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Optimized confinement of fermions in two dimensions
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One of the challenging features of studying model Hamiltonians with cold atoms in optical lattices is the
presence of spatial inhomogeneities induced by the confining potential, which results in the coexistence of
different phases. This paper presents quantum Monte Carlo results comparing methods for confining fermions in
two dimensions, including conventional diagonal confinement, a recently proposed “off-diagonal confinement”,
as well as a trap which produces uniform density in the lattice. At constant entropy and for currently accessible
temperatures, we show that (1) diagonal confinement results in the strongest signature of magnetic order, primarily
because of its judicious use of entropy sinks at the trap edge and that (2) for d-wave pairing, a trap with uniform
density is optimal and can be effectively implemented via off-diagonal confinement. This feature is important to
any prospective search for superconductivity in optical lattices.
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I. INTRODUCTION

Optical lattice emulators (OLE) control ultracold atomic
gases with lasers and magnetic fields to create experimental
realizations of quantum lattice models of bosonic or fermionic
particles. For bosons, classic signatures of low temperature
correlated states—superfluidity and the Mott transition—have
been explored now for a decade.1 For fermions, quantum
degeneracy has been established through the observation of
a Fermi surface,2 as has the Mott transition.3,4 The observa-
tion of magnetic order is the next immediate experimental
objective.5–8 One ultimate goal is resolving the long-standing
question of whether the doped two-dimensional (2D) fermion
Hubbard Hamiltonian has long-range d-wave superconducting
order.9

Optical lattice experiments face at least two major obstacles
in simulating the fermion Hubbard model. The first is achiev-
ing low enough temperature to pass through phase transitions
and into reduced entropy ordered phases. Present limits in
experiments are to temperatures T ∼ t (the near-neighbor
hopping energy), and to local entropies per atom ∼ 0.77kB ,10

values which are at the border for observing short-range
magnetic order.

The other obstacle, which we will be addressing in this
paper, is inhomogeneity arising from the confining potential.11

The external field conventionally used to trap cold atoms in
the lattice, a spatially dependent chemical potential which we
refer to as “diagonal confinement” (DC), causes variations in
the density per site ρi, with more atoms, on average, in the
center of the lattice and fewer at the edges. Density plays a
key role in determining which correlations are dominant in
interacting quantum systems, but this is especially true of the
fermion Hubbard Hamiltonian in two dimensions where the
magnetic response is very sharply peaked12 near half-filling
(ρ = 1). Various analytic and numerical calculations suggest
that pairing order also has a fairly sharp optimal filling, ρ ≈
0.80 − 0.85.

As a consequence of the inhomogeneous density arising
from DC, a trapped gas in an optical lattice will exhibit
coexistence of different phases, complicating the analysis and,
potentially, significantly weakening and blurring the signal of
any phase transitions. To some extent, this loss of signal is
reduced for antiferromagnetism (AFM), since the Mott gap
in a DC trap can produce a fairly broad region of half-filling,
where AFM is dominant. But the problem of observing pairing
order with DC seems especially acute since there is no such
protection of the optimal density for superconductivity.

A recent proposal13 to use a reduction to zero of the hopping
at the lattice edge to confine the atoms allows the realization of
systems with more uniform density. Such control of hopping
parameters is experimentally possible through holographic
masks14 and is referred to as “off diagonal confinement”
(ODC). Since ODC preserves the particle-hole symmetry of
the unconfined Hubbard Hamiltonian, this trapping geometry
can lead to a uniform ρ = 1 density and, at low entropy, can
produce a pure antiferromagnetic phase.

What is unclear is whether ODC is an effectively superior
way to confine fermions in OLE. This is a nontrivial question
since OLE experiments do not have direct control over the
temperature—instead, the lattice and trapping potentials are
introduced adibatically, so optical confinement methods must
be compared at fixed entropy. Here we present determinant
quantum Monte Carlo (DQMC)15 calculations which compare
systems with ODC and DC traps, as well as a proposed
melding of these confinement methods to create a constant
density (CD) trap. We evaluate the effects of these traps on
magnetic order and d-wave pairing correlations across the
lattice.

