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Optimizing the critical temperature and superfluid density of a metal-superconductor bilayer
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A promising path to realizing higher superconducting transition temperatures Tc is the strategic engineering of
artificial heterostructures. For example, quantum materials could, in principle, be coupled with other materials
to produce a more robust superconducting state. In this work, we add numerical support to the hypothesis that a
strongly interacting superconductor weakened by phase fluctuations can boost its Tc by hybridizing the system
with a metal. Using determinant quantum Monte Carlo, we simulate a two-dimensional bilayer composed of an
attractive Hubbard model and a metallic layer in two regimes of the interaction strength −|U |. In the strongly
interacting regime, we find that increasing the interlayer hybridization t⊥ results in a nonmonotonic enhancement
of Tc, with an optimal value comparable to the maximum Tc observed in the single-layer attractive Hubbard
model, confirming trends inferred from other approaches. In the intermediate coupling regime, when −|U | is
close to the value associated with the maximum Tc of the single-layer model, increasing t⊥ tends to decrease Tc,
implying that the correlated layer was already optimally tuned. Importantly, we demonstrate that the mechanism
behind these trends is related to enhancement in the superfluid stiffness, as was initially proposed by Kivelson
[Phys. B: Condens. Matter 318, 61 (2002)].

DOI: 10.1103/lcgr-bqcv

I. INTRODUCTION

Advances in heterostructure and thin film growth tech-
niques [1–3] have enabled the precise coupling of distinct
quantum materials within artificial heterostructures and ultra-
thin films, opening new avenues for designing and explor-
ing interfacial functionalities with unique properties. These
developments have motivated attempts to engineer super-
conductivity in composite systems to enhance the transition
temperature Tc and realize novel superconducting states rare
in bulk superconductors. A well-known example of this is
FeSe monolayers grown on oxide substrates such as SrTiO3

[4–6], where Tc is enhanced significantly over bulk FeSe.
Similarly, a third of a monolayer of Sn grown on heav-
ily boron-doped Si(111) substrates superconducts with a Tc

higher than that of Sn thin films [7] and shows evidence of
unconventional chiral d-wave pairing [8]. More broadly, in-
terfacing conventional s-wave superconductors with nontrivial
topologically materials is also being pursued as a pathway
toward topological superconductivity [9–11].

Interfacing superconductors with energetically large pair-
ing interactions with other materials may also provide a means
to enhance superconductivity. These systems often have siz-
able phase fluctuations, which drive the superconducting Tc

far below the mean-field prediction (T MF
c ). Kivelson [12] has

proposed that coupling such a phase fluctuation-challenged
superconductor to a metal could enhance the effective su-
perfluid stiffness Ds and that Tc could thus be driven closer
to its mean-field value. Different models have since been
proposed to test this proposal, using various theoretical and

computational techniques [13–17]. However, combined, these
methods have yet to paint a complete picture as to when and
under what conditions this strategy can be used to enhance
superconductivity.

Here we present a determinant quantum Monte Carlo
(DQMC) study of a specific two-dimensional (2D) bilayer
variant of one of the models mentioned above, where a non-
interacting (metallic) plane is coupled to an attractive −|U |
Hubbard plane through an interlayer hopping t⊥, as shown
in Fig. 1. This model has recently been studied by some of
the current authors in the strong coupling regime |U | ∼ W ,
where W is the bandwidth of the correlated layer, using the
dynamical cluster approximation (DCA) [16]. Their results
suggest that Tc has a nonmonotonic dependence on the in-
terlayer hopping t⊥ and is enhanced beyond the single-layer
system. This behavior was explained by the competing effects
of the increased pair-field susceptibility and reduced effective
interaction in the correlated layer as t⊥ increases. However,
while the DCA incorporated long-range physics into a finite
cluster [18,19], it faced the challenge of long autocorrelation
time and strong system size dependence for systems at small
values of t⊥. These issues made it difficult to obtain accurate
Tc estimates in this limit and determine whether Tc was en-
hanced over that of the isolated layer.

