energy bandwidth) [9,10].
The difficulty in achieving FM in the Hubbard Hamiltonian
is unfortunate, since its explanation was one of the original
motivations of the model [1,11].

How, then, might itinerant ferromagnetism be achieved
in a model Hamiltonian? One route retains a single band
but introduces frustration (e.g., through next-near-neighbor
hopping) which shifts spectral weight to the band edges
and minimizes the kinetic energy cost of the magnetic state
[12–14]. Additional interaction terms such as next-neighbor
direct exchange [1,15–17] or bond charge (correlated hopping)
can also increase ferromagnetic tendencies, at least within
MFT [18] or Gutzwiller approximation [19] treatments.

A second route to ferromagnetism is through the presence
of several electronic bands. Within one picture, the resulting
Hund’s rule interactions play a crucial role [20,21]. A distinct

scenario, and the one we carefully explore here, focuses
instead on the presence of special noninteracting dispersion
relations. In this context, a series of rigorous results were
obtained. First, Lieb [22] established a theorem stating that in
a class of bipartite geometries in any spatial dimension, with
unequal numbers of sites NA and NB in the two sublattices
(A and B), the ground state has total spin S = |NA − NB|/2.
The class of bipartite lattices for which the theorem was
originally proved was subject to the following restrictions: the
Hubbard repulsion U must be the same on every lattice site;
hopping tij c

†
i cj can only take place between sites ij in opposite

sublattices; and there can be no single-particle chemical
potential terms εi c

†
i ci . With these conditions, the Hamiltonian

H is particle-hole symmetric (PHS), and each site, irrespective
of being on the A or the B sublattice, is exactly half-filled. One
should note, however, that Lieb himself warned that “spatial
ordering is not implied” by a nonvanishing total spin; in
addition, here the use of ferromagnetism should be understood
as encompassing unsaturated ferromagnetism, though some
authors (see the Erratum to Ref. [22]) advocate the use
of ferrimagnetism in this case. A subsequent development
was achieved [23] by establishing that spin-spin correlation
functions 〈�0|Si · Sj |�0〉, where |�0〉 is the ground state,
are positive (negative) for i and j on the same (different)
sublattices; here, again, long range order is not necessarily
implied [24,25].

Possible ferromagnetic order is closely tied to the fact
that, in the noninteracting limit, tight-binding Hamiltonians
on lattices with this geometry and obeying these conditions,
have highly degenerate localized eigenstates, from which
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FIG. 1. The Lieb lattice (or CuO2 lattice). The fourfold coordi-
nated d sites appear in lighter color (orange) and belong to the A
sublattice, while the twofold coordinated p sites appear in darker
color (blue) and belong to the B sublattice.

linear combinations can be constructed to form a perfectly
flat electronic band. At half-filling for the entire lattice,
this flat band itself is precisely half-filled. Lieb’s theorem
was subsequently generalized to other graphs including the
Kagomé and the square lattice with cross hoppings on half
the squares [12]. It is notable that one of the essential
ingredients in this route to ferromagnetism, PHS, is precisely
what is broken in other scenarios such as the introduction of
frustration. The implications of the Lieb theorem have also
been explored for more general geometries [12,26], and one
should note that flat-band ferromagnetism is independent of
lattice dimensionality [27,28]. FM was found to occur away
from the singular flat-band limit, i.e., in models with the
perfect cosine dispersion characteristic of the Hubbard model
with near-neighbor hopping only on linear, square, and cubic
lattices [29].

One particular geometry to which Lieb’s theorem applies
is the CuO2 lattice, also referred to as the Lieb lattice; see
Fig. 1. In spite of the similarities with the actual CuO2 sheets
of high-Tc cuprates, one must stress that the relevant fillings for
superconductivity in these materials is one hole per CuO2 unit
cell, rather than half-filling (three holes per unit cell), and in
fact a significant site energy difference εp − εd exists between
occupation of the copper d and oxygen p orbitals (violating
one of the restrictions of Lieb’s theorem) [12]. Indeed, the
cuprate materials exhibit AFM rather than FM.

Some consequences of the peculiar geometry of the Lieb
lattice have been recently pursued in several theoretical
studies [30–32]. While these studies did not include on-site
interactions, which are directly linked with ferromagnetism,
some effects of on-site repulsion U have only been investigated
with the aid of dynamical mean-field (DMFT) [33,34]: it was
found that each sublattice magnetization behaves monoton-
ically with U , and this correlates with the local density of
states. Finally, experimental realizations of the Lieb lattice
as photonic lattices have been recently reported [35,36], and
one should expect optical lattices could also be set up with
this topology, motivated by the possibility of engineering
ferromagnetic states through the control of interactions.

