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Learning by confusion: The phase diagram of the Holstein model
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We employ the “learning by confusion” technique, an unsupervised machine learning approach for detecting
phase transitions, to analyze quantum Monte Carlo simulations of the two-dimensional Holstein model—a
fundamental model for electron-phonon interactions on a lattice. Utilizing a convolutional neural network, we
conduct a series of binary classification tasks to identify Holstein critical points based on the neural network’s
learning accuracy. We further evaluate the effectiveness of various training datasets, including snapshots of
phonon fields and other measurements resolved in imaginary time, for predicting distinct phase transitions and
crossovers. Our results culminate in the construction of the finite-temperature phase diagram of the Holstein
model.
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I. INTRODUCTION

Artificial intelligence (AI) and machine learning (ML)
approaches have emerged as powerful techniques to study
classical and quantum phase transitions (often using the
output of Monte Carlo simulations as training data) [1–9], out-
of-equilibrium phenomena [10–13], and also including the use
of experimental data [14–19]. We refer the interested reader
to recent reviews that provide comprehensive overviews of
applications of AI/ML to strongly correlated models [20–22].

In the context of exploring itinerant electron Hamiltonians,
one focus of ML approaches has been on the Hubbard model
and understanding magnetic, charge, and exotic (d-wave)
pairing correlations as well as pseudogap and strange metal
phases [14,18,23–28], whereas ML investigations of electron-
phonon Hamiltonians are somewhat more limited [29–32].
The Holstein model [33] has a phenomenology characterized
by charge density wave (CDW) order at commensurate fill-
ing on a bipartite lattice. This insulating phase gives way
to conventional (s-wave) pairing upon doping. These phases
have been extensively studied with quantum simulations and
conventional methods of analysis, i.e., the evaluation of or-
der parameters and their finite-size scaling [34–44]. Several
subtle effects emerge, including a nonmonotonic dependence
of the superconducting transition temperature on the electron-
phonon coupling strength [42,45–48], a behavior at variance
with Eliashberg theory [49]. Unlike the Hubbard model, the
Holstein Hamiltonian has both electronic and phonon degrees
of freedom. Thus, among the questions ML methods can shed
light on is which one of these degrees of freedom more clearly
encodes the ordered phase.

In this paper, we apply the “learning by confusion” (LBC)
method [50] to investigate the critical phenomena emerging in
the half-filled Holstein model, and map out its phase diagram.
At its heart, LBC consists of a series of supervised learnings
with labels that change based on a guess for the location of the
critical point as a tuning parameter is varied. The correct guess
is expected to yield the best accuracy for the training. LBC

has previously been applied to a variety of the fundamental
descriptions of classical magnetic phase transitions, including
the Ising [50,51] and XY [52,53] models, as well as the
Blume Capel model where vacancies introduce a first-order
line, which is separated by a tricritical point from the conven-
tional second-order Ising transition [54]. Further applications
of LBC include determining the critical value at which a
family of quantum states become entangled [55], phase transi-
tions between distinct steady-state behaviors in the dynamics
of nonlinear polariton lattices [56], and transitions between
regular and chaotic behavior in quantum billiards [57]. Topo-
logical transitions in Ising gauge theory and the toric code
[58], and nonequilibrium quantum quenches captured by ex-
perimental images of ultracold atomic gases described by the
one dimensional Bose-Hubbard model [11] are other recent
venues where LBC has proven its utility.

Using LBC to explore electron-phonon physics offers the
opportunity to study issues including (i) whether the fermionic
or bosonic snapshots better encode the CDW phase and (ii) the
use of space versus spacetime snapshots for the training. We
also (iii) use LBC to trace a crossover from independent gases
of up and down spin fermions in the small electron-phonon
coupling region to a spatially random arrangement of empty
and doubly occupied sites in the large coupling region in
the absence of CDW order at relatively high temperatures.
This crossover is closely analogous to that which occurs in
the Hubbard model as the temperature is lowered and local
moments form, but before those moments order antiferromag-
netically.

The remainder of this paper is organized as follows. In
Sec. II we define the Holstein Hamiltonian and discuss its
physics. We also introduce the determinant quantum Monte
Carlo (DQMC) method, with which we generate snapshots,
and the LBC method in some detail. With this background, in
Sec. III, we present results for the CDW transition and local
pair crossovers in the half-filled Holstein model, and discuss
the use of phonon versus electron snapshots as well as equal
versus unequal time correlators. Our analysis culminates in a
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phase diagram of the half-filled Holstein model in the plane of
temperature and the dimensionless electron-phonon coupling.
Section IV presents our concluding remarks.

