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Model lattices such as the kagome and Lieb lattices have been widely investigated to elucidate the properties
of interacting flat-band systems. While a quasicrystal does not have proper bands, the noninteracting density
of states of several of them displays the typical signature of a flat band pinned at the Fermi level: a delta-
function zero-energy peak. Here, we employ quantum Monte Carlo simulations to determine the effect of onsite
repulsion on these quasicrystals. While global properties such as the antiferromagnetic structure factor and the
specific heat behave similarly as in the case of periodic lattices undergoing a Mott transition, the behavior of
the local density of states depends on the coordination number of the site. In particular, sites with the smallest
coordination number, which give the dominant spectral-weight contribution to the zero-energy peak, are the ones
most strongly impacted by the interaction. Besides establishing site-selective correlations in quasicrystals, our
work also points to the importance of the real-space structure of flat bands in interacting systems.
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I. INTRODUCTION

Flat-band systems provide a unique framework to expand
our conceptual understanding of strongly-correlated elec-
tronic systems. Because of the vanishingly small bandwidth,
the electron-electron interaction has a strong impact on the
electronic spectrum, even if it is small in absolute value. For
this reason, flat bands have been theoretically and experimen-
tally investigated in diverse settings [1,2], from moiré systems
tuned to special twist-angle values [3-5] to geometrically-
frustrated lattices such as kagome [6-9] and pyrochlore [10].

A system that has been less explored in this context are
quasiperiodic crystals [11,12]. Since proper bands cannot be
defined, the electronic spectrum of quasicrystals is assessed
via the density of states (DOS). In a periodic lattice, a flat
band is manifested as a delta-function peak in the DOS, since
the integrated DOS is discontinuous. Interestingly, in several
quasicrystals, including the Penrose tilings known as kite-and-
dart (or P2) and rhombus (or P3), a delta-function peak pinned
at zero energy is found in the DOS [13-15]. These peaks are
the manifestation of a macroscopic number of zero-energy
states, corresponding to approximately 10% of all states in
the Penrose tiling. Despite the similarities between the zero-
energy peaks of the P2 and P3 tiling, their microscopic origins
and real-space distributions are quite different [16].

Theoretical interest in interacting quasicrystals has surged
in recent years [17-39], partly motivated by the experimental
observation of correlated phenomena such as superconduc-
tivity [40—42], magnetism [43-45], and quantum criticality
[46-48]. Moreover, quasicrystalline patterns have been en-
gineered in diverse settings such as optical lattices [49-51],
photonic lattices [52,53], moiré superlattices [41,42,54], and
synthetic lattices [55] thus significantly expanding the oppor-
tunities to tune, probe, and control quasicrystals. Despite such
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an intense activity, a systematic investigation of the role of flat
bands in interacting quasicrystals remains little explored.

In this paper, we elucidate the fate of flat-band quasicrys-
tals in the presence of strong electron-electron interactions. In
particular, we use the exact and unbiased determinantal quan-
tum Monte Carlo (DQMC) method [56-58] to solve the Hub-
bard model on both the rhombus and the kite-and-dart Penrose
tiling. We find that global quantities such as the specific
heat and the antiferromagnetic structure factor display similar
signatures of a Mott transition as those observed in periodic
lattices [59,60], indicative of a Mott transition at U*/t~3.5
(see also Refs. [18,21]). Here, U is the onsite Hubbard inter-
action and ¢ is the nearest-neighbor hopping parameter.

Motivated by the fact that these quasicrystals have sites
with different coordination numbers 3 < z < 7, we also probe
local properties by computing a proxy for the zero-energy
local density of states (LDOS), i.e., a quantity available in
DQMC that does not require analytical continuation and that
is related to the actual LDOS. Previous real-space dynamical
mean-field theory (DMFT) calculations of the Hubbard model
on a Penrose quasicrystal identified site-dependent double
occupancy and renormalization factors whose origin remains
unsettled [18]. Our main result is the observation of site-
selective correlations in the strong-coupling regime of U >
U*. While at high temperatures the LDOS proxy is the largest
at the sites with the smallest coordination z, this trend reverses
below a characteristic temperature 7, where the sites with
the smallest z value display the smallest LDOS proxy values.
Interestingly, 7* extrapolates to zero close to the characteristic
interaction strength U* where the global Mott transition is
estimated. By analyzing the frequency-dependent LDOS at
each site via analytical continuation, we confirm that different
sites are impacted in distinct ways by interactions, with larger
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FIG. 1.