In view of this, several issues regarding the existence of
ferromagnetism on the Lieb lattice should be addressed, and
here we use determinant quantum Monte Carlo (DQMC)
which treats the interacting electron problem exactly on lattices
of finite size. First, a detailed analysis of the sublattice-resolved
spatial decay of spin correlations and order parameters would
add considerably to the understanding of how the basic
units conspire to yield a robust polarized state. Second,
can ferromagnetism still be found if one deviates from the
conditions of Lieb’s theorem, e.g., by relaxing the constraint
of uniform U , i.e., allowing for Ud �= Up (on “oxygen” and
“copper” sites, respectively)? We then go beyond Lieb’s
theorem by distinguishing two situations, namely, the case
where both Up and Ud are nonzero, and the cases in which the
on-site repulsion is switched off on either p sites or d sites.
Away from half-filling, DQMC simulations are plagued by
the infamous “minus-sign problem,” which prevents us from
reaching very low temperatures. Nonetheless, we can still shed
some light into the effects on magnetic ordering by switching
off the repulsion on either p or d sites.

The paper is organized as follows. In Sec. II we present
the main features of the Hubbard Hamiltonian on the Lieb
lattice, and highlight the DQMC method together with the
quantities of interest. The results for the homogeneous and
inhomogeneous lattices at half-filling are presented in Secs. III
and IV, respectively; the behavior away from half-filling is
briefly analyzed in Sec. V. Our main conclusions are then
summarized in Sec. VI.

II. THREE-BAND HUBBARD HAMILTONIAN AND
QUANTUM MONTE CARLO METHODOLOGY

The particle-hole symmetric three-band Hubbard Hamilto-
nian on a Lieb lattice,

Ĥ − μN̂ = −tpd

∑
rσ

(
d†

rσpx
rσ + d†

rσpy
rσ + H.c.

)
− tpd

∑
rσ

(
d†

rσ p
x

r−x̂σ + d†
rσ p

y

r−ŷσ + H.c.
)

+
∑
rα

Uα

(
nα

r↑ − 1

2

)(
nα

r↓ − 1

2

)

+
∑
rασ

εαnα
rσ − μ

∑
rασ

nα
rσ (1)

contains inter- and intracell hopping tpd between a (copper) d

and two (oxygen) px, py orbitals. In this paper we consider
the on-site repulsion both as homogeneous, Up = Ud = U , in
accordance with Lieb’s theorem, but also inhomogeneous, with
either Up = 0, Ud �= 0 or Up �= 0, Ud = 0. In all cases, we
set the local orbital energies εp = εd = 0 and global chemical
potential μ = 0. With these choices, particle-hole symmetry
holds even in the inhomogeneous case, which yields half-
filling ρ = 1.

For a model in which all sites r and orbitals α have the same
on-site U , the two ways of writing the interaction Unα

r↑nα
r↓

and U (nα
r↑ − 1

2 )(nα
r↓ − 1

2 ) differ only by a shift in the choice
of the zero of global chemical potential, so the physics is
completely identical. However, if Uα depends on α (or r),
then changing to a particle-hole symmetric form corresponds
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to an orbital dependent shift, i.e., an unequal change in the
individual εα . The symmetric form corresponds to a special
choice in which the occupancies of all orbitals are identically
half-filled. Typically this choice is not obeyed in a real material,
where each orbital has a unique filling. However, since it is a
prerequisite for the applicability of Lieb’s theorem, we impose
it here.

The magnetic behavior is characterized by the local mo-
ments 〈

m2
α

〉 = 〈(
nα

r↑ − nα
r↓

)2〉
(2)

and also by the real space spin-spin correlation functions

cαβ (r) = 〈
c
α†
r0+r ↓c

α

r0+r ↑c
β†
r0 ↑c

β

r0 ↓
〉
, (3)

which measure the result of raising a spin on site r0 in orbital
β and its subsequent lowering at site r0 + r in orbital α. The
Fourier transforms of cαβ(r) are the magnetic structure factors,

Sαβ(q) =
∑

r

cαβ (r)eiq·r. (4)

In the ferrimagnetic state proposed by Lieb, cαβ (r) > 0, when
α and β are both d, or both p orbitals, while for unlike orbitals
cαβ (r) < 0. We will focus on FM, q = 0.