II. MODEL AND METHODS

A. Holstein model

Interactions between electrons and phonons in materials
give rise to dressed quasiparticles (polarons) of enhanced
mass [59,60], as well as collective phenomena such as metal-
insulator transitions, superconductivity, and charge-ordered
states [33,37,43,61–63]. The Holstein model, given by the
Hamiltonian,

Ĥ = K̂ + Û + V̂, (1)

with

K̂ = −t
∑
〈i j〉σ

(ĉ†
iσ ĉ jσ + H.c.) − μ

∑
iσ

n̂iσ ,

Û =
∑

i

mω2
0

2
x̂2

i + 1

2m
p̂2

i ,

V̂ = λ
∑

iσ

x̂i

(
n̂iσ − 1

2

)

is one of the most fundamental tight-binding models for
describing electron-phonon interactions. The Hamiltonian
comprises three components. The first term, K̂ , represents
the nearest-neighbor electron hopping (kinetic energy) and a
chemical potential μ which controls the electron density. The
second term, Û , accounts for the dispersionless phonon ki-
netic and potential energy, modeled as a collection of quantum
harmonic oscillators. The third term, V̂ , describes the on-site
electron-phonon interaction, parametrized by the electron-
phonon coupling constant λ. The electron-phonon interaction
term is expressed in a particle-hole symmetric form so that
half-filling 〈n̂iσ 〉 = 1

2 occurs at μ = 0, where also 〈x̂〉 = 0. We
follow the usual convention of setting m = 1.

In this work we consider a square lattice of linear dimen-
sion L. The dispersion relation is given by εk = −2 t (cos kx +
cos ky), with a corresponding bandwidth W = 8 t . We intro-
duce the dimensionless electron-phonon coupling constant
λD = λ2/(ω2

0 W ) = 2g2/(ω0 W ). Here g is the coefficient
of the electron-phonon coupling when written in terms of
phonon creation and destruction operators V̂ = g

∑
iσ ( b̂i +

b̂†
i ) (n̂iσ − 1

2 ).
Ignoring the phonon kinetic energy and then complet-

ing the square, one sees that the Holstein model describes
an on-site phonon-mediated attractive interaction between
spin up and spin down electrons given by Ueff = −2g2/ω0 =
−λ2/ω2

0 = λDW . This interaction gives rise to two notable
collective phenomena: (i) A finite-temperature phase transi-
tion to CDW order at half-filling and (ii) superconductivity
upon doping. In the former, as temperature decreases, small
bipolarons (doubly occupied sites) begin to form. Upon reach-
ing the CDW transition temperature, these bipolarons, whose
number is precisely L × L/2, localize on a preferred sublat-
tice, forming a checkerboard pattern. Two of the foci of this
paper are on detecting the CDW phase transition, and showing
LBC is also effective at detecting the crossover associated

with the suppression of singly occupied sites (prior to CDW
formation which occurs at lower temperature).

B. DQMC method

The snapshots used for training in our LBC method are
generated with DQMC [64,65]. In this approach, the parti-
tion function Z = Tr e−βĤ for the Holstein Hamiltonian is
expressed as a path integral by discretizing the imaginary time
β into Lτ intervals and inserting complete sets of eigenstates
of the quantum oscillator position operators. The trace over
the electron degrees of freedom can be done analytically, and
the trace over the phonon degrees of freedom is replaced by
an integral over the oscillator eigenstates xi,τ , which now have
both spatial (i) and imaginary time (τ ) indices. The Boltzmann
weight has a “bosonic” part, which couples xi,τ locally, and so
is rapid to evaluate, and a product of two fermion determinants
[42]. Since the phonon field couples to the two spin species in
the same way, the fermion determinants are identical. Hence
the method has no “sign problem” [66–68].