(a) Penrose rhombus tiling; sites are colored according to their coordination number 3 <

z < 7. (b) Density of states for the

N = 301 tiling studied here. (Inset) Zero-energy spectral-weight ratio A, /A |»=0, highlighting the dominant contribution from the z = 3 sites.
(c) Crossing temperature 7* of the DOS proxy curves, shown in Fig. 3, as a function of U. The dashed line is a linear interpolation. Only
nonzero T* values (red circles) that could be unambiguously resolved are shown. U, (green triangle) is the critical U value extracted from the
specific heat analysis. [(d)—(f)] Same as (a)—(c), but for the Penrose kite-and-dart tiling, where 3 < z < 5 and N = 166. In all figures of this

paper, we sett = 1.

gaps emerging for sites with smaller z. Interestingly, the
sites that are the most strongly impacted by correlations are
also those that contribute the most spectral weight to the
noninteracting zero-energy peak of the global DOS, revealing
a subtle interplay between interactions and flat bands.

This paper is structured as following: In Sec. II, we will
introduce the model and method used in this study. Results
from rhombus tiling and kite-and-dart tiling will be introduced
in Secs. IIT A and III B, respectively. Finally a discussion and
summary will be presented in Sec. IV.

II. MODEL AND METHODOLOGY
Our starting point is the half-filled Hubbard model [61,62]:

7:[2—2(1‘ Cio J(T+HC)
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. 1 . 1
#U3 (i 3) (- 3).
i

where ¢; is the annihilation operator for an electron on site i

and spin o, and #; = 6’j ¢; is the number operator. Hereafter,

we set = 1. The two types of Penrose quasicrystals studied
here are shown in Figs. 1(a) and 1(d), corresponding to
the rhombus and kite-and-dart tiling, respectively, both
of which are bipartite. In the figure, the sites are colored
according to their coordination number z [see insets of

ey

panels (b) and (e)], which assume values in the range
3 < z<7 for the rthombus tiling and 3 <z <5 for the
kite-and-dart tiling. The sites marked in Figs. 1(a) and 1(d)
form the finite-size aperiodic lattices with open boundary
conditions used in our DQMC simulations, with N = 301
sites (rhombus) and N = 166 sites (kite-and-dart), constructed
to explicitly preserve the fivefold symmetry of the Penrose
geometry. We also considered smaller and larger sizes, and
found that our main results are robust for different N values
(see Appendix B).

The noninteracting (U = 0) electronic spectra of both
tilings are characterized by delta-function zero-energy
peaks in the DOS in the thermodynamic limit [13,14,16].
Figures 1(b) and 1(e) demonstrate that the DOS of our finite-
size tilings display these zero-energy peaks. Noticeably, not
all sites contribute equally to the zero-energy peak. When
projected onto the coordination number z, the zero-energy
DOS is found to be dominated by the sites with z = 3 in both
geometries, as shown by the z-resolved relative spectral func-
tion calculated at zero energy, A, /Awt|g=o [insets of Figs. 1(b)
and 1(e)]. The sum is smaller than 1 because the bound-
ary sites are excluded due to the open boundary conditions
used here.

To investigate the impact of U, we solve Eq. (1) via
DQMC, an exact and unbiased method that does not have the
sign-problem since the model (1) is particle-hole symmetric
(additional details, including the parameters used, are intro-
duced in Appendix A). Error bars are presented in all plots
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FIG. 2. Antiferromagnetic structure factor Syr (a) and specific heat C (b) as functions of temperature 7 for the rhombus tiling. The
colors indicate different U values, which increase as the color scale change from light to dark; the inset in (a) shows S, at low temperature
T = 0.1. [(c)—(e)] Specific heat difference with respect to the noninteracting case, AC = C(U) — C(U = 0). A low-temperature peak emerges

atU. =3.5.

that include Monte Carlo data, and in most cases, they are
smaller that the symbol’s size.