We address this issue in this article by studying the model
[16] with DQMC [20,21]. In particular, we obtain Tc for both
strong (U = −10t) and intermediate (U = −5t) coupling
regimes (t is the nearest-neighbor hopping in the correlated
layer). We do this by calculating the superfluid stiffness Ds

as a function of temperature and finding its intersection with
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FIG. 1. A depiction of the bilayer model studied in this work.
The top layer (layer 1) is the attractive Hubbard layer, with a negative
interaction U . The bottom layer (layer 2) is a metal layer with no
interaction (U = 0). The hopping of layer 1, t1 = t is set as the unit
of energy throughout the work. The hopping of layer 2, t2 = 2t . An
on-site energy ε2 = 0.2t is set on layer 2 to enable direct compar-
ison with existing work. The interlayer hopping t⊥ is variable. We
investigate how changing t⊥ affects Tc and the physics of the system.

the line of 2T/π [22], as we expect a Berezinskii-Kosterlitz-
Thouless (BKT)-type transition. This analysis is based on
the fact that superfluid density is known to have a universal
value Ds(T = Tc) = 2Tc/π for systems belonging to the 2D
XY universality class. Previous studies [23] have investigated
this approach for the single-layer attractive Hubbard model,
reporting results that are only weakly dependent on system
size. This makes the method well suited for addressing con-
cerns regarding strong system size dependence in prior DCA
work [16] and allows us to definitively conclude that Tc is a
nonmonotonic function of t⊥ in the strong coupling regime of
the bilayer model. We also extend the results of Ref. [16] in
several key ways that shed further light on the mechanisms
behind the observed Tc enhancements. First, we consider the
intermediate coupling regime in the correlated layer (U =
−5t), where the attractive single-band Hubbard model has
the highest Tc [23]. The correlated layer is less affected by
phase fluctuations in this regime, and we find that the Tc of
the composite bilayer system decreases monotonically with
t⊥. Second, we study the layer-resolved pairing structure fac-
tors, which provide insights into the nature of pairing in each
layer. Finally, we find that the pair-field susceptibility and
superfluid density of the U = −10t and U = −5t bilayer
systems are enhanced compared to their optimal monolayer
counterparts. However, despite those enhancements, we found
the maximum Tc for the bilayer to be only on par with the
optimal monolayer. Whether it can be higher calls for a careful
search through the parameter space and would be an exciting
direction for further studies.

II. MODEL AND METHODS

A. Model

We study a bilayer square lattice Hubbard Hamiltonian, as
sketched in Fig. 1. The model couples a strongly correlated
layer (l = 1) with a large negative-U Hubbard interaction to
a noninteracting metallic layer (l = 2). The correlated layer
provides strong local (s-wave) pairing when |U |/t � 1 but
has very little superfluid stiffness on its own in this regime.

Conversely, the metallic layer has no intrinsic pairing interac-
tion but a high superfluid stiffness set by its density of states.

The model’s Hamiltonian is

Ĥ = −
∑

〈i j〉,l,σ
tl ĉ†

i,l,σ ĉ j,l,σ − t⊥
∑
i,σ

(ĉ†
i,1,σ ĉi,2,σ + H.c.)

+
∑
i,l,σ

(εl − μ)n̂i,l,σ − |U |
∑

i

n̂i,1,↑n̂i,1,↓, (1)

where ĉ†
i,l,σ (ĉi,l,σ ) creates (annihilates) a spin σ (=↑,↓)

electron on the ith site of layer l (= 1, 2); tl is the in-plane
nearest-neighbor hopping integral for layer l; t⊥ is the inter-
layer hopping integral; μ is the chemical potential; and εl is
an additional on-site energy term in each layer. Throughout,
we set t1 ≡ t as our energy scale and fix t2 = 2t , ε1 = 0,
and ε2 = 0.2t and set μ such that n1 ≡ ∑

σ 〈n̂i,1,σ 〉 = 0.75.
The resulting value of n2 = ∑

σ 〈n̂i,2,σ 〉 depends on the model
parameters and temperature but typically varies between 0.9
(t⊥ = 0) and 0.95 (t⊥ = 3t) at β = 10/t . Our choice of pa-
rameters serves several purposes. First, it facilitates direct
comparisons with previous DCA work [16]. It also avoids
complications of a perfectly nested Fermi surface in the
metallic layer and the suppression of superconductivity in the
correlated layer at half-filling. Finally, it situates the van Hove
singularity of the metallic layer slightly above the chemical
potential μ.

