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Discriminating antiferromagnetic signatures in systems of ultracold fermions
by tunable geometric frustration
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Recently, it has become possible to tune optical lattices continuously between square and triangular geometries.
We compute thermodynamics and spin correlations in the corresponding Hubbard model using a determinant
quantum Monte Carlo technique and show that the frustration effects induced by the variable hopping terms can be
clearly separated from concomitant bandwidth changes by a proper rescaling of the interaction. An enhancement of
the double occupancy by geometric frustration signals the destruction of nontrivial antiferromagnetic correlations
at weak coupling and entropy s � ln(2) (and restores Pomeranchuk cooling at strong frustration), paving the way
to the long-sought experimental detection of antiferromagnetism in ultracold fermions on optical lattices.
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I. INTRODUCTION

Comparison of the physics of antiferromagnetism on
bipartite and frustrated lattices, and the interpolation between
them, is a fascinating topic already at the classical level. In
the Ising model on a square lattice with antiferromagnetic
(AF) nearest-neighbor exchange J and an additional AF
coupling J ′ along one of the diagonals, long-range AF
order appears below TN = 2(J − J ′)/ ln(2) at J ′ < J .1,2 The
physics is more complex than this; however, at T > TN, AF
order persists at intermediate ranges up to a “disorder line”
Td (J,J ′), above which it becomes incommensurate, i.e., the
peak in the structure factor moves away from the wave vector
QAF = (π,π ).

Quantum physics can be introduced into such a classical
model via a transverse magnetic field B⊥. In the absence of
frustration, these quantum fluctuations compete with magnetic
order and drive an AF-to-paramagnetic (PM) phase transition.
In contrast, B⊥ can act to induce order when starting from the
classical model on a triangular lattice by lifting the ground-
state degeneracy. A rich set of phases results from the interplay
of quantum and thermal fluctuations, including two distinct
ordered phases.3 There is considerable experimental interest
in realizing such frustrated quantum models in cold atomic
gases and in the observation of these effects.4,5

In the present paper, we will examine related frustration
physics in the context of an itinerant model of magnetism, the
t-t ′ Hubbard Hamiltonian:

H = −t
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.) − t ′

∑

〈〈i,j〉〉,σ
(c†iσ cjσ + H.c.)

+U
∑

i

ni↑ni↓ − μ
∑

i,σ

niσ , (1)

where t and t ′ are nearest-neighbor and next-nearest-neighbor
hopping amplitudes on a square lattice [see Fig. 1(b), inset],6

and U > 0 is the repulsive on-site interaction. The chemical
potential μ is tuned so that the system stays at half filling,
unless otherwise noted.

Our first and primary motivation is to provide guidance for
the next generation of experiments of quantum magnetism on
ultracold fermions on optical lattices and to establish precise
numerical reference results. Cold-atom experiments have
demonstrated the Mott metal-insulator transition.7,8 However,
the observation of quantum magnetism has proven much more
challenging, owing to the low temperature scales required,
with much of the success limited to classical and bosonic
systems.9–11 Very recent experiments have realized tunable
lattice geometries for cold fermions12,13 and bosons14 with
the goal of emulating magnetic or superfluid phases in many-
body systems. In particular, nearest-neighbor AF correlations
of fermionic atoms have been observed on dimerized and
anisotropic geometries,13 with planned extensions to honey-
comb and triangular lattice geometries.12,13,15,16 The concepts
presented in this paper should help guide these next steps.

A second goal is to expand our understanding of itinerant
antiferromagnetism in frustrated geometries.17 Like the next-
nearest-neighbor exchange J ′ on a square lattice, the hopping
t ′ induces an AF superexchange interaction which can be
expected to push the ordering wave vector away from QAF .
Thus the t-t ′ Hubbard Hamiltonian is a natural generalization
of spin models capturing the interplay of quantum and thermal
fluctuations, and frustrating interactions.