III. NUMERICAL RESULTS
A. Rhombus tiling

We start by analyzing the quasicrystal’s global properties.
Figure 2(a) displays the antiferromagnetic (AF) structure fac-
tor S as a function of temperature 7 for multiple interaction
strength values. While for small U the system shows no sign
of AF order down to the lowest temperatures probed, magnetic
correlations are strongly enhanced for U 2 3.0 (see inset),
indicative of an AF-Mott transition. Such a transition is also
observed by RDMFT calculations, albeit at larger U values
[18,30]. This transition is further confirmed by analyzing the
specific heat C, Fig. 2(b). For U < 3.5, C(T) shows a broad
peak around 7 =~ 1.0, similar to the noninteracting system.
However, for U > 3.5, C(T') develops a sharper second peak
at lower temperatures, as highlighted in Figs. 2(c)-2(e), where
AC=C(U)—CU = 0) is plotted near U = 3.5. A second
specific-heat peak is also seen in DMFT and DQMC solutions
of the Hubbard model in periodic lattices [59,63-65], where it
is attributed to AF correlations. Thus we associate U* & 3.5
to a putative AF-Mott transition.

The behaviors of Syr and C in the quasicrystal are very
similar to what is seen in periodic lattices undergoing a Mott
transition [59]. Meanwhile, the distinguishing feature of the
quasicrystal is that its sites have multiple coordination num-
bers z, which contribute unevenly to the zero-energy peak (i.e.,
the “flat band”). It is thus desirable to probe the z-resolved
spectral function A,(w) = —ImG,(w)/m, which encodes the
LDOS for a site with coordination number z. Here, G,(w)
is the local Green’s function averaged over nonboundary
sites with same z. While obtaining the frequency-dependent
function requires analytical continuation, A;(w = 0) can be
estimated via the proxy:

B

T

do  Alw)

W.(T) = 27 cosh(Bw/2)’

G = p/2) =P / ®)

which involves only the imaginary-time Green’s function
[66-68]. Indeed, as shown in Fig. 3(a) for the noninteract-
ing case (U = 0), the LDOS proxy W,(T) approaches the
analytically calculated A;(w =0) as T — 0. The fact that

o
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FIG. 3. Proxy W,(T') for the average local density of states at a
site with coordination number z in the rhombus tiling. Each panel
shows a different interaction strength U. Different z values are
displayed in a light-blue to dark-purple color scale. Both DQMC
and analytical results for A,(w = 0) are shown in the noninteracting
case in (a). A crossing between the curves is observed in (d)—(f),
signaled by a vertical line. The insets in (b)—(f) present ATW,(T) =
TW,(T)— TW;(T) to further highlight the presence or absence of
crossing points. The range of crossing points between any pair
[TWAT), TW,(T)] is used to determine the error bars shown in
Fig. 1(c).
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FIG. 4. [(a)—(d)] Evolution of the z-projected spectral function
A (w), obtained via analytical continuation, as temperature 7 is low-
ered for fixed U = 7 for the rhombus lattice. [(e) and (f)] Zero-energy
spectral function A,(0) as a function of 7" for U =4 and U = 8. In
(e), A3(0) is generally the largest wheres in (f), it is generally the
smallest. A gap is clearly seen for all z values in (f).

the proxy only approaches a nonzero value for z =3 and
z =15, with W3(T — 0) > Ws5(T — 0), is a consequence of
the zero-energy peak being strongly dominated by the z = 3
sites, as shown in Fig. 1(b).

As U increases, two different behaviors emerge in the
weak and strong coupling regimes, see Figs. 3(b)-3(f). For
U =2 [panel (b)], while all LDOS proxy curves W,(T) are
suppressed with respect to their noninteracting values,Ws(T")
remains the largest one as T — 0, i.e., the low-energy DOS
remains dominated by the z = 3 sites. Meanwhile, for U = 8
[panel ()], the situation is different. Above a characteristic
temperature 7* = 1.85 (vertical black line), all W,(T') curves
are rather similar, with Ws slightly larger than the other curves,
and W; slightly smaller. At T*, however, the W,(T') curves
cross (highlighted by the inset), and the hierarchy of the

LDOS proxy curves is reversed below T*, with W5(T') be-
coming the smallest one. Thus, in the strong-coupling regime,
the sites with the smallest coordination numbers are more
strongly impacted by the interaction, in that their LDOS prox-
ies are more suppressed than the LDOS proxies of the sites
with the largest coordination numbers — despite the fact that
the former dominate the low-energy region of the noninteract-
ing spectrum. A similar behavior is observed for U = 7 and
6 [panels (e) and (d)], with T* decreasing for decreasing U,
while a clear crossing cannot be resolved for U = 5 [panel
(c)]. Similar behaviors are observed in the kite-and-dart tiling.
In the Appendix, we also show the distribution of W, for each
z value, demonstrating that the behavior of the average value
shown in Fig. 3 is representative of the behavior of each site.