The monolayer attractive Hubbard model develops a su-
perconducting dome as a function of doping away from
half-filling, with |U | = 4t-6t giving the largest Tc [23]. The
suppression of Tc for large |U |/t can be intuitively understood
by mapping the attractive Hubbard model to the repul-
sive Hubbard model by ĉ†

i,l,↓ → (−1)(ix+iy )ĉi,l,↓ [i ≡ (ix, iy)],
where the phase fluctuations in the attractive Hubbard model
map to spin fluctuations in the repulsive Hubbard model [24].
This connection makes it apparent that with larger |U |, one
would expect phase fluctuations to get stronger as the su-
perexchange energy J = −4t2/U gets smaller. Throughout
this work, we thus compare the behavior of the systems with
U = −10t and with U = −5t . For U = −10t , the monolayer
attractive Hubbard model is deep in the Bose-Einstein con-
densate (BEC) regime, with a strong pairing interaction and
substantial phase fluctuations, which in turn suppresses Tc.
By coupling it to a metal, we hope to mitigate the phase
fluctuations and thereby enhance Tc. In contrast, the decoupled
monolayer with U = −5t at 〈n1〉 ≈ 0.75 has been found by
us to have a Tc ≈ 0.168t , which is very close to the optimal
values reported previously for the single band −U Hub-
bard model [23]. Comparing U = −10t and U = −5t results,
therefore, provides additional insight into the superconducting
character of our bilayer system and the extent to which Tc can
be optimized.

B. Determinant quantum Monte Carlo

We perform DQMC simulations of the Hamiltonian in
Eq. (1) using the SmoQyDQMC.jl package [20,21]. The core
idea behind the DQMC algorithm is to perform a Trotter
decomposition to the density matrix e−βĤ = ∏

i=1...L e−�τ Ĥ ,
where we discretized the imaginary time (the inverse temper-
ature) β into L equal steps of size �τ = β/L. The choice
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of a small �τ allows one to decouple the kinetic and the
Hubbard interaction part of the Hamiltonian by virtue of the
relation e−βĤ = e−�τ (K̂+V̂ ) = e−�τ K̂ e−�τV̂ + O(�τ 2[K̂, V̂ ]),
where K̂ and V̂ are the kinetic and interaction part of the
Hamiltonian, respectively. Owing to the relatively strong in-
teractions in this problem, we use a small imaginary-time
discretization of �τ = 0.05 in the simulations to control the
Trotter error. A Hubbard-Stratonovich Transformation is then
performed on the interacting part e−�τV̂ to turn the interaction
term that is quartic in Fermionic operator into quadratic, at the
expense of introducing auxiliary fields. We obtain estimations
of physical quantities based on the Hamiltonian of Eq. (1)
on N = 2 × Lx × Ly rectangular bilayer clusters with peri-
odic boundary conditions. We generally consider elongated
clusters with Ly � Lx to obtain reliable estimates for the
superfluid density, as discussed in the next section. Most of
the data presented in this work were obtained using between
105 and 106 measurement sweeps distributed over 10–100
independent Markov chains. For error analysis, we generated
100 bins of data, and used the Jackknife method to estimate
the error bars.

C. Measurements

Our main goal is to determine the superconducting tran-
sition temperature Tc as a function of the interlayer hopping
t⊥ and examine the evolution of pairing magnitude and phase
coherence in the system. We start by defining the q = 0
s-wave pairing structure factor

Ps,ll ′ (τ ) = 1

N

∑
i, j

〈�i,l (τ )�†
j,l ′ (0)〉, (2)

where i indexes the unit cell in the bilayer, l indexes the layer,
and �i,l = ĉi,l,↓ĉi,l,↑ is a local pair annihilation operator. The
corresponding pair-field susceptibility Ps,ll ′ is obtained by
integrating the pairing structure factor over imaginary time

Ps,ll ′ =
∫ β

0
Ps,ll ′ (τ ) dτ. (3)

The pairing structure factor Ps,ll ′ gives direct information
about whether the Cooper pairs develop long-range correla-
tions in space, while the pair-field susceptibility Ps,ll ′ diverges
at the superconducting instability in the thermodynamic limit.
Throughout this work, we also use the shorthand notations
Ps,l ≡ Ps,ll and Ps,l ≡ Ps,ll .