In order to probe the metallic or insulating character of
the system, a useful quantity is the electronic compressibility,
defined as

κ = − 1

ρ2

∂ρ

∂μ
, (5)

where ρ is the electronic density. The properties of the
Hamiltonian Eq. (1) will be solved using determinant quantum
Monte Carlo (DQMC) [7,37,38]. This method provides an
exact solution, on real-space lattices of finite size, subject
to statistical error bars and (small) “Trotter errors” from the
discretization 
τ of imaginary time (inverse temperature). We
have chosen 
τ small enough so that these Trotter errors are
comparable to, or less than, the statistical errors on cαβ(r) and
Sαβ (q). We define the lattice spacing (a = 1) as the distance
between nearest d sites; accordingly, the finite size L (in units
of lattice spacing) is given by the number of d sites along one
direction, while the numerical effort is actually measured by
the number of lattice sites, Ns ≡ 3(L × L). Lattice separations
along the horizontal or vertical directions with |r| integer
correspond to correlations between like orbitals, whereas
half-integral |r| denote unlike orbitals.

III. THE HOMOGENEOUS LATTICE

Figure 2 shows the temperature evolution of the local
moment on d and p sites. Both moments start at the common
high temperature value 〈m2

α〉 = 1
2 and become better formed

as the temperature crosses the energy scale T ∼ U . At low
temperatures, the moments stabilize in plateaux with 〈m2

α〉 <

1, which reflect residual quantum fluctuations arising from
tpd/U �= 0. These fluctuations are larger for the d sites, which
have four neighboring p sites, than for the p sites which have
only two neighboring d sites. It is also interesting to note that
the local moment for the usual square lattice 〈m2

square〉 is such
that 〈m2

d〉 < 〈m2
square〉 < 〈m2

px(y)〉.
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FIG. 2. Temperature evolution of the local moment on d and p

sites of the Lieb lattice (linear-log scale). The fourfold coordinated
d sites have a lower moment than the twofold coordinated p sites.
Moment formation occurs mainly when T/tpd ∼ U , but a smaller
signal is also seen at T/tpd ∼ J , the exchange energy. Here, and in
all subsequent figures, when not shown, error bars are smaller than
symbol size.

Intersite spin correlations develop at lower temperatures
associated with the exchange energy scale J ∼ t2

pd/U .
Figure 3 illustrates the different behaviors of correlations with
the distance (all consistent with the rigorous results for their
signs, as derived in Ref. [23]), at a fixed low temperature
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(r
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(b) U/t
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= 4

r
FIG. 3. Spatial dependence of spin-spin correlation functions,

Eq. (3), at a fixed temperature, for U/tpd = 2 (top panel) and
U/tpd = 4 (bottom panel). In each panel, diamonds and circles,
respectively, represent positions of p and d sites, while stars on the
bottom panel are data for the Heisenberg model. Curves going solely
through diamonds (blue curves) correspond to placing the origin at a
p site, and r running over p sites along a straight line at an angle of
45◦ (see the inset); curves alternating between diamonds and circles
correspond to placing the origin on a d site, and r running along a
horizontal line (see the inset).
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FIG. 4. The FM structure factors Sαβ (q = 0,0) of the Lieb lattice
are plotted as functions of temperature for different lattice sizes
L. for U/tpd = 4. The relative signs Spx,px

[q = (0,0)] > 0 and
Sd,px

[q = (0,0)] < 0 are signatures of ferrimagnetism. At high T ,
where the real space correlations are short range, Sαβ is independent
of L. As T decreases, Sαβ plateaus at successively larger values for
increasing L, providing evidence that spin correlations extend over
the entire lattice.

T/tpd = 0.042. Along a path which only includes p sites
[(blue) curve going solely through diamond data points],
correlations are always positive, indicating a ferromagnetic
alignment, and with a robust persistence at large distances. By
contrast, along a horizontal path which includes both d and p

sites, the correlations alternate in sign, consistently with AFM
alignment between d and p sites, and a FM alignment between
d sites; here again, the persistence of correlations at large
distances (∼ L/2) suggests an overall long range FM order.
Also shown in Fig. 3(b) are data for the Heisenberg model
on the same lattice, which corresponds to the strong coupling
limit (U 
 tpd ) of the Hubbard model; these latter data have
been obtained through the stochastic series expansions (SSE)
method [39,40]. The amplitudes for U/tpd = 4 are still quite
far from their strong coupling limit, but one can infer that the
slow decay of correlations is a dominant feature, which can
therefore being taken as indicative of long range order in the
ground state for all Upd .