II. METHOD

We solve the Hamiltonian (1) using a determinant quantum
Monte Carlo (DQMC).18,19 The method is exact, apart from
statistical errors which can be reduced by increasing the sam-
pling time, and Trotter errors associated with the discretization
of the inverse temperature β ≡ 1/T = ��τ (with integer �),
which can be eliminated by �τ → 0 extrapolation.20,21 Unless
one is protected by particle-hole symmetry [as for our model
(1) at t ′ = 0 and half-filling], the fermionic sign problem22–24

limits the accessible temperatures.
To interpolate between square and triangular lattices, we

vary t ′ in the range [0,t] (as is now possible in cold-atom
experiments13) and use α ≡ t ′/t as a dimensionless scale. Note

195121-11098-0121/2013/88(19)/195121(6) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.195121
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FIG. 1. (Color online) (a) Double occupancy D versus entropy s at scaled interaction U = 4tα and variable frustration α = t ′/t . Solid
line: DMFT estimate of D(s) at α = 0. Inset: At unscaled U = 4t , D(s) does not collapse. (b) Short-range spin-correlation functions C(1,0)

and C(1,1) (equivalent in triangular limit α = 1) at U = 4tα . Inset: Square lattice geometry used in simulations and topologically equivalent
anisotropic triangular lattice. (c) Longer-range spin correlation C(2,0). (d) D(s) at density n = 0.9 and frustration α at U/tα = 4. Vertical dotted
lines indicate s∗ ≡ ln(2).

that the addition of t ′ increases the coordination number from
Z = 4 (square lattice, α = 0) to Z = 6 (triangular lattice, α =
1), and, correspondingly, the noninteracting bandwidth. This
effect can be quantified using the new energy scale tα:

tα = t
√

Zα/Z0 ; Zα = 4 + 2α2. (2)

We will mostly use the dimensionless entropy s = S/(kBN )
per particle as a thermal parameter,20 as appropriate for
(approximately adiabatic) cold-atom experiments. In the fol-
lowing, we present DQMC data obtained for 8 × 8 clusters at
�τ tα � 0.04; we have verified that the resulting Trotter errors
are insignificant and that finite-size effects do not impact any
of the conclusions (see Appendix).

III. RESULTS

A. Weak-coupling results

As is well known, the additional hopping terms at α >

0 frustrate AF correlations by introducing superexchange
between sites that would have the same local spin orientation in
a perfect Néel state. Moreover, the increase in noninteracting
bandwidth weakens the relative impact of a fixed interaction
U , i.e., makes the system less correlated. This is clearly
seen in the inset of Fig. 1(a) at U/t = 4: increasing α shifts
the double occupancy D = 〈nr↑nr↓〉 towards the uncorrelated
limit 〈nr↑〉〈nr↓〉 = 1/4, regardless of entropy s; similar effects
are observed also at stronger coupling (not shown). By
scaling U proportionally to tα , these bandwidth effects can
be eliminated, as demonstrated in the main panel of Fig. 1(a).
The DQMC estimates of D(s) collapse in the regime s >

s∗ ≡ ln(2).25 Consequently, the remaining effect of α, a strong
enhancement of D at s < s∗, must be associated with the
suppression of (short-ranged) antiferromagnetism by geomet-
ric frustration [associated with an insulator-metal transition
at T = 0 (Ref. 16)]. It is remarkable that this AF signature
appears so sharply below s∗. However, the short-range spin-
correlation functions Cr,26 shown in Fig. 1(b), also exhibit
significant changes as frustration is increased, providing a

robust evolution (and even a change in sign) with α, of potential
use in experiments. As might be expected, the signatures of
frustration become stronger at longer ranges, with C(2,0)(s),
depicted in Fig. 1(c), approaching the sharpness seen in D(s).

Let us discuss the underlying physics in more detail. When
charge fluctuations are suppressed at low temperatures, a
nonmagnetic state at half filling would be characterized by
a random configuration with either a spin-up or a spin-down
electron at each site, i.e., with D = 0 and s = s∗. Higher
entropies can only arise due to charge excitations, which
ultimately drive D → 1/4 and s → ln(4) for T → ∞ at all
U > 0. Lower entropies can be reached either by spin order
or by long-range coherence of the charge quasiparticles, i.e.,
Fermi liquid (FL) physics. The latter effect is captured by
“paramagnetic” dynamical mean-field theory (DMFT), which
neglects nonlocal correlations and completely suppresses spin
order. At s > s∗, the DMFT estimate of D(s) for the square
lattice is seen in Fig. 1(a) to converge to the α-independent
DQMC results, with increasing positive slope. At low s, D is
strongly enhanced, within DMFT, by FL physics, giving rise
to a negative slope dD(s)/ds [or dD(T )/dT ] in the regime
s < s∗. This “Pomeranchuk effect” has been suggested as a
tool for adiabatic cooling of cold atoms.27