Our key results are (1) that the conventional DC trap
yields larger spin correlations than an ODC trap at the same,
currently accessible entropy, (2) that, however, under the same
conditions, a constant density trap leads to larger pairing
correlations than those achievable with DC traps, and (3) that
ODC can implement a near constant density profile.

075418-11098-0121/2012/85(7)/075418(5) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.075418


CONE, CHIESA, ROUSSEAU, BATROUNI, AND SCALETTAR PHYSICAL REVIEW B 85, 075418 (2012)

II. TRAPPED HUBBARD MODEL, COMPUTATIONAL
METHODS

The Hubbard Hamiltonian in the presence of spatially
varying hopping and chemical potential is

H = −
∑
〈ij〉,σ

tij (c†jσ ciσ + c†iσ cjσ )

+U
∑

i

(
ni↑ − 1

2

) (
ni↓ − 1

2

)
−

∑
i

μi (ni↑ + ni↓).

(1)

Here c
†
iσ (ciσ ) are creation (destruction) operators for two

fermionic species σ on site i, and niσ are the corresponding
number operators. We will study a two-dimensional (2D)
square lattice with hopping between pairs of near neighbor
sites 〈ij〉. For a DC trap, tij is constant and the chemical po-
tential μi = μ0 − Vt(i2

x + i2
y ) decreases quadratically toward

the lattice edge. For an ODC trap, instead, μi is constant and
the hopping term varies. Here we choose a parabolic form
tij = t0 − α r2

bond, where rbond is the distance of the center of
bond 〈ij〉 to the lattice center.13 Particle-hole symmetry for
this geometry implies the density ρi = 〈∑σ c

†
iσ ciσ 〉 = 1 for all

lattice sites when μi = 0.
For ODC, we fix energy units by setting t0 = 1 at the lattice

center. The parameter α, which controls the hopping decay,
is chosen so that tij → 0 at the edge. A similar convention is
used for the CD trap, with the addition that now Vt , as well as
α, is nonzero.

We characterize and compare traps using the nearest-
neighbor (n.n.) spin-spin correlation, m, and the next-nearest-
neighbor (n.n.n.) d-wave pairing correlation, p. These are
defined as:

S+
i = c

†
i↑ci↓ �†

i = c
†
i↑(c†i+x̂↓ − c

†
i+ŷ↓ + c

†
i−x̂↓ − c

†
i−ŷ↓)

m(i) = 〈S−
i+x̂S

+
i 〉 p(i) = 〈�i+x̂+ŷ�

†
i 〉. (2)

III. USE OF LDA TO SIMULATE TRAPS

To simulate different traps, we first compute observables
and entropy values for homogeneous 8 × 8 lattices using
DQMC15 which provides exact results for operator expectation
values of the fermion Hubbard Hamiltonian.16 The entropy is
obtained via energy integration from T = ∞ and values ob-
tained are consistent with other recently published results.17,18

We then use the local density approximation to simulate the
effects of each trapping method for a much larger lattice. With
the LDA, observables for any position in a trap are determined
by the density (ρ) of the equivalent homogeneous system, that
is, a system with the same values for U/t , mu/t , and T/t

as the local point in the trapped lattice. So, for each trap, we
compute these values at each position (as a function of r) and
determine the spin and d-wave pairing correlation, m(r) and
p(r), from the equivalent homogeneous result. The accuracy
of the LDA for short-range correlation functions has been
demonstrated for 2D19 and 3D20,21 lattices in the regime of
temperature presently considered.

For a trap at a given temperature, the number of fermions
(N) and total entropy (S) are obtained by integrating the

site density ρ(r) or entropy per site s(r) across the lat-
tice: N = 2π

∫ ∞
0 rρ(r) dr and S = 2π

∫ ∞
0 rs(r) dr . Discrete

lattice sums are not used, since the simulated lattice sizes
(approximately 11 000 sites for r = 60) are large enough that
the functions ρ(r) and s(r) can be considered continuous.