At high temperatures, cαβ (r) is short ranged, so the sum over
all lattice sites in the structure factor is independent of system
size. This is reflected in the high-temperature collapse of
Sαβ [q = (0,0)] in Fig. 4. Data for Sαβ[q = (0,0)] for different
L split apart at T ∼ J .

A more rigorous probe of long range order is carried out
through finite-size scaling analyses [41]. The square of the
order parameter is obtained by normalizing the structure factor
to the lattice size m2

q = Sαβ(q)/L2. This will have a nonzero
value in the thermodynamic limit 1/L → 0, if cαβ(r) is long
ranged, with a 1/L correction. In Fig. 5 data for the global
FM structure factor are displayed, for several values of U ; also
shown are data for the Heisenberg model on the same lattice.
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FIG. 5. Finite-size scaling plots for the normalized ground state
structure factor m2

F. For each U �= 0, they extrapolate to a nonzero
value in the thermodynamic limit. The data labeled Heisenberg have
been obtained for localized spins on Lieb lattice, interacting through
nearest-neighbor exchange coupling Si · Sj ; see text.

The extrapolated values of the order parameter are shown
in Fig. 6, as a function of U , thus confirming the existence
of long range ferromagnetic order for all U > 0. Note that
mF rises sharply for U/tpd � 1, and then stabilizes towards
the Heisenberg model value for large U/tpd . At this point, a
technical remark is worth making: for U/tpd � 4 one has to
perform simulations at very low temperatures (T � 0.025tpd ,
or β ≡ tpd/T = 40) in order to ensure the structure factor
has stabilized; these temperatures are much lower than those
needed for the simple square lattice with the same U/t ,
β � 25 [42].

If we now perform separate finite-size scaling analyses for
the structure factors in the different channels Sαβ (q) with
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0.00
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m
F

U/t
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F

FIG. 6. Global ferromagnetic order parameter as a function of
the on-site repulsion U obtained from the extrapolated values, Fig. 5.
The (red) dashed line going through the data points is a guide to the
eye, while the horizontal (black) dashed line is the Heisenberg limit.
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FIG. 7. Extrapolated (L → ∞) values of the channel-resolved
order parameters obtained from the scaling of the structure factor;
see text. For the FM channels (dd and pp) we set q = 0 in Eq. (4),
while for the AFM channel (dp) the sum is carried out with opposite
signs at adjacent sites. q = (π,π ).

α,β = d,px,py , we can probe the corresponding sublattice
order parameters; their dependence with U is shown in Fig. 7.
It is interesting to see that pp ferromagnetism rises sharply
with U , in marked contrast to the very slow rise in the dd

sublattice. A strong coupling analysis of the pydpx cluster of
three Heisenberg-coupled spins reveals that the two p spins
form a triplet, which adds to the d spin, leading to a total spin
Scluster = 1/2 characterizing a ferrimagnetic state; this picture
can also be applied in weak coupling, as a result of the flat
p band. We may therefore attribute the sharper rise of the pp

FM order parameter as due to the p spins locking into triplets
as soon as U is switched on, while the d spin is somewhat
shielded by the surrounding triplets. Figure 7 also shows that
the data converge very slowly to the Heisenberg limit; again
this may be attributed to the difference in the number of nearest
neighbors of p and d sites.

It is also worth checking the insulating nature of the
ferrimagnetic state. To this end, we calculate the density
of states N (ω) from DQMC data for the imaginary-time
dependent Green’s function, which is achieved by inverting
the integral equation

G(τ ) =
∫

dωN (ω)
e−ωτ

eβω + 1
. (6)

This inversion can be done, for example, with the “maximum
entropy” method [43]. In the case of the square lattice, N (ω)
exhibits a gap at half-filling [7]; this “Slater” gap originates
in AFM order at weak U and crosses over into a Mott gap at
strong coupling.