Within DQMC, there are different methods with which
the bosonic fields can be evolved. In the original formulation
[64], individual updates at a single space-imaginary time point
are proposed. The locality of this update makes the cost to
evaluate the ratio of the new to old Boltzmann weights scale
only as the square of the matrix dimension rather than its
cube, as might be expected for a determinant evaluation. A
full sweep of the lattice is then cubic in system size. We
instead use a variant, “hybrid Monte Carlo,” which updates
all bosonic degrees of freedom simultaneously and is linear
in the system size [69]. This method is especially effective
for electron-phonon models, where the phonon kinetic energy
moderates the variation of the field in imaginary time, and less
effective in Hubbard models where such a term is absent [70].

An interesting feature of ML approaches and DQMC for
the Holstein model, which we explore below, is the possibility
of using different types of “snapshots” in the training. One
can, for example, present the neural network with the space-
imaginary time values of the phonon degrees of freedom xi,τ .
Alternately, one can utilize the estimator of the density of
electrons 1 − G(i, τ ). Here G is the inverse of the matrix the
square of whose determinant is the fermionic contribution to
the Boltzmann weight. A further flexibility is the ability to
restrict to “equal-time” snapshots at a single τ , rather than
snapshots over the entire space-imaginary time lattice. Finally,
one can use correlation functions either of the phonon degrees
of freedom xi′ τ ′xi,τ , or of the electrons G(i′, τ ′) G(i, τ ).

C. Learning by confusion method

In a supervised binary classification problem, each training
data sample is paired with a correct label, 0 or 1. Using a
convolutional neural network (CNN), like the one used in
our study and presented in Fig. 1(a), the task is to predict
that correct label for as many test samples as possible. The
LBC algorithm involves performing a sequence of supervised
binary classification tasks, in which data samples are provided
with modified (possibly incorrect) labels. In this approach,
the classification task requires predicting the labels of the test
sample, and the resulting accuracy is used to determine how
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FIG. 1. (a) Architecture of the CNN used by the LBC technique.
The input layer comprises a batch of 32 samples of size L × L,
shown here for L = 8. There are 16 kernels (filters) of size 3 × 3
applied on each data sample in the convolutional layer. The resulting
data size is then cut by half after maxpooling. Finally, two dense
layers, each with 256 nodes, connect to a single node to output
a number between 0 and 1 (for simplicity, we show only one of
these layers). (b) Schematics of LBC method. Eight different electron
density snapshots are shown for increasing values of β from the top
to the bottom. Here, a white pixel corresponds to 0 and a black pixel
corresponds to 2. In every step, the LBC algorithm guesses a critical
inverse-temperature β ′

c, marked as a red cursor. Data sets above and
below β ′

c are given different labels, marked as a yellow star and a
green triangle for 1 and 0, respectively. The first and last steps of
the algorithm are trivial: all the data sets have the same label and the
accuracy to learn is perfect. In the middle column shown, the guessed
labels match the actual labels of different phases, leading to a high
accuracy on the middle peak of the W shape of the accuracy versus β

plot. The second and fourth columns correspond to incorrect values
β ′

c �= βc and hence lead to low accuracy.

close the labels are to the correct ones, and hence the location
of the phase transition as a tuning parameter is varied. This
process is illustrated in Fig. 1(b).

We illustrate how the LBC technique can be used to find the
critical inverse temperature βc in the square-lattice Holstein
model, above which a long-range ordered CDW phase occurs.
Our training and test data samples are obtained from the
hybrid Monte Carlo simulations discussed in Sec. II B. These
samples typically consist of L × L grids of local observables,

such as the electron densities or phonon positions collected
periodically during the measurement step of a simulation.
Alternative data sets may include imaginary time-resolved
density-density correlations.

Each DQMC simulation is performed for fixed values of
β, λD, and ω0, generating snapshots during the course of
Nmeas = 10 000 sweeps of the space-imaginary time lattice. To
determine βc, we perform hybrid Monte Carlo simulations on
Np different values of βmin � β � βmax, keeping λD and ω0

constant. Electron densities and phonon position snapshots are
saved every ns measurements, resulting in Nsnap = Nmeas/ns

configurations for each β. The resulting data set has dimen-
sions (Np × Nsnap, L × L), where each row corresponds to a
single snapshot. Density-density correlation datasets are built
using snapshots from nit equally spaced imaginary times and
100 different Monte Carlo times. The resulting dataset has
dimension (Np × nit × 100, L × L). All snapshots are then re-
shaped into grayscale images and used as input for our CNN.