IV. COMPARING DIFFERENT TYPES OF TRAPS

Figures 1 and 2(a) show the variation of the density (ρ) and
entropy per site with U/t and μ/t for the uniform Hubbard
model at T/t = 0.5. Different trapping geometries correspond
to the different paths in the (μ,U ) plane. Figures 2(b) and
2(c) show, respectively, the variations in n.n. spin and n.n.n.
d-wave correlations for the 2D Hubbard model. The arrows in
Figs. 2(b) and 2(c) indicate the trajectories of sample trap paths
projected onto the U/t − μ/t plane. Note that these figures
are at a specific temperature (T/t = 0.5), while for an actual
trap path (ODC, for example), T/t will vary across the lattice;
in what follows, we compare traps with the same entropy, not
at the same temperature.

The four parameters U/t0, μ0/t0, Vt/t0, and α/t0 determine
the shape and physics for each trap type with the following
constraints: DC, α = 0; ODC, Vt = 0; and CD, Vt and α

chosen to approximately follow a constant density path.
To estimate the pairing and magnetic order for a certain
confinement type, we use the average, per particle, of the
quantities in Figs. 2(b) and 2(c): the average n.n.n. d-wave
pairing correlation for superfluidity 〈p〉 = 2π

N

∫ ∞
0 rp(r) dr ,

and the average n.n. spin correlation for magnetism 〈m〉 =
2π
N

∫ ∞
0 rm(r) dr .

We first determined the optimal U , μ0, Vt , and α for each
trap type (DC, ODC, CD) by selecting the parameter values
yielding traps that maximize either 〈p〉 or 〈m〉. Once the
optimal parameters were identified by trap type, we proceed to

FIG. 1. (Color online) The density as a function of U/t and μ/t

for the homogeneous fermion Hubbard model. Data were obtained
on 8 × 8 lattices with T/t = 0.5. The dotted line is a constant density
path (ρ = .80) used in the trap comparisons. Using the LDA, density
profiles of inhomogeneous models can be determined by following an
appropriate (U/t,μ/t) path of local parameters as the lattice position
is changed.
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FIG. 2. (Color online) (a) Entropy per site, (b) n.n. spin correlation, and (c) n.n.n. d-wave pairing correlation shown as functions of U/t and
μ/t for the homogeneous Hubbard Hamiltonian. Data were obtained on 8 × 8 lattices with T/t = 0.5. Paths for optimal DC and ODC traps
are shown as solid lines, with the constant density trap (CD) as a dashed line. The ridge of prominent d-wave pairing (c) occurs at ρ ∼ 0.80
and is nearly linear, so that an ODC path is close to the constant density one.

compare traps of different types. In all comparisons, the total
number of fermions and total entropy are the same for each
trap.

V. MAGNETIC ORDER

Figure 3 compares an optimal DC trap (U = 10.0,μ0 =
2.5,Vt = 0.0039) with an optimal ODC trap (U = 3.0,μ0 =
0.0,α = 0.0004). Both parameter sets were selected by max-
imizing 〈m〉 under the common constraints S/N = 0.75 and
N = 6600. Note that the figure panels show only two trap
types since, when μ0 = 0.0, the ODC trap is equivalent to the
ρ = 1 CD trap.

One might expect ODC to lead to large antiferromagnetic
correlations, since this confinement method allows for a
uniform half-filled Mott phase where magnetic correlations

FIG. 3. (Color online) (a) n.n. spin correlation, (c) density (ρ),
and (d) entropy per site (s) profiles are shown as a function of the
distance (r) from the trap center for two different trap types: DC and
ODC, using optimal trap parameters. ODC trap with μ = 0.0 is also
a constant density trap (ρ = 1). The average n.n. spin correlation is
larger for DC trap (0.14) than ODC (0.08) at the same entropy (0.75)
and number of fermions (6600). Panel (b) shows average n.n. spin
correlation as a function of entropy per fermion (S/N) for optimal
DC and ODC traps.

are strongest. However, as Fig. 3(a) shows, DC has a
significantly larger average spin correlation (0.14 vs 0.08)
than ODC when the two are compared at the same entropy.

This results because the low density wings in the DC
trap can store entropy that would otherwise accumulate in
region nearer the trap center. The central area in the DC
trap is effectively at lower temperature and has higher spin
correlations than in an ODC trap where there is no entropy
sink in the wings. Consequences of nonuniform entropy
distribution have been emphasized previously in Refs. 17
and 18.