It is illuminating to plot the crossing temperatures 7* as
a function of U, see Figs. 1(c) (thombus) and 1(f) (kite-and-
dart). A linear interpolation of the nonzero T* points gives an
extrapolated Uy, value, defined as T*(Uex ) — 0, that is close
to the critical value U™ associated with the Mott transition ob-
tained from the specific heat curves. While it is not clear why
or even whether the relationship 7*(U) ~ (U — U*) holds,
this simple analysis lends further support to the conclusion
that the interaction impacts different sites in distinct ways
inside the Mott phase.

To further validate our findings of site-selective corre-
lations, we perform an analytical continuation of G,(7)
[69] to extract the z-resolved spectral functions A, (w).
Figures 4(a)-4(d) show their temperature dependence for
U = 7. At high temperatures, A,(w) has the typical metallic
shape, with A3(w = 0) being the largest. However, as temper-
ature is lowered and a gap starts to form, the site-selective
character of the transition emerges. First, the separation be-
tween the finite-w peaks is larger for Asz(w). Second, as the
temperature is lowered even further, a Kondo-resonance peak
at w = 0 can be seen in A7(w). Interestingly, such a peak
often emerges in single-sitt DMFT simulations of the Hub-
bard model [70,71]. Since DMFT is exact in the limit z —
00, it is reasonable that mean-field features in A,(w) emerge
for larger z.
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FIG. 5. Antiferromagnetic phase transition on the kite-and-dart tiling. (a) AF structure factor S4r; (b) specific heat C, both as a function of
temperature 7 on a logarithmic scale. Increasing interaction strength U is distinguished by the color scale from light-purple to dark-purple. S,z
behavior at low temperature 7 = 0.1 is highlighted in (a) inset. (c)—(e) show AC, defined as C(U) — C(U = 0), for three U values: U = 2.5,

3.0, and 3.5 (from bottom to top).
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FIG. 6. The z-projected zero-energy spectral function proxy
W,(T) [see Eq. (2) for definition] with increasing interaction
strength, in the case of the kite-and-dart tiling. The insets in (b)—
(f) show ATW,(T') = TW,(T) — TWs(T'), highlighting the crossing
points marked by the vertical line in the main panels.

To perform a more quantitative analysis, Figs. 4(e) and 4(f)
show the T' dependence of the spectral function evaluated at
zero energy, A, (w = 0), for U = 4 and 8, respectively. For
U = 4, the hierarchy observed from the curves is that A3(0)
is the largest for all temperatures. Conversely, for U = 8, the
hierarchy is reversed at low temperatures, with A3(0) gen-
erally assuming the smallest value. Moreover, a full gap is
observed at low enough temperatures.

B. Kite-and-dart tiling

Similar results were also obtained for the kite-and-dart
tiling. Figure 5 shows the antiferromagnetic structure factor
Sar and specific heat C(T') as a function of temperature for
various interaction strength values. Similarly to the rhombus
case, AF order develops when temperature is lowered for
sufficiently strong coupling strength. The behavior of specific
heat C(T) shows the same trend as the rhombus case: for
small interaction values, a broad one-peak shape signals a
nonordered phase, whereas for U > 3.0, a two-peak structure
signals the onset of the ordered magnetic state. Thus we es-
timate U, = 3.0, slightly smaller than the value obtained for
the rhombus tilinge.

Like in the rhombus case, a site-selective behavior for the
correlation effects is seen on the kite-and-dart tiling. Figure 6
shows the proxy of the z-projected zero-energy spectral func-
tion W,(T') for the kite-and-dart case. In the weak coupling
case U = 2, displayed in panel (b), the sites with the smallest
coordination number z = 3 have the largest spectral function
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T
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FIG. 7. The z-projected spectral function A,(w) obtained via an-
alytical continuation for U = 7 and at various temperature values 7',
in the case of the kite-and-dart tiling.

proxy; these are also the sites that contribute the most to the
zero-energy peak of the noninteracting density of states. In
the strong coupling case U > 5.0, however, a reversal occurs
and the sites with z = 3 display the smallest spectral function
proxy below a characteristic temperature 7* where the W,(T)
curves for different z values cross.