Every grayscale image is labeled based on its correspond-
ing β. In a typical LBC run, a critical inverse temperature β ′

c
is chosen, and the input labels are modified accordingly: if
β � β ′

c , the image is assigned a label of 1, and if β > β ′
c ,

it is assigned a label of 0. A binary classification task is
then performed using these labels. Figure 1(b) illustrates five
key scenarios in the LBC method. In the first and last cases,
β ′

c = βmin and β ′
c = βmax, respectively. Here, all input labels

are identical, and the CNN is trained to label any test set
in the same way, a task for which it easily achieves perfect
performance.

More interesting scenarios arise when βmin < β ′
c < βmax.

If β ′
c = βc, the CNN performs optimally, as images with

fundamentally different data patterns are assigned different
labels which correctly conform to the underlying physics as
contained in the snapshots. However, when βmin < β ′

c < βc

or βc < β ′
c < βmax, the CNN performs relatively poorly. In

these cases, the data labels do not align well with the actual
patterns. For example, if β ′

c > βc, many high-β data sets in the
range βc < β < β ′

c are incorrectly given low-β labels. This
mismatch leads to the CNN becoming “confused,” reflected
in a failure to distinguish accurately between different data
patterns.

The outcome of the five cases results in the characteristic
W-shaped curve of the LBC method, of which we will give
examples in the next section (Figs. 3 and 6). The “outer” peaks
of the W originate in the trivial, uniform label cases, β ′

c =
βmin and β ′

c = βmax. The inner peak of the W corresponds to
the high accuracy of the CNN, which occurs when β ′

c = βc.
This feature enables the LBC method to identify βc within a
range of β values by simply locating the middle peak of the
W . The LBC technique is especially useful in cases where
obtaining an order parameter is challenging, or when an order
parameter does not exist at all since only “raw” configurations
of the degrees of freedom are employed. The LBC technique
might also have additional advantages in bypassing the need
for finite-size scaling analyses of correlation functions (which
often have large error bars near the transition) to determine βc.
We will return to this issue in the conclusions.

The relative accuracy with which βc can be determined cer-
tainly depends on Np, the number of values between βmin and
βmax. We seek a value for Np that ensures a critical parameter
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FIG. 2. (a) The CDW structure factor S(π, π ) for a β

sweep plotted for four values of electron-phonon coupling λD =
0.250, 0.325, 0.400, 0.475. (b) The scaled CDW structure factor
plotted for three lattice sizes and the first two values of λD. The rapid
increase of S(π, π ), and the crossings, happen at values of βc close
to the location of the middle peak of the W shown in Fig. 6, i.e., in
agreement with the LBC determinations of the critical points.

with reasonable accuracy and maintains a sufficient number
of samples on both sides of the transition point. We also aim
to avoid increasing Np to the extent that training becomes
inefficient. This parameter has been adjusted across different
simulations, and we found that a value in the range of 25 to 50
is adequate for medium-sized intervals like those reported.

III. RESULTS

It is useful to put the results of LBC in the context of more
“traditional” methods for locating the CDW transition. To this
end we show, in Fig. 2, the CDW structure factor

S(π, π ) ≡
∑

j

eiπ ( jx+ jy ) 〈n̂( j)n̂(0)〉, (2)

which sums the density-density correlation at separation j =
( jx, jy) with a phase appropriate to ordering of opposite sign
on the two sublattices of the bipartite square lattice, versus β.
At high temperatures, where the correlation function falls off
rapidly with separation j, the structure factor is independent
of lattice size. In the ordered phase, correlations extend across
the entire lattice and S(π, π ) ∝ L × L. These two regimes are
evident in Fig. 2(a), with βc roughly estimated as the place
where S(π, π ) grows most rapidly. A more precise determi-
nation of βc is obtained by scaling S(π, π ) using the known
Ising universality class of the CDW transition, for which
γ /ν = 7/4. Curves for different L cross at βc [Fig. 2(b)].
This is the procedure followed to determine βc in most earlier
DQMC studies of the Holstein model [37,41,45–48].