We also measured the superfluid density ρs, which can be
obtained from the momentum-resolved current-current corre-
lation function [22]

ρs

πe2
= −〈

ktot
x

〉 − lim
qy→0

	tot
xx,(qx = 0, qy, iωm = 0). (4)

Here, 〈ktot
x 〉 is the average kinetic energy of the bonds parallel

to the x direction of the bilayer, and

	tot
xx (q, iωm) = 1

N

∫ β

0
dτeiωmτ 〈Jp,tot

x (q, τ )Jp,tot
x (−q, 0)〉 (5)

with the paramagnetic part of the current operator given by

Jp,tot
x (q, τ ) =

∑
l

Jp
x,l (q, τ )

FIG. 2. Tc as a function of t⊥ obtained using DQMC for U =
−10t and U = −5t bilayers. Previous DCA results (from Ref. [16])
are shown for U = −10t and several cluster sizes. The results are
in good overall agreement in that Tc is largest at t⊥ = 1.5t and both
DCA and DQMC present the same trend as a function of t⊥.

with

Jp
x,l (q) = it

∑
i,σ

e−iq·Ri (ĉ†
i,l,σ ĉi+x̂,l,σ − ĉ†

i+x̂,l,σ ĉi,l,σ ).

In the above expressions, ωm = 2mπ/β is a bosonic Matsub-
ara frequency, i again runs over all sites in a given layer, Ri

is the in-plane position of lattice site i, and i + x̂ denotes the
neighboring site located at Ri + ax̂, where a is the in-plane
lattice constant. Because the calculation of ρs involves an ex-
trapolation qy → 0, we typically employ rectangular lattices
(e.g., Lx × Ly = 8 × 32) to obtain a finer momentum grid in
the qy direction.

The superfluid density ρs is a key quantity as it is usually
the bottleneck to achieving higher transition temperatures in
superconductors with strong interactions [12,13] and is di-
rectly proportional to the superfluid stiffness Ds = ρs/4πe2

[23]. Importantly, for a 2D Kosterlitz-Thouless transition, Ds

has a universal value of Ds(T = Tc) = 2Tc/π . Thus, we can
extract Tc from the intersection of a straight line of 2T/π and
the Ds(T ) curve as a function of T .

III. RESULTS

A. Evolution of the transition temperature with t⊥

Figure 2 presents the evolution of Tc as a function of t⊥,
which is one of our main results. For U = −10t , we ob-
tain nonmonotonic behavior with an optimal Tc ≈ 0.17t for
t⊥ = 1.5t . For reference, we also show the Tc values obtained
from the previous DCA study for different cluster sizes, as
indicated in the legend [16]. Our DQMC results for Tc are in
general agreement with the DCA [16] in that the Tc estimates
obtained from the latter appear to be converging to the former
with increasing cluster size. Notably, the rate of convergence
is faster in the large t⊥/t regime. (As discussed in Ref. [16],
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FIG. 3. Layer-resolved pairing susceptibility Ps,ll ′ on an 8 × 32 lattice, for U = −10t and U = −5t as functions of inverse temperature
βt . The results for the (a)–(b) correlated layer 1, (c)–(d) metallic layer 2, and the (e)–(f) interlayer region are shown, with corresponding insets
depicting Ps,ll ′ (βt = 10). Here we use the shorthand notation Ps,l ≡ Ps,ll . All lines connecting points are included to guide the eye.

the DCA calculations exhibit a significant system size de-
pendence for smaller t⊥ values.) As we will show later, the
superfluid density, as well as the pair-field susceptibility, show
a similar domelike structure as a function of t⊥ (see Fig. 3).

The bilayer system with U = −5t shows qualitatively
different behavior, with Tc decreasing monotonically with in-
creasing t⊥. The pair-field susceptibility and the superfluid
density also show similar trends, indicating that t⊥ only sup-
presses superconductivity in this case.

The trends of Tc for different interaction strengths can be
understood as follows. Strong interactions in the correlated
layer generally reduce the superfluid density of that layer. In
isolation, as Kivelson pointed out [12], the reduced superfluid
density suppresses Tc of the layer well below its mean-field
value. (For a single attractive Hubbard layer at U = −10t ,
Tc obtained by DQMC is about an order of magnitude lower
than the mean-field Tc by our calculation.) Initially coupling
the correlated layer to the metal layer thus provides superfluid
density to the interacting layer, increasing Tc. However, as the
interlayer tunneling t⊥ increases, the layers begin to hybridize
strongly, forming bonding and antibonding states. In the
limit t⊥ � t , the electrons tend to condense into local dimer
states formed from the bonding combination of the orbitals
in each layer. This dimerization results in a smaller effective

interaction between the electrons and, thus, a smaller mean-
field Tc value for the system as a whole. Consequently, it is
initially beneficial to couple the strong interacting layer with a
metal, but eventually the decrease in the effective interaction
takes over and suppresses Tc. For the U = −5t system, the
correlated layer has already been optimized with respect to
Tc and is less affected by phase fluctuations. Coupling the
correlated layer to the metallic layer thus has no benefit and
only reduces Tc via the reduction in the overall effective in-
teraction. In the following sections, we will provide a more
detailed analysis of the measurements leading to Fig. 2 and
the physical picture we have just described.