However, such a negative slope is hardly seen in the DQMC
data for the square lattice [red circles in Fig. 1(a)]. Instead,
D(s) essentially forms a plateau in the range 0.4 � s � 0.8,
and decays further at s � 0.4 when finite-range AF order
develops.28,29 This deviation from the nonmagnetic DMFT
prediction is caused by strong AF correlations, which destroy
the charge coherence instrumental to the FL enhancement of
D. Geometric frustration should reduce these deviations by
suppressing AF correlations. This is exactly what is observed
in Fig. 1(a): with increasing α, the FL enhancement of
D is gradually restored. This restoration is incomplete, as
AF correlations remain even in the triangular limit [with
120-degree order at large U (see Refs. 17 and 30)].

Figure 1(d) shows D(s) measured at density n = 0.9 and
U = 4 tα . While the impact of α is qualitatively similar to
that at n = 1 [ Fig. 1(a)], it is smaller, especially in the range
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FIG. 2. (Color online) Double occupancy D versus entropy s

(left column) and temperature T/tα (right column) at strong coupling
U = 12.25 tα (top) and U = 8 tα (bottom).

α � 0.4. This suggests that in cold-atom experiments, con-
tributions from doped regions at the edge of the trap to
measurements of D averaging over the whole system7,31

will hardly dilute the AF-specific signature predicted above
from the analysis of the half-filled core. Moreover, the shell
contributions are also arising from remnant AF correlations
(which are quickly suppressed for α � 0.4 at n = 0.9) and
not from unrelated physics [such as FL effects in the shell
surrounding a Mott core (see Refs. 32 and 33)].

B. Strong-coupling results

At U = 12.25 tα , FL effects are no longer relevant. Instead,
D is enhanced at low s, or T , by AF correlations in
the unfrustrated case,20,32 as seen in Figs. 2(a) and 2(b),
respectively (red circles). Figure 2(b) shows that geometric
frustration has a drastic impact at fixed temperature: the
low-T enhancement of D is almost completely eliminated
(as illustrated by the arrow at T/tα = 0.25) in the triangular
limit α → 1, which is easily understood as the result of a
strong suppression of AF correlations. In contrast, almost no
impact of α is seen on the shape of the curves D(s) in Fig. 2(a)
due to a cancellation effect:34 the frustration changes D and
s (cf. Fig. 4) simultaneously, as indicated by the arrow in
Fig. 2(a) for fixed T/tα = 0.25. The net effect is just a shift
on the same curve D(s). At U = 8 tα , this mechanism is only
partially effective. Thus, the strong frustration effects visible
in Fig. 2(d) at constant T survive partially also at constant s,
as seen in Fig. 2(c).

Let us turn to spin-correlation functions at U = 8 tα ,
depicted in Fig. 3. The strongest sensitivity to α is seen in
C(1,1) (upper curves in Fig. 3), i.e., the spin correlations across
the frustrating “diagonal” bond. This is not surprising, as the
direction (1,1) becomes equivalent to (1,0) in the triangular
limit α = 1 (gray diamonds in Fig. 3), where, consequently,
C(1,1) must agree with C(1,0). More quantitatively, the hopping
along the (1,1) diagonal induces an AF superexchange
proportional to α2, consistent with the AF shifts seen in C(1,1).

In contrast, the lower set of curves in the main panel of
Fig. 3, representing C(1,0)(s), nearly collapses in the range
0 � α � 0.6. Even at α = 1.0, |C(1,0)| is reduced by only about

FIG. 3. (Color online) Short-range spin-correlation functions
C(1,0) and C(1,1) at U = 8tα . The vertical dotted line indicates
s∗ ≡ ln(2). Inset: spin-correlation function C(2,0).