Figure 2(a) shows one underestimated value for S(π, π )
at β = 8.00 and λD = 0.475. This deviation occurs in a
challenging strong-interaction and low-temperature regime.
However, we note that several data points at even lower tem-
peratures align with the expected trend. We conclude that

FIG. 3. Electron density snapshots taken at several temperatures
are shown in (a); the emergence of a CDW pattern is clear at the
two larger β. Also shown are LBC test accuracy for a sweep of
(b) temperatures using electron density snapshots, (c) phonon po-
sitions snapshots, (d) density-density correlation data in real space,
and (e) in momentum space. The four data types yield consistent
positions for the interior maximum of the W at βc ∼ 5.75. Increasing
the parameter ns, the number of sweeps between snapshots, reduces
the number of data sets used in the learning. However, increasing the
parameter nit, the number of different imaginary time slices used to
build the density-density correlation datasets, increases it. The results
for βc are robust to changes in ns, although the minima of the W
deepen slightly as ns grows. Here, λD = 0.25, ω0 = 1.0, and L = 12.

this deviation does not undermine the validity of the results.
We attribute this anomaly to insufficient statistical sampling
performed at this point.

With that standard approach reviewed, we next present
the results using LBC. We acquire snapshots from a fam-
ily of simulations at different inverse-temperatures β using
hybrid Monte Carlo simulations of the Holstein model on
a square lattice of linear size L = 12 with ω0 = 1.0 and
λ = √

2 (λD = 0.25). The resulting snapshots are fed into
the LBC CNN. We show results of the test accuracy for an
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FIG. 4. The square lattice Holstein model T -λD phase diagram
obtained with LBC for L = 8 and ω0 = 1.0. The red data points
indicate the location of βc shown in Fig. 6. Error bars are the standard
error of the mean on ten different random seeds. Critical tempera-
tures of the CDW transition in the range 0.250 � λD � 0.600 show
close agreement with previously obtained results [45,47]. The insets
show a typical electron density snapshot taken in each of the three
regions of the phase diagram. From left to right, snapshots are taken
at (λD, β ) = (0.01, 3.50), (0.25, 12.00), (0.86, 3.50). The snapshots
show the existence of three distinct phases: a disordered phase, a
CDW phase, and a Fermi (bipolaron) liquid phase. The anomalous
data point at λD = 0.775 is discussed in the text.

inverse-temperature sweep a(β ), using electron density snap-
shots, phonon position snapshots, and density-density corre-
lation data in momentum and position space. Typical electron
density snapshots at four different β values are shown in
Fig. 3(a). By employing these distinct data types, the LBC
results show a middle peak of the accuracy a(β ) for β ∼ 6,
agreeing with previously obtained results [41,45]. The W
curves obtained from QMC data for the electron density
[Fig. 3(b)] and phonon position [Fig. 3(c)] snapshots result
in deeper accuracy minima at either side of the peak, which
appear here at β ≈ 3 and β ≈ 10, compared to those observed
in the density-density correlations or their Fourier transform,
the structure factor [Figs. 3(d) and 3(e)].

Figure 3 further explores the dependence of the LBC re-
sults on the number of training electron density and phonon
position data sets; ns = 20 having five times the number of
snapshots as ns = 100. Although the shape of the W away
from the interior maximum varies, we observe that the loca-
tion of βc is the same.

Next, we use the electronic density snapshots to perform
similar LBC analyses at other values of λD, ranging from
0.250 to 0.925. The results are shown in Fig. 6 of the Ap-
pendix. The critical temperatures we obtain from them paint a
complete picture of the CDW phase diagram of the half-filled
Holstein model in the space of λD and temperature, which
we show in Fig. 4. In that figure, circles with red error bars
indicate the value of the critical temperature Tc = 1/βc for
the transition from a disordered state at high temperatures,
characterized by S(π, π ) ∼ O(1), to the CDW phase at low
temperatures, exhibiting higher values of S(π, π ) ∼ O(L2).

We note that the critical temperatures obtained from the two
sweeps in β at λD = 0.250 and λD = 0.325 agree with the
ones extracted from the finite-size scaling analysis shown in
Fig. 2. Additionally, Fig. 4 demonstrates the close alignment
of the critical temperatures identified for the CDW transition
in the range 0.250 � λD � 0.600 with prior studies [45,47].