Figure 8 shows the projected density of states for the
Lieb lattice. We see that at sufficiently low temperatures an
insulating gap develops for both orbitals, similarly to the
square lattice, but with the important difference that in the
present case it results from a ferromagnetic state. Furthermore,
the density of states on the p sites displays a double-peak

0.00

0.05

0.10

0.15

0.20

0.25

-10 -5 0 5 10
0.00
0.05
0.10
0.15
0.20
0.25
0.30N

(ω
)

d sites
T/t

pd
=0.20

T/t
pd
=0.10

T/t
pd
=0.05

U/t
pd
= 4

ω/t
pd

p sites
T/t

pd
=0.20
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FIG. 8. Local density of states on d sites (top panel) and on p

sites (bottom panel), at three different temperatures.

structure on each side of the Fermi energy. The additional
peaks originate from the splitting of the flat band on the p

sites when a ferromagnetic state is formed; this is similar to
what happens in the periodic Anderson model when the Kondo
resonance is split when an antiferromagnetic state is formed.
We have also obtained the density of states for other values of
U . The gap increases monotonically with U .

IV. THE INHOMOGENEOUS LATTICES

The strong coupling limit of a generic inhomogeneous Lieb
lattice at half-filling (single occupancy enforced on every site),
and with Ud �= Up, Ud,Up > 0 corresponds to a Heisenberg
model with uniform exchange [44]

J ′ = 4t2

Ũ
, (7)

where Ũ is the geometric mean between the on-site repulsion
on adjacent sites,

Ũ = 2UpUd

Up + Ud

. (8)

Since one of the steps in Lieb’s proof relies on the strong
coupling limit of the Hubbard model [22,45], the existence of
a ferromagnetic state also holds in this case. This is discussed
further in the conclusions.

However, if either Ud or Up vanishes, this correspondence
with the Heisenberg model completely breaks down—single
occupancy on every site is no longer guaranteed even at half-
filling. Furthermore, due to the different neighborhoods of the
d sites (four p neighbors) and of the p sites (two d neighbors),
switching off Ud or Up leads to radically different effects, as
we now discuss. Figure 9 displays data for the compressibility.
We see that when Ud = 0 the system behaves as an insulator;
by contrast, when Up = 0 the compressibility increases as the
temperature decreases, indicating a metallic state. Therefore,
when Ud = 0 and at half-filling, each p site is occupied by one
fermion, so that the d site is also singly occupied, as if Ud were
nonzero; from the magnetic point of view, one then expects a
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FIG. 9. Comparison of the compressibility at half-filling in three
instances: homogeneous lattice (squares), Ud = 0 (circles), and Up =
0 (triangles). When nonzero, the Us are all set to 8tpd ; the linear lattice
size is L = 6.

ferromagnetic ground state, just as in the homogeneous case.
When Up = 0 the likelihood of double occupancy of the p

sites increases, thus destroying any magnetic ordering. As we
will see, these expectations are borne out by our simulations.

Figure 10 compares the local moment in the homogeneous
and inhomogeneous Lieb lattices. One immediate effect of
switching off the repulsion on a subset of sites is the strong
suppression of the local moment on exactly those “free” sites;
this suppression is almost complete (becoming very near the
minimum value of 1/2) on p sites when Up = 0. However,
when Ud = 0 and Up � 4tpd the local moment on the p sites is
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FIG. 10. Local moment on d sites [light (orange) color] and on
p sites [dark (blue) color], as functions of the on-site repulsion
for (a) the homogeneous case, (b) Up = U, Ud = 0, and (c) Ud =
U, Up = 0. Data for the usual square lattice are also shown (stars),
for comparison.
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FIG. 11. Spin correlations between first neighborlike sites. The
upper panel displays the correlations between d sites, while the lower
panel shows those between p sites; in the latter case, the p sites may
have an intervening d site (filled symbols), or not (empty symbols).
Data for the usual square lattice are shown, but the fair comparison
in this case is with sites on different sublattices (hence two lattice
spacings apart, or r = 2); see text.

not significantly affected in comparison with the homogeneous
case; for U � 4tpd it becomes slightly smaller than the one for
the square lattice. By contrast, when Up = 0 the suppression
of 〈m2〉 on the d sites takes place for all U , as a result of
increasing double occupancy.