Finally, we perform an analytical continuation to obtain
the z-resolved spectral function A,(w) for the kite-and-dart
geometry. Figure 7 shows A,(w) at strong coupling U =7
as temperature is lowered; On the one hand, a gap opens
at the lowest temperature 7 = 0.208, corresponding to the
Mott phase as discussed in the previous section. On the
other hand, comparing panels (a) and (c), we see the reversal
in the hierarchy of A.(w = 0) values: at higher tempera-
tures, A3(0) > A4(0) > As(0), whereas at low temperatures,
As(0) > A4(0) > A3(0). A systematic analysis of the temper-
ature and interaction-strength dependence of A,(0) is shown
in Fig. 8. For U = 2, A3(0) is generally the largest whereas
for U = 8, As(0) is generally the largest. It is interesting to
note that for intermediate values of U, e.g. U = 4, there are
regimes where A4(0) is the largest. This could be a conse-
quence of the fact that in the kite-and-dart tiling, the z =5
sites also contribute to the zero-energy peak in the global
DOS, although the dominant contribution still comes from
the z = 3 sites. We note that, for strong interactions U > 6.0,
a gap opening can be seen approaching low temperatures,
signaling the Mott transition.

IV. DISCUSSION AND SUMMARY

Our result of site-selective correlations in interacting
quasicrystals qualitatively agrees with a RDMFT investiga-
tion of the doped Hubbard model on the rhombus tiling
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FIG. 8. The z-projected spectral function A,(w) obtained via an-
alytical continuation for various fixed interaction strength values U,
as a function of temperature 7, in the kite-and-dart tiling.
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FIG. 9. The “small” (a), “medium” (b), and “large” (c) versions
of the Penrose rhombus tiling sampled in this study. Results on
medium tiling are shown in Sec. IIl A; results on small and large
tilings are presented here.

[30], which found that added carriers dope more the sites
with smaller (larger) z at weak (strong) coupling. Our
finding is also reminiscent of the site-selective behavior
observed in a recent CPA study of the Hubbard model
on commensurately-twisted tetragonal bilayers [72]. More
broadly, the concept that correlations affect different sites in
distinct ways generalizes the notion of orbital-selective corre-
lations, by which different orbitals experience the effects of
correlations differently [73,74]. In analogy to the scenario of
an orbital-selective Mott transition, it is an interesting ques-
tion whether a site-selective Mott transition could emerge in
quasicrystals.

In summary, our DQMC simulations demonstrate that, in
interacting quasicrystals, the onsite repulsion affects sites with
different coordination numbers in distinct ways. Specifically,
the LDOS is more strongly suppressed on sites with the
smallest z, which for the two types of Penrose quasicrystals
studied here correspond to z = 3. Interestingly, in a mean-field
approach to the Hubbard model on a periodic lattice, the
critical U™ signaling the Mott transition scales as U* ~ 1/z,
since the bandwidth scales as z [75]. It is intriguing that in a
quasicrystal, where z is defined locally and there is no band-
width, the sites with smallest z are more strongly affected by
interactions. More importantly, in the Penrose tilings investi-
gated here, the z = 3 sites are the ones that contribute the most
to the zero-energy peak in the global DOS, which play the
same role as a flat band in periodic lattices. Thus our results
reveal a subtle interplay between flat-band physics and inter-
actions, pointing to the importance of the real-space structure
of flat bands. Indeed, while featureless in momentum space,
flat-bands often display nontrivial patterns in real space. This
is not exclusive to quasicrystals: in the kagome lattice, the
flat band has a nontrivial projection onto the sublattices [76].

0.4F
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. . . , . . | 4
2 3 T 5 ) 3 T 5 0T 10 0
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FIG. 10. Energy and antiferromagnetic structure factor Syr for
three different sizes of the Penrose rhombus tiling. Here, N refers to
the total number of sites.
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ot f \

g 015} T

= 010
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FIG. 11. LDOS proxy for U = 2, 5 and 8, akin to Fig. 3, but here
for the small Penrose rhombus tiling.

Similarly, in twisted bilayer graphene, the flat band emerges
primarily from the AA stacking sites [77]. It will be interesting
to investigate whether site selectivity also emerges in these
flat-band settings.

ACKNOWLEDGMENTS

We thank J. Schmalian for useful discussions. Y.Z. and
R.M.F were supported by the Air Force Office of Scientific
Research under Award No. FA9550-21-1-0423. R.T.S. was
supported by the Grant No. DE-SC0014671 funded by the
U.S. Department of Energy, Office of Science.