There is an anomalous data point in Fig. 4 at λD = 0.775
for which Tc is evidently overestimated. We include it to
illustrate limitations of our current understanding of error
estimation in the LBC method. Critical temperatures extracted
from the structure factor, as in Fig. 2, can also sometimes lie
substantially off the expected phase boundary. However, there
are typically indications in the raw data, e.g., large error bars
in the vicinity of the crossing, which signal the extracted data
point might be unreliable. As can be seen in the λD = 0.775
panel of Fig. 6, the “warning sign” appears as a shoulder to the
main middle peak in the shape of the W , leading to a bump
around β = 5.8, presumably marking the actual Tc ∼ 0.17.
Based on the trends we have seen in the λD sweeps (see Fig. 5
below), we attribute the unexpected extra peak in this diagram
to finite-size effects.

It is natural to consider the effectiveness of LBC via a
sweep in which λD is changed at fixed T . In a phase diagram
of Fig. 4, this λD sweep is expected to first cross the phase
boundary horizontally into a CDW phase at low-enough tem-
peratures. The results of the LBC algorithm using electron
density snapshots for λD sweeps at fixed β values are pre-
sented in Fig. 5. Typical snapshots across different λD’s and
at β = 5.75 (below the CDW dome) and β = 3.50 (above
the CDW dome) are shown in Figs. 5(a) and 5(d), respec-
tively. In Fig. 5(b) for β = 5.75 (T = 0.174), a clear W shape
exhibits a middle peak that is located at λDc ≈ 0.259, in agree-
ment with the results obtained from the β sweep performed
at a fixed λD = 0.250, revealing a peak at βc ≈ 5.75 [see
Figs. 3(b) and 6]. Figure 5(c) shows further consistent results
at β = 4.50 (T = 0.222) for transitioning into the CDW phase
at small λD.

The phase diagram of Fig. 4 emphasizes that at T � 0.250,
the CDW phase gives way to a disordered phase at all values
of λD. However, the nature of this disordered phase at small
λD (�0.4) is very different from that at large λD. In the former
region, there is a mixture of empty, singly occupied, and dou-
bly occupied sites, in which the entropy per site achieves its
maximal value, ln 4. However, for large values of λD (�0.5),
bipolarons are preferentially formed, and a gas of mostly
empty and doubly occupied sites exists across the lattice, a
regime where the entropy per site is ln 2. Typical electron
density snapshots shown at a relatively high temperature of
T = 0.286 in Fig. 4 clearly display these behaviors. Their
signature is also reflected in the value of the CDW structure
factor in those regions. The latter is shown as a function of
λD at β = 5.75 in Fig. 7 of the Appendix. While S(π, π ) is
minimal around 1 in the completely disordered region of small
λD, it saturates to a value around three times as much in the
large-λD region.

The phonon snapshots of Fig. 5(d) show how the electron-
phonon bond strengths evolve in this crossover. Note that
the right-most panel of Fig. 5(d) [at λD = 1.00 and β =
3.50 (T = 0.286)] corresponds to empty and doubly occupied
sites without the CDW pattern of the ordered phase [e.g.,
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FIG. 5. Electron density snapshots taken at β = 5.75 are shown in (a), and the corresponding LBC test accuracy for a sweep of Np = 50
values of λD using them is given in (b). A second sweep of λD at β = 4.50, also corresponding to a temperature below the CDW dome, is in (c).
Here, the interior peaks of the W mark the onset of long range charge order. Phonon position snapshots taken at β = 3.50, shown in (d), reveal
the emergence of long and short bonds without, however, an alternating pattern in their positions. The corresponding LBC test accuracies for
a sweep of Np = 45 values of λD using phonon position snapshots are shown at (e) β = 3.50 and (f) β = 3.25. Different lines correspond to
ten different random number seeds. These temperatures are above the CDW dome, so the interior maximum of the W captures a cross-over to
a gas of bipolarons. In electron density (phonon position) snapshots, white pixels correspond to 0 (−2) and black pixels correspond to 2 (2).
All results are for ω0 = 1.0 and L = 8.

the latter is shown in the right-most panel in Fig. 3(a) at
λD = 0.25 and β = 12.00 (T ≈ 0.083)]. It is the crossover
between the completely disordered and bipolaron regimes that
is captured by our LBC analysis of λD sweeps at moderate
temperatures above the CDW dome. Figures 5(e) and 5(f)

show such sweeps for β = 3.50 (T = 0.286) and β = 3.25
(T = 0.308), respectively. We use phonon field snapshots for
the LBC algorithm to obtain these results. The corresponding
crossover temperatures are added to the phase diagram of
Fig. 4 as crosses with green error bars. We find that using