VI. PAIRING AWAY FROM HALF-FILLING

We now turn to the question of pairing order. In Fig. 4, we
show results comparing average next-near-neighbor22 d-wave
pairing correlation for optimal DC, ODC, and constant density

FIG. 4. (Color online) (a) average n.n.n. d-wave pairing correla-
tion, (c) density (ρ), and (d) entropy per site (s) profiles are shown as
a function of the distance (r) from the trap center for three different
trap types: DC, ODC, and constant density (CD) using optimal trap
parameters for each type. The average pairing values for CD and ODC
traps are 0.0052 and 0.0051, with the DC trap at 0.0046. Entropy
per fermion (0.95) and number of fermions (6600) is the same for
each trap. Panel (b) shows average d-wave response as a function of
entropy per fermion (S/N) for optimal DC, ODC, and CD traps.
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(CD) traps at the same entropy per fermion (0.95) and number
of fermions (6600). Optimal parameters obtained for each trap
are as follows: DC (U = 4.5,μ0 = 1.5,Vt = 0.00235), ODC
(U = 3.0,μ0 = −1.1,α = 0.00032), and CD (U = 3.0,α =
0.00032,ρ = 0.80).

Looking at the trap profiles, we can see that peak pairing
for the DC trap occurs at lattice distances (measured from the
center) which correspond to densities between 0.9 and 1.1,
but pairing dips outside of this region and falls off rapidly
toward the trap edge. The constant density and ODC traps
are characterized by larger average pairing values of 0.0052
and 0.0051 (vs 0.0046 for DC). This result can be clearly un-
derstood from Fig. 2(c) by observing how the constant density
line (ρ = 0.80) and ODC path follow the ridge of high d-wave
pairing response, while the DC trap path cuts through this ridge
for only a portion of the trap area. While the pairing difference
is not large at this high entropy level, the advantage is expected
to grow at lower entropies (see discussion in next section).

Figure 2(c) also emphasizes the narrowness of the optimal
d-wave response region compared to the wider area of
magnetic response seen in Fig. 2(b). This suggests that
OLE trap parameters tuned to follow this ridge of high
d-wave response will increase the potential for observing
superconducting order.

VII. SUMMARY OF TRAP COMPARISONS

Figures 3(b) and 4(b) summarize the results of our trap
comparisons by plotting the optimal 〈m〉 and 〈p〉 for the
different confining schemes against entropy per fermion (S/N).
In the range of entropy shown, the DC trap produces a larger
antiferromagnetic signal than the corresponding ODC trap
at the same entropy. On the other hand, while the average
d-wave pairing correlation in a DC trap flattens at low entropy
(S/N ∼ 0.6 − 0.9), that of a CD or an ODC trap continues to
increase as entropy is lowered. Due to the sign problem, we
were unable to reach entropy per fermion levels lower than 0.9
for ODC and CD traps, but it is evident from Fig. 4(b) that the
d-wave response continues to rise as S/N decreases.

VIII. CONCLUSIONS

We have evaluated several trapping geometries for fermions
in a 2D optical lattice. For magnetic properties, the DC trap,
which is the common experimental technique used in OLE,
continues to be the most promising confinement approach
because excess entropy can be stored in its low density
wings leaving a low entropy Mott region with large AFM
correlations. We have also shown that a more robust signal
of d-wave pairing is produced with a constant density trap
with optimal ρ ∼ 0.80, where local pairing correlations extend
over a significantly greater fraction of sites. We find that ODC
closely follows the constant density line shown in Fig. 2.

An important conclusion of our work is that while the search
for antiferromagnetic correlations in optical lattices is aided
by the inhomogeneous entropy distribution, this is not the case
for pairing. The local entropy is not reduced in the vicinity
of ρ = 0.80, which is best for d-wave superconductivity.
Thus the same inhomogeneous s(r) which helps the magnetic
signal will weaken the pairing signal. This is a further
argument for construction of a trap which has constant
density. By providing an optimal confinement template for
fermions in two dimensions, we anticipate that the results will
aid experimenters in determining the physics of the doped
Hubbard model.
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