20% at constant entropy s. This has to be contrasted with a
reduction by about 60% that is observed at constant T , as
indicated by the upward arrow. Evidently, the cancellation
effect is more effective for C(1,0)(s) than for D(s) at U = 8 tα .
This is even more true for C(2,0)(s), shown in the inset of
Fig. 3, with hardly any effect of α seen for s � 0.6; only
the strongest frustration α = 1 has a significant effect, as it
practically eliminates this longer-range correlation in the range
0.6 � s � 0.7.

The cancellation effects clearly expose the relevant physics:
a (nearly) perfect cancellation of frustration effects in Cr(s) at
strong coupling means that the entropy s(T ) is dominated by
spin physics, which is to be expected at s < s∗ in this limit.
This is not the case at weak coupling, where Fermi liquid
physics is equally important, which explains why frustration
effects remain so pronounced [in Cr(s) and D(s)] at constant
s at U = 4 tα (cf. Fig. 1).

C. Adiabatic cooling

Before concluding the paper, let us return to the impact
of geometric frustration on adiabatic cooling.27 This cooling
scheme is based on the thermodynamic relation c (∂T /∂U )s =
T (∂D/∂T )U , where c is the specific heat. ∂D/dT < 0 implies
that an adiabatic ramping-up of the interaction between cold
fermions in an optical lattice lowers their temperature. As
depicted in Figs. 1 and 2, we found a wide range of T (or s)
where the slope ∂D/∂T is negative. To quantify the cooling
effect, entropy curves s(T ) are plotted in Fig. 4 for a large
range of interactions and levels of frustration, with vertical
offsets proportional to α.

In the charge excitation regime T � 0.7 tα , i.e., s � s∗, the
data at U > 0 are clearly below the U = 0 results at all α. Thus
increasing interactions lead to a reduction of the entropy at
constant T or, conversely, to a rising temperature at constant s.
In the unfrustrated case (α = 0; lowest set of curves in Fig. 4),
this effect disappears at s < s∗ and the curves nearly collapse
(down to T/tα ≈ 0.25 or s ≈ 0.35). In this range, an adiabatic
ramp up of the interaction (from U = 0 to U = 8 tα) has only
a very small cooling effect,29 as indicated by the lowermost
horizontal (yellow) bar for s = 0.6. With increasing frustration
α, the entropy is gradually enhanced by finite interactions,
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FIG. 4. (Color online) Entropy s versus temperature T/tα at
various interactions U/tα . Data at frustration α > 0 is offset vertically
(by 2.5 α); black solid lines represent U = 0 results for the square
lattice as a common reference. Horizontal bars indicate the effect of
adiabatic cooling at entropy s = 0.6, which increases roughly linearly
with α.

leading to an adiabatic cooling. For example, the cooling effect
at s = 0.6 (horizontal yellow bars) is stronger by more than
an order of magnitude in the triangular limit α = 1 than on the
square lattice (α = 0).

IV. CONCLUSIONS

The realization of antiferromagnetism in optical lattices
remains a prime goal that may require concepts beyond
conventional cooling techniques and long-range order. Novel
lattice geometries are now being explored both for selectively
reducing the entropy per particle in parts of the system
and for exposing or creating magnetic effects that remain
visible at elevated average entropy. The recent detection of
AF signatures in tunable dimerized lattices13 is an important
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FIG. 5. (Color online) The effect of finite Trotter discretization
�τ on DQMC estimates of the double occupancy D at weak coupling
U = 4 tα and variable frustration α. Colored lines show least-squares
fits linear in (�τ )2. The thin vertical line marks the value of �τtα =
0.04 used in the main paper. Thin horizontal lines correspond to
extrapolated values of D.
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FIG. 6. (Color online) The effect of finite Trotter discretization
�τ on DQMC estimates of the double occupancy D at weak coupling
U = 4 tα and variable frustration α. The data at �τtα = 0.04 (thin
gray symbols) are compared with corresponding �τ extrapolations
(bold colored symbols).

step in this direction, despite its focus on (zero-dimensional)
singlet physics.35

In this paper, we have proposed concepts for exploring
more generic AF physics with a very similar experimental
setup12 by selectively suppressing AF order of a bipartite
(square) lattice via tunable geometric frustration (by diagonal
hopping t ′ = α t) and looking for responses, i.e., sensitivity to
α, of magnetic character. We have demonstrated a clear AF
signature, namely, an enhancement of the double occupancy
D(s) by frustration at weak coupling [cf. Fig. 1(a)], that
extends up to s ≈ ln(2) and should be in reach of cold-atom
experiments. The approach to this regime could be monitored
using the characteristic evolution (and dependence on α) of
spin correlations, which extend to even higher entropies.