FIG. 6. The test accuracy of the LBC model for a sweep of β using electron density snapshots obtained for ten different values of λD. We
take ω = 1.0 and ns = 20, and Np = 45. The red vertical line is drawn at the location of the average middle peak of the W , taken over the ten
random number seeds shown.
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FIG. 7. The structure factor against λD at β = 5.75 plotted on
a semi-log scale. S(π, π ) shows a visible difference between the
completely disordered phase at low λD and the bipolaron structure
at high λD.

electronic snapshots in this case leads to weaker results (see
Fig. 8). Instead of a clear middle peak in the accuracy versus
λD plots, we observe a shallow minimum in the small-λD

region and a broad middle peak, followed by a relatively sharp
minimum in the large-λD region.

The W curves for the λ sweeps of Fig. 5 are notably more
noisy than the β sweeps of Figs. 3 and 6. We attribute this to
our finite lattice size, and hence, the coarse resolution of the
Brillouin zone. On a finite lattice and at low temperatures, the
electron density exhibits a step-like structure as the chemical
potential passes through the energies of the discrete k points.
These fictitious jumps are removed by sufficiently strong in-
teractions. However, our horizontal sweeps begin at rather
small λ, where finite-size effects are large. We believe these
then get reflected in the appearance of subsidiary structure in
the W . The smoother W curves of Figs. 3 and 6 all use larger
λD, suppressing finite-size effects.

The crossover which is captured by the LBC method in
Fig. 4 can be understood as follows: The half-filled repul-
sive Hubbard model is well known to exhibit two peaks in
its specific heat as the temperature is lowered [71]. These
correspond to, at higher temperature, the formation of local

FIG. 8. The LBC test accuracy for a sweep of λD at (a) β = 3.50
and (b) β = 3.25 using electron density snapshots. Both tempera-
tures lie below the CDW dome. Different lines correspond to ten
different random number seeds.

FIG. 9. The test accuracy of the LBC model for a sweep of
β using electron density snapshots. Here, ω = 0.1, ns = 100, and
Np = 45. The success of LBC at this low value of ω0 portrays the
usefulness of LBC in the adiabatic limit ω0 → 0.

moments (singly occupied sites) and the entropy loss as empty
and doubly occupied sites are removed from the system, and
at lower temperature to antiferromagnetic ordering of those
moments. Indeed, a phase diagram similar to our Fig. 4 then
results [4]. As a consequence of a well-known particle-hole
transformation [72], the specific heat of the attractive Hubbard
model has a similar structure, reflecting first the elimination of
single occupied sites and then CDW formation as T decreases.
It is also known that the Holstein model maps onto the attrac-
tive Hubbard model in the antiadiabatic limit ω0 → ∞. In that
sense, the phase diagram obtained from LBC is a plausible
one. However, it has been shown that to achieve the limit in
which Holstein quantitatively maps onto attractive Hubbard,
ω0/t ∼ 100 is required [73]. This is far from the ω0/t = 1
studied here. Thus, the observation of a crossover to a regime
of randomly arranged empty and doubly occupied sites is a
notable achievement of the LBC approach.

The LBC method also proves highly effective in the adi-
abatic regime of the Holstein model ω0 → 0. In this limit,
determining βc is particularly challenging due to pronounced
finite-size effects. Traditionally, finite-size scaling must be
performed on relatively large lattice sizes to extract βc with
reasonable accuracy. To illustrate the usefulness of LBC in
this limit, we perform a β sweep at fixed λD = 0.250 and
ω = 0.1. The accuracies, obtained from electron density snap-
shots, are shown in Fig. 9.

IV. DISCUSSION

In this paper we studied the CDW transition of the Holstein
model, and the crossover to a gas of small polarons, with
learning by confusion. One focus of our investigation was on
the relative effectiveness of using spatial snapshots at a single
imaginary time slice, versus using the full space-imaginary
time lattice. In the case of the transverse field Ising model
in d dimensions, the path-integral mapping of the partition
function is to a classical Ising model in d + 1 dimensions.
In that case, withholding the imaginary time direction is pre-
cisely a matter of using snapshots only on a d-dimensional
hyperplane embedded in a larger d + 1-dimensional lattice.
However, the simplicity of the transverse field Ising model
mapping is atypical. In general, and here in the Holstein model
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in particular, the space and imaginary time directions behave
very differently. Hence, our results speak to the complex, and
more generic situations when this is the case.