In Fig. 11 we show the spin correlation between sites one
lattice spacing apart, as functions of the on-site repulsion.
The dd correlations for the homogeneous Lieb lattice are
suppressed in comparison with those for the square lattice. As
noted earlier in connection with Fig. 2, the local moment on
the d site is smaller than on the square lattice, so this reduction
in correlations between spins on d sites is expected. For the
inhomogeneous Lieb lattice, correlations between spins on
d sites are suppressed even more, with those on the d sites
being completely suppressed when Ud = 0. By contrast, the
pp correlations are quite robust if the Coulomb repulsion is
only switched off on the d sites; when Up = 0, pp correlations
are strongly suppressed. As anticipated, repulsion on the p

sites is crucial to the onset of ferromagnetic correlations. At
this point, a comment should be made: in the strong coupling
(i.e., Heisenberg) limit, pp correlations one lattice spacing
apart are exactly the same irrespective of including, or not,
an intervening d site. However, up to the couplings covered in
Fig. 11, the noticeable difference is due to both the temperature
not being low enough, and to the coupling being not so strong.

This is even more evident when we probe long range
order (LRO) through finite-size scaling analyses of the m2

α,β =
Sα,β/L2. When Up = 0 the overall ferromagnetic order pa-
rameter decreases very fast as L → ∞, indicating the absence
of LRO. This is reminiscent of what happens in the diluted
Hubbard model on a square lattice. LRO in the ground state is
only possible below a certain threshold fc of free sites, which
depends on the strength of the on-site interaction [46–48]: here
an effective fraction of free sites can be taken as f = 2/3,
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FIG. 12. Same as Fig. 7, but now for the Ud = 0 case.

which is above the thresholds f
square
c (U = 8t) � 0.4, and for

f
square
c (U = −4t) � 0.3. This is consistent with previous work

on the case Up = 0 in models of CuO2 sheets of cuprate
superconductors, which do not display an antiferromagnetic
ground state, unless a site energy difference εp − εd > 0 is
included to enhance charge disproportionation [49,50].

For Ud = 0, a finite-size scaling analysis of the overall
ferromagnetic order parameter indicates LRO. The channel-
resolved extrapolated order parameters shown in Fig. 12 are
very similar to those for the homogeneous case; the same is
true for the global ferromagnetic order parameter, as shown
in Fig. 13. We therefore conclude that the preconditions for
ferromagnetism on Lieb lattices, at least as far as homogeneity
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FIG. 13. Global ferromagnetic order parameter as a function of
the on-site repulsion Up/tpd obtained from the extrapolated values
for the case Ud = 0. The (red) dashed line going through the data
points is a guide to the eye.
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FIG. 14. Spin correlation functions as functions of band filling
at fixed temperature T = 0.17tpd , for a lattice with 6 × 6 ppd

cells, highlighting the differences between homogeneous and both
inhomogeneous cases. Top panel: Correlations between spins on
nearest s and p sites. Bottom panel: Correlations between spins on
nearest d sites.

is concerned, are less restrictive than those originally assumed
in Lieb’s proof of the theorem.

V. AWAY FROM HALF-FILLING

Away from half-filling, the “minus-sign problem” (see, e.g.,
Refs. [38,51]) hinders a thorough analysis at low temperatures.
Nonetheless, some interesting conclusions may be drawn at
accessible temperatures (down to T/tpd = 0.17, or T/W =
0.03 in units of the noninteracting bandwidth W = 4

√
2 t).

Figure 14 (top) shows that correlations between spins on near
neighbor p and d sites, cpd (r = 0.5), are always AF (negative)
and increase monotonically in magnitude with ρ, up to half-
filling ρ = 1, in both the H and IH cases. The correlations
between pairs of d sites, cdd (r = 1), Fig. 14 (bottom), show
a more intriguing behavior. cdd (r = 1) is small except near
half-filling where it turns relatively strongly positive for the H
case (though less large than on a square lattice), and weakly
positive for the IH case with Ud = 0.

The richest structure is exhibited by cdd (r = 1) for the IH
case with Up = 0. It is largest in absolute value at filling ρ =
1/3, one fermion on each d site, while the p sites are left empty.
This corresponds rather closely to the situation of the CuO2

planes in cuprates where Ud > Up and the parent compound
La2CuO4 has one hole per copper atom. In the cuprates, the
site hole energy difference εp − εd is substantial, confining
the holes to the copper sites, which would enhance AF order
further. The important message of Fig. 14 (bottom) is that even
in the absence of a substantial εp − εd there is robust (local)
AF order.