A crucial prerequisite for exposing this physics was our
elimination of bandwidth effects by scaling the interaction U

(Ref. 36) with a suitable parameter tα [cf. Eq. (2)]. At strong
coupling, tunable frustration leads to AF signatures (at fixed
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FIG. 7. (Color online) The effect of finite Trotter discretization
�τ on DQMC estimates of double occupancy D (main panel) and
entropy per particle s (inset) at strong coupling U = 12.25 tα for the
square lattice (α = 0). The data for �τtα = 0.04 (thin dashed lines)
are compared with corresponding �τ extrapolations (Ref. 20) (bold
solid lines).
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FIG. 8. (Color online) Finite-size effects on the DQMC estimates of double occupancy D and spin-spin correlations C(1,0) and C(1,1) at
weak coupling U = 4 tα for a square lattice (α = 0) for a set of thermal parameters: βt = 5.0, s = 0.25 ± 0.02 (open squares and solid lines),
βt = 3.6, s = 0.4 ± 0.02 (filled squares and dashed lines), βt = 3.0, s = 0.46 ± 0.02 (open circles and short-dashed lines). Colored lines
show linear least-squares fits with respect to L−2. Thin vertical line marks the value of L = 8 used in the main paper. Thin horizontal lines
correspond to the extrapolated values of observables.

temperatures) which are nearly offset by concurrent entropy
changes in curves D(s) [and Cr(s)] and, therefore, are hardly
observable in (adiabatic) cold-atom experiments. Thus the
optimal interaction U ≈ 4tα � 5t for studying AF physics via
tunable geometric frustration is substantially lower than the
condition for maximizing the Néel temperature in the cubic
case.37
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APPENDIX: TROTTER ERROR AND
FINITE-SIZE EFFECTS

In order to quantify the Trotter errors at weak coupling
U = 4 tα , we performed additional simulations using dis-
cretizations �τ tα ∈ {0.05,0.08,0.1}. As shown in Fig. 5 for
the temperature T = tα/4, the resulting estimates of the double
occupancy D (symbols) depend perfectly linearly on �τ 2

for each value of α, within error bars, so that a reliable
extrapolation to �τ is possible using least-squares fits (colored
lines). However, already the results at �τtα = 0.04 (as used
in the main text) are converged within the error bars of the
individual data points.

This is seen in Fig. 6 for the full entropy regime of
interest: while the finite-�τ estimates of D (thin gray symbols)
appear slightly shifted upwards, by less than 0.001, in
comparison with the extrapolated results (colored symbols)
these deviations do not exceed the statistical uncertainties of
the individual data points. Since the deviations are also roughly
homogeneous, i.e., independent of α and s, they clearly do not
affect our conclusions in any way.

At strong coupling U = 12.25 tα , we checked the accuracy
of the simulations at �τ tα = 0.04 by comparisons with
previously computed numerically exact data for the square
lattice.1 Figure 7 demonstrates that both the double-occupancy
and the entropy per particle data used in the main paper match
the extrapolated quantities with great accuracy. Thus Trotter
errors appear as irrelevant also at strong coupling.

As all physics is increasingly local at large U (and half
filling), the strongest finite-size effects can be expected at weak
coupling. Indeed, quite significant deviations are seen for the
unfrustrated case (α = 0) at U = 4t in Fig. 8 between the
estimates of spin-correlation functions and double occupancy
obtained on an 8 × 8 cluster (indicated by a vertical dotted
line) and the thermodynamic limits (horizontal dotted lines) at
the lowest temperature T/t = 0.2. However, this corresponds
to an entropy s = 0.25, which is not of direct experimental
interest (yet); in the more relevant entropy range 0.4 � s �
0.5 (and above), the finite-size effects at L = 8 are only
slightly larger than the statistical error bars. As larger lattice
sizes lead to worse sign problems at significant frustration
α > 0, our choice appears to be a good compromise for our
comprehensive study of frustration effects.
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