B. Pair-field susceptibility

Figure 3 plots the pair-field susceptibility Ps,ll ′ as a func-
tion of temperature for U = −10t (left column) and −5t
(right column). A divergence of the pair-field susceptibility
in the thermodynamic limit would imply a superconducting
instability. However, these divergences are cut off by the finite
size of the cluster in our calculations. Each column in Fig. 3
shows results for the interacting (Ps,11, top row) and metallic
(Ps,22, middle row) layers, as well as the interlayer (Ps,12,
bottom row) pair-field susceptibility for different t⊥ ∈ [0, 3t],
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as indicated by the common legend provided in Fig. 3(f). The
insets of each panel show the dependence of the pair-field
susceptibility at the largest β = 10/t as a function of t⊥.

We first focus on the U = −10t case. Figure 3(a) shows
that the pair-field susceptibility for the correlated layer Ps,1

generally increases as the temperature is lowered, and in some
cases, shows signs of leveling off at low temperatures, de-
pending on the value of t⊥. The inset of Fig. 3(a) summarizes
the evolution of Ps,1 at β = 10/t as a function of t⊥; it has a
nonmonotonic behavior, first increasing and then decreasing
as t⊥ grows from zero. In fact, Ps,1 is enhanced by more than
an order of magnitude at this temperature, growing from 15
at t⊥ = 0 (the single-layer limit) to the highest value of 245
with t⊥ = t . This enhancement is linked to extended corre-
lation lengths of the pairing correlations in both spatial and
temporal directions, as discussed further in Appendix A. We
conclude that the coupling of a U = −10t interacting layer to
a metal layer with moderate t⊥ value can strongly boost the
pair-field susceptibility of the interacting layer by enhancing
its superfluid density (stiffness) and allowing the phases to be
coherent over longer spatial and temporal distances. However,
Ps,1 begins to drop for t⊥ > 1.5t ; with a continued increase
in t⊥, the bandwidth W of the underlying noninteracting part
of the Hamiltonian increases further, which brings down the
value of U/W and eventually pushes the system toward the
noninteracting limit, suppressing superconductivity.

In contrast to the strong coupling case, Ps,1 for inter-
mediate coupling U = −5t , shown in Fig. 3(b), exhibits a
monotonic decrease as t⊥ is introduced. This behavior can
be observed in both the temperature dependence of the data,
as well as the t⊥ dependence at β = 10/t shown in the inset.
Since U = −5t with a filling of 〈n1〉 = 0.75 is in the param-
eter range where Tc is optimized for a single layer [23], the
introduction of t⊥ primarily encourages the system to form
bonding and antibonding states between the layers. This hy-
bridization reduces the system’s effective interaction and thus
drives the system away from the optimal Tc obtained at t⊥ = 0.
It is noteworthy that the absolute value of the largest Ps,1

for U = −10t (at t⊥ = 1.5t and β = 10/t) is significantly
larger than that for U = −5t at t⊥ = 0 (single-layer limit)
and β = 10/t . This difference likely reflects an increase in the
superconducting gap in the composite system with U = −10t
compared to the optimized single layer with U = −5t . Since
U = −5t has the highest possible Tc for a single layer, this
result suggests that the effect of t⊥ on the U = −10t layer
is not merely decreasing its effective interaction and bringing
it to a more weakly interacting regime. A boost in superfluid
density is also observed in the bilayer system over that of the
optimal single layer and will be discussed in Sec. III C. These
observations strongly imply that the bilayer system cannot be
simply mapped onto an effective single-band model with a
lower Ueff derived from the bonding orbitals of the bilayer.