VI. CONCLUSIONS

As with the Anderson localization problem, where two di-
mensions occupies a special position, itinerant ferromagnetism
in 2D lies poised between the 1D case where it is explicitly
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forbidden [45] and 3D where it is (fairly) commonly observed
in nature; bounds on correlation functions for the Hubbard
model (and some variants) in one and two dimensions rule out
any magnetic ordering at finite temperatures [52]. One route to
ferromagnetism was devised by Lieb [22], who proved that the
half-filled Hubbard model on a bipartite lattice with unequal
number of sites on each sublattice has a nonzero total spin.
A particular geometry to which this applies is the “decorated
square lattice,” also known as CuO2 lattice, or Lieb lattice:
d sites on the vertices of a square lattice have p sites as
nearest neighbors at the midpoints between the d sites; see
Fig. 1. In this paper we have used quantum Monte Carlo to
unveil several details about the Lieb lattice, by considering
both the homogeneous case (on-site repulsion U has the same
magnitude on every site), as well as inhomogeneous cases,
switching off U on either p or d sites.

For the homogeneous case, we have established that the
magnitude of the local moment is strongly dependent on
the environment, being larger on the p sites than on the d

sites: fewer neighbors leads to a decrease in itinerancy. By
analyzing the spatial decay of spin correlation functions, and
the lattice-size dependence of magnetic structure factor, we
have also provided numerical evidence for the existence of long
range ferromagnetic (or ferrimagnetic) order. Interestingly,
the breakup into sublattice order parameters reveals that the
ferromagnetism of spins on p sites is the most intense in
magnitude, followed by the antiferromagnetism along the
square lattice directions (d − p sites), with the ferromagnetism
of d sites being the weakest. These combine to yield an overall
ferromagnetic order parameter displaying a sharp rise in the
region U/tpd � 1, and stabilizing towards the Heisenberg
limit for U/tpd 
 1. Furthermore, by examining the projected
density of states (obtained with the aid of the maximum entropy
method), we see that the system is an insulator, which is
confirmed by compressibility data.

In Lieb’s original proof, the on-site repulsion was assumed
to be uniform in order to satisfy particle-hole symmetry.
However, with the manifestly symmetric form of the Hubbard
Hamiltonian considered here, this restriction is removed, and
the system is particle-hole symmetric at half-filling for any
distribution of Ui through the lattice sites i. Furthermore,
the strong coupling limit needed to extend the proof to the
inhomogeneous lattice is provided by a subsequent work [44],
which established that when two adjacent sites had different
values of U , say Up �= Ud , the exchange coupling becomes

4t2/Ũ , with Ũ being the geometric mean between Up and
Ud , provided single occupancy could be enforced in this limit.
Therefore, ferromagnetism is also expected to occur when
Up �= Ud > 0.

However, this strong coupling limit breaks down when
either Up or Ud vanishes so we have also examined this
situation. From our QMC simulations we established that
switching off Ud preserves the ferromagnetic state with the
same main features of the homogeneous case, while switching
off Up suppresses ferromagnetism (or any other magnetically
ordered state). Once again, the different environments of the
sites with nonzero repulsion is responsible for this: when
Up = 0 the system is metallic, and single occupancy of the
p sites is no longer guaranteed.

We have also considered doping away from half-filling. An
interesting feature develops in the dd spin correlations when
Up = 0 strong antiferromagnetic correlations; they attain a
large negative value at ρ = 1/3, caused by occupancy of each
d site by a single fermion. Previous studies [49] examined
the occupations, local moments, and pairing for a range of
εp − εd , including εp − εd = 0, but the sharp feature in the dd

spin correlations in this case was not noted.
In closing, we should mention that the quantitative ex-

ploration of itinerant ferromagnetism remains a key area
of strongly correlated electron systems. Recently, ferromag-
netism has also been observed in the absence of a lattice in
mixtures of 6Li atoms in two hyperfine states [53]. Lattice
models remain more challenging for such optical lattice
emulation, owing to the difficulty in cooling the atoms
below the ordering temperature, and because of the density
inhomogeneity introduced by the confining potential. Progress
in observing antiferromagnetism in the single band Hubbard
model in one [54], two [55,56], and three [57] dimensions is
ongoing. Because of the tunability of these cold atom systems,
and particularly the fact that different geometries and regimes
of very large U can be accessed, it is possible that new insight
into Hubbard model ferromagnetism is on the horizon.
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[39] O. F. Syljuåsen and A. W. Sandvik, Phys. Rev. E 66, 046701

(2002).

[40] A. W. Sandvik and O. F. Syljuåsen, AIP Conf. Proc. 690, 299
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