APPENDIX A: DETAILS OF THE DETERMINANTAL
QUANTUM MONTE CARLO APPROACH

We employed the standard determinantal quantum Monte
Carlo (DQMC) method in this work [78]. After discretiz-
ing the inverse temperature § in the imaginary time axis
B = L. At, one can decouple the kinetic energy K and the
interaction V of the Hamiltonian, since the penalty can be
minimized by setting At — 0. After decoupling, the Hubbard
interaction term can be dealt with via the (discrete) Hubbard-
Stratonovich (HS) transformation

1 UAt
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FIG. 12. Real-space structure of the zero-energy peak for the
lattice studied in this work, namely kite-and-dart tiling (left) and the
rhombus tiling (right).
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FIG. 13. Spread of local density of states (LDOS) data for U =2, 5, 6, 7, and 8, taken at the temperature 7" where W,(7") is maximized

for each U.

where cosh A = e%, and the additional HS field S; = %1 is
an Ising-like variable. The partition function can be written as

Z= ZTreiﬂH — ZTr HefArﬂ
— ZTI. l_[efArIeefArV
=) det [I +11 e_ATKe_A’V(Si»’)]
=) detM,

where the sum is over the HS field {S;;} and the trace is over
the fermion operator.
Measurements are carried out via Green’s functions and
Wick’s construction
.o A A —1
Gy (i, j) = (&, 8},) = M, 1.

io ~“jo

(A2)

(A3)

(A4)

For example, the anti-ferromagnetic (AF) structure factor is
defined as [79]

Sar =Y _(=1)m(r), (A5)
r
where the spin-spin correlation functions are defined as
m(r) = 1[2m™ (r) + m*(r)] (A6)
and
m(r) = (S™({ +1)ST (@),
m=(r) = (§(i+r)§°()), (A7)
where
St =c . ST =c¢qf).
§7(0) = 3(mip — miy) (A8)

can be directly accessed via Green’s function.

To ensure reliable statistical results, we used At = 0.1,
as well as Monte Carlo steps of Nyams = 5 000-10 000 for
thermalization sweeps and Npe,s = 80000 for measurement
sweeps.

APPENDIX B: FINITE SIZE ANALYSIS

We presented in Section III the results of Penrose rhombus
tiling of size N = 301; additional simulations were performed
on a smaller tilings with N = 111 [denoted as “small,” shown
in Fig. 9(a)] and a larger tiling with N = 656 [denoted as

“large,” shown in Fig. 9(c)] to eliminate possible finite size
effect. All three tilings include a symmetry center and retain
fivefold symmetry.

Similar to the medium-size tiling discussed in Sec. III,
both small and large tilings display the same global physical
features, such as energy E and AF structure factor Ssr, as
shown in Figs. 10(a) and 10(b). Specific heat analysis on the
small tiling is shown in Fig. 10(c), where the one-peak to
two-peaks transition can be seen at U ~ 3.0, in reasonable
agreement with the result shown in Fig. 2.

Local quantities such as the LDOS are examined as well.
Shown in Fig. 11 is the LDOS proxy W,(T'), defined in Eq. (2),
on the small Penrose rhombus tiling, akin to Fig. 3. The exact
same “site-selective” behavior is observed here on the small
tiling, namely: at U = 2, W5(T) remains the largest through-
out the temperature range sampled, whereas for U = 8, the
order is reversed and sites with larger coordination number z
contribute the most for A;(w = 0) at low temperatures.

APPENDIX C: REAL SPACE STRUCTURE
OF THE “FLAT-BAND”

The real space structure of the “flat-band” on the Pen-
rose kite-and-dart and rhombus tiling is nontrivial [16]. We
reproduce their findings here by plotting the projection of
the wave-function of the zero-energy states on the Penrose
tiling sites in Fig. 12. The red sites are those that have a
finite overlap with the zero-energy states. These sites are not
localized, in contrast to some periodic lattices that have a
flat band, e.g., the kagome lattice. Most of these sites have
coordination number z = 3, as shown and discussed in Fig. 1.

APPENDIX D: SPREAD OF THE LDOS PROXY W,(T)

We presented and analyzed the proxy for the local density
of states (LDOS) W,(T') in Sec. III, which was obtained by av-
eraging over sites with the same coordination number z. Here
we further support our analysis by plotting the variance of the
W.(T) data in Fig. 13. We choose the temperature at which
W,(T') is maximized for each interaction strength. Sites with
the smallest coordination number z = 3 have the largest W, for
weak interactions and the smallest W, for strong interactions.
At weak coupling U = 2, the spread of the LDOS proxy for
the z = 3 sites forms a sharp peak, separating from the sites
with other z values. As U increases, the peak for z = 3 shifts
steadily to the left.
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