Examining the pair-field susceptibility Ps,2 of the metal
layer tells us more about how strong the proximity effect is.
Comparing the overall scales of the top and middle rows of
Fig. 3, we see that Ps,2 is always much smaller in magnitude
than Ps,1 for both values of the Hubbard interaction. From
the insets of Fig. 3(c) and Fig. 3(d), we can see that Ps,2 in
both systems also shows a nonmonotonic dependence on t⊥.
Similar to Ps,2, in the inset of panel Fig. 3(e) and Fig. 3(f), the

FIG. 4. Total superfluid stiffness Ds on and 8 × 32 lattice, for (a)
U = −10t and (b) U = −5t as functions of temperature T/t . All
lines connecting points are included to guide the eye. A dashed line
is used for the t⊥ = 1.5t data in the U = −5t case to indicate that
estimations for Ds became unreliable for t⊥ � 1.5t .

behavior of Ps,12 closely resembles that of Ps,2, but is stronger
in magnitude. The interlayer correlation is a convolution of
the pairing strength of the two layers, and has a magnitude
intermediate between the two. These observations are fully
consistent with what one might expect for pairing in the metal-
lic layer, which is induced by the proximity effect.

C. Current correlation and superfluid density

We now turn to the superfluid density Ds as a function
of the temperature T . Figures 4(a) and 4(b) show how Ds

evolves for different t⊥ for U = −10t and −5t , respectively.
The superfluid density, proportional to the helicity modulus,
is known to have a universal value of 2Tc/π at the critical
temperature for systems belonging to the 2D XY universality
class.1 As such, the critical temperature Tc of the system can
be extracted for a particular value of t⊥ from the intersection
of a straight line with slope 2T/π and the Ds(T ) curves
obtained from our DQMC calculations. In Appendix B, we

1This universality class can be justified by considering the com-
bined gauge and partial particle-hole transformation ci↓ ↔ (−1)ic†

i↓,
which maps the attractive Hubbard model with a nonzero chemi-
cal potential μ(n↑ + n↓) onto the repulsive Hubbard model with a
Zeeman field μ(n↑ − n↓). This Zeeman field breaks the Heisenberg
symmetry of the antiferromagnetic correlations in the repulsive Hub-
bard model. It is energetically favorable for the spins to lie down in
the xy plane perpendicular to the z direction [24].
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present a comparison of Ds evaluated on 6 × 32 and 8 × 32
systems for the U = −10 t bilayer to demonstrate that finite-
size effects are well controlled for the systems considered
here.

For U = −10t , shown in Fig. 4(a), the magnitude of Ds as
well as the intersection of it with the 2T/π line (Tc) show the
same nonmonotonic trend of increase followed by a decrease
as a function of t⊥. This behavior is consistent with the trends
in the pair-field susceptibilities shown in Fig. 3. In this case,
Tc reaches a maximum of ≈0.17t for t⊥ = 1.5t , again in
agreement with the behavior of the pair-field susceptibility at
low temperatures.

Note that the Ds(T ) curve for t⊥ = 0.5t shows a very small
enhancement over that of t⊥ = 0, which aligns more closely
with the trend of Ps,2 of the metal layer, shown in the inset
of Fig. 3(c). At the same time, Ps,1 [Fig. 3(a)] at t⊥ = 0.5t
already shows substantial growth over the t⊥ = 0 value, which
however, does not help too much in increasing Ds. These
results are consistent with the proposal that the boost in total
superfluid stiffness is provided by pairs residing in the metal
layer [12–14].

For U = −5t , shown in Fig. 4(b), we see a monotonic de-
crease of Ds in the high-temperature region as t⊥ increases. Tc,
obtained by the crossing points with the 2T/π line when it oc-
curs, thus also decreases monotonically. This trend also agrees
with the pair-field susceptibility behavior shown in Fig. 3(d).
However, at temperatures lower than Tc, Ds for the t⊥ = 0.5t
and t is enhanced over the value obtained for an isolated layer
(t⊥ = 0). Thus, coupling the metal layer to the interacting one
can enhance the superfluid density of the interacting layer,
even for model parameters (U = −5t and 〈n〉 = 0.75) that
maximize Tc when the correlated layer is isolated. The en-
hanced superfluid density only occurs for T < Tc, however,
and may not always act to increase Tc. Importantly, com-
paring the magnitude of Ds of U = −10t in Figs. 4(a) and
U = −5t in 4(b), we find that the maximum Ds that can be
obtained in the bilayer system with U = −10t at T = 0.1t is
much higher than the values obtained for U = −5t at any t⊥,
including t⊥ = 0, which corresponds to the optimally tuned
monolayer. This mirrors the behavior of Ps,1 discussed in
Sec. III B.

Lastly, we have included data for t⊥ = 1.5t in Fig. 4(b)
using a dashed guideline to highlight this result. For this value
of t⊥, we encountered numerical challenges extracting quality
estimates of Ds, even for the elongated 8 × 32 lattice. While
the eventual intersection of this curve with the 2T/π line
indeed yields a Tc that continues to follow the monotonic
decrease with t⊥, it also displays negative stiffness values at
several temperatures above the putative Tc. We believe that
for these parameters of U and large t⊥, where the effective
interaction and therefore the pairing amplitude become small,
finite-size effects become substantial, making accurate esti-
mates difficult for the lattice size we have used.

IV. SUMMARY AND DISCUSSION

We have examined how the pair-field susceptibility Ps and
superfluid density Ds evolve in a bilayer system comprised
of an attractive Hubbard layer coupled to a noninteracting
metallic layer as a function of the interlayer tunneling t⊥. By

exploiting the universal value of Ds(Tc) = 2Tc/π for a 2D
superconductor, we also obtained the Tc for different values
of t⊥. The nonmonotonic behavior of Tc for U = −10t aligns
with the findings of a prior DCA study [16], despite the signif-
icant finite-size effects observed in that case for small t⊥. Our
work also extends the work reported in Refs. [13] and [14]
by including a nonzero intralayer hopping in the correlated
layer as opposed to considering independent −U sites (i.e., a
periodic Anderson impurity model).

We have also compared the behavior of the bilayer with
U = −10t and U = −5t to obtain additional physical in-
sights. For U = −5t and the density we simulated for the
correlated layer, the 2D −U Hubbard model has an optimized
Tc. We found that coupling such an optimized layer with a
metal layer results in a monotonic decrease in Tc as the inter-
layer hopping increases. This behavior can be rationalized as
resulting from an overall decrease in the effective interaction
acting in the system, which drives it into a suboptimal weakly
interacting regime. However, we also found some evidence
that this is not the only effect that takes place. Even though
Fig. 2 shows that the highest Tc achieved in the U = −10t
bilayer is not notably higher than the optimal Tc for the 2D
single-band −U model, the enhanced pair-field susceptibility
(i.e., gap size) and superfluid density of the composite system
are significantly larger. In other words, while the Tc gains may
be relatively modest in the composite system, the condensate
itself may be substantially more robust, which has implica-
tions for technological applications.

We also showed that Ds increases with t⊥, in agreement
with Kivelson’s original proposal [12]. Moreover, this in-
crease is always accompanied by a substantial enhancement
of the metallic layer’s pair-field susceptibility Ps,2. However,
the enhancement of Ds may only occur for T < Tc in some
cases, as seen in Fig. 4(b), so it does not necessarily drive Tc

up. We believe that a reduction in the effective interaction and
a boost in superfluid stiffness happen simultaneously and are
the two main drivers of changes to Tc for the bilayer. Their
interplay is responsible for the rich physics of the composite
system.

Finally, the parameter space of the composite system is
large. Here we have focused on a specific choice of tl and
εl , and tuned μ to fix the filling of the correlated layer (n1 =
0.75). However, other unexplored parameter regimes are par-
ticularly interesting, including where the Fermi level matches
the van Hove singularity or when the Fermi surfaces of the two
layers coincide. Other fillings, on-site energy differences, and
hopping strengths of both layers are interesting parameters to
look at as well, though the case t1 = 0 (a periodic Anderson
model with −U centers) was the focus of Refs. [13] and
[14]. Reference [14] also explored the interesting case when
chemical potential disorder is included in the metallic layer,
allowing for a discussion of the insensitivity of pairing to
randomness in a case when the attractive sites are distinct from
the location of the disorder. Another line of future inquiry is
to explore the effect of weak attractive interaction or retarded
interaction induced by phonons in the metal layer. In that
case, pairing in the metal layers will not be purely induced
by the proximity effect, which could further increase Tc and
introduce additional competing charge order instabilities or
other polaronic effects.
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APPENDIX A: IMAGINARY TIME PAIR-FIELD
SUSCEPTIBILITY AND EQUAL-TIME PAIRING

STRUCTURE FACTOR

Here, we provide additional results for the equal-time
structure factor Ps,ll ′ and the imaginary-time dependence of
the pairing structure factor Ps,1(τ ). Figure 5 plots the equal-
time pairing structure factor Ps,ll ′ . The results are similar to the
pair-field susceptibility Ps,ll ′ . Note that Ps,ll ′ directly measures

the real-space pair correlations. If we look at the inset of
Fig. 5(a), Ps,1 is increased by about a factor of five when t⊥
is increased from 0.0 to 1.5t . While this is a smaller increase
than that of Ps,ll ′ (a factor of about 16 times for the same
parameters), it is nonetheless significant.

The origin of the extra boost in Ps,ll ′ can be explained by
the imaginary time dependence of Ps,1(τ ) shown in Fig. 6.
For U = −10t (solid lines), comparing the curve of t⊥ = 0.0
with the curves for nonzero t⊥ reveals a drastic change in the
long-range correlation in τ . The Ps,1(τ ) curve at t⊥ = 0.0 ex-
hibits a clear exponential decay with τ . When t⊥ is increased
to 0.5t , Ps,1(τ ) begins to show quasi-long-range correlations
but with significant fluctuations and a decaying structure in τ .
However, for t⊥ > 0.5t , Ps,1(τ ) becomes nearly independent
of τ and with much smaller fluctuations. Since Ps,ll ′ is set
by the area under the Ps,1(τ ) curve, the growth in Ps,ll ′ can
be traced back to the increased correlation length not only in
space but also in imaginary time.

For comparison, a U = −5t curve (dashed line) in the
single-layer limit (t⊥ = 0.0) is plotted. Interestingly, the U =

FIG. 5. Layer-resolved equal-time pairing structure factor Ps,ll ′ on an 8 × 32 lattice, for U = −10t and U = −5t as functions of inverse
temperature βt . The results for the (a), (b) correlated layer 1, (c), (d) metallic layer 2, and the (e), (f) interlayer region are shown, with
corresponding insets depicting Ps,ll ′ (βt = 10). Here, we use the shorthand notation Ps,l ≡ Ps,ll . All lines connecting points are included to
guide the eye.
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FIG. 6. Pairing structure factor Ps,1(τ ) on an 8 × 32 lattice,
as a function of the imaginary time τ , for different t⊥ values.
Solid lines show Ps,1 for U1 = −10t at different t⊥ values. (Solid
lines, in descending order of y intercept (top to bottom), t⊥ =
1.0t, 1.5t, 2.0t, 2.5t, 0.5t, 3.0t, 0.0t .) The dashed line shows Ps,1 for
U1 = −5t at t⊥ = 0.0 (single layer) for easy comparison. It can be
seen that with intermediate t⊥ values, not only does the equal-time
Ps,1(τ = 0) get increased, but Ps,1(τ ) also becomes longer ranged in
imaginary time. Ps,1 for U1 = −5t single layer also shows a slow
decay in imaginary time, which resembles that of U1 = −10t at
t⊥ = 2t .

−5t curve matches pretty well with the U = −10t curves
at t⊥ = 2t but resides below the U = −10t , t⊥ = t and 1.5t
curves. Since U = −5t represents the system with the high-
est Tc for a single layer, this observation further emphasizes
that the effect of t⊥ is not merely reducing the effective
interaction—the composite system can have a larger Ps,1(τ )
compared to an optimized single-layer −U model. On the

FIG. 7. Total superfluid stiffness Ds on 6 × 32 and 8 × 32 lattice,
for U = −10t as functions of temperature T/t . All lines connecting
points are included to guide the eye. A dashed line is used for the
6 × 32 lattice data.

other hand, the change of the shape in Ps,1(τ ) indicates that
the effect of lowered effective interaction is also at play, as
the change of the τ -dependence of Ps,1(τ ) from t⊥ = 0.0 to
t⊥ > 0 (for U = −10t) resembles that from U = −10t single
layer to U = −5t single layer. Thus, the reduction in effective
interaction, which reduces phase fluctuations, is one of the
driving forces enhancing Tc, in addition to the increase in the
superfluid density described in the main text.

APPENDIX B: SUPERFLUID DENSITY EVALUATED
AT DIFFERENT SYSTEM SIZES

Here we compare the total superfluid density Ds of the
U = −10 t system to determine whether finite-size effects are
under control. Figure 7 plots the intersections of the Ds(T )
curves with 2T/π for both 6 × 32 and 8 × 32 lattices. The
extracted Tc values for both system sizes are very similar,
indicating that the finite-size effects are small and within
statistical error bars from the Monte Carlo sampling. Most
importantly, the trend of how Tc changes as t⊥ increases is
consistent across the two system sizes.
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