A commonly enunciated advantage of the LBC method is
its ability to work directly with snapshots as opposed to requir-
ing a structure factor or a particular (possibly unknown) order
parameter. However, this is a property shared by a number of
ML approaches [20]. Indeed, the principal component anal-
ysis also works directly with snapshots, with the additional
feature that the leading eigenvector of the covariance matrix of
data returns information about the order parameter [3]. While
we have not done a careful study, our results suggest another
possible advantage, namely, relatively small finite-size effects.
Further work is needed to understand how the position of
the inner peak of the W , which encodes the critical point,
depends on the lattice size, in analogy with techniques which
have developed over the last few decades for the finite-size
scaling of peaks in the specific heat and susceptibilities, as
well as invariant quantities such as Binder ratios [74–76]. In
the course of such a comparison, the question of whether LBC
allows the determination of critical points with higher accu-
racy than “traditional” approaches (allowing for the analysis
of both statistical and systematic error bars) can be better
understood. Our current results suggest that LBC is a more
efficient approach (using less CPU time) to obtaining the
phase diagram of the Holstein Hamiltonian to the presented
level of precision (a few percent uncertainty in βc).

In this text, we portrayed the ability of LBC to detect both
a real phase transition and a crossover. However, LBC does
not retain specific underlying structures of the data that could
be directly interpreted physically. Instead, at its highest level,
LBC simply maps an input configuration to a label, namely,
0 or 1. Therefore, the current implementations of LBC do not
distinguish between a real phase transition and a crossover
in the same rigorous manner as the sophisticated finite-size
scaling methods that have been developed. However, one vi-
able approach to distinguish between a phase transition and
a crossover with LBC is to examine how the critical temper-
ature Tc, identified by the position of the interior peak in the
W , depends on linear lattice size: the functional form of the
correction Tc(L) = Tc(∞) + AL−1/ν might then allow access
to the critical exponent ν and the nature of the transition.

While density-density correlation data might be expected
to yield the most accurate W , our findings demonstrate that
raw QMC data, such as electron densities and phonon po-
sitions, generally produce a clearer W with deeper minima.
The choice between using electron densities or phonon posi-
tions depends on the specific parameters of the problem. For
instance, electron density snapshots yielded a clearer W when
sweeping β to explore the CDW transition, whereas phonon
position snapshots proved more effective for analyzing the

crossover during a λD sweep. The ability of the LBC method
and other ML approaches to only require snapshots already
eliminates the need of considering to feed correlation snap-
shots into the model. This is promising since to an extent,
extracting the location of a phase transition from correlation
data is not too far from giving the machine the answer we
expect from it.

We conclude by noting a subtle feature of the LBC method.
It is evident in the results presented in this work that the
minima in the W curve can typically be not so much reduced
from unity; in several of our plots the lowest accuracy is as
high as 0.93, despite the fact that those β values correspond to
the data sets being the “most mislabeled,” i.e., β ′

c very far from
the correct βc. The explanation reflects the power of ML and
training. Given enough time (epochs) and fitting parameters
(weights and biases), a CNN should ultimately be able to learn
to classify test sets according even to “incorrect” labels. Thus
in some sense the minima in the W curves are reliant on the
limitation of resources [52].
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APPENDIX: ADDITIONAL SUPPORTING PLOTS

We repeat the same β sweep in the main text for ten
different values of λD and show the results in Fig. 6. Here we
use a lattice size L = 8. Indeed, we see very little variation of
the W curves with lattice size (compare, for example, Fig. 3
with the top left panel of Fig. 6, which shows results for the
same λD = 0.25.) The red vertical lines in Fig. 6 represent the
location of βc for the ten different values of λD.

In Fig. 7, we show the CDW structure factor as a function
of λD at β = 5.75 in a semi-log plot. It shows that S(π, π ) is
larger, by a about a factor of 3, in the large-λD region, where
the system is expected to consist of mostly a gas of empty
and doubly occupied sites, in comparison to the completely
disordered small-λD region before the peak.

In Fig. 8, we show the same plots as in Figs. 5(e) and 5(f)
of the main text, except that electronic snapshots, as opposed
to phonon position snapshots, are used. In this case, we find
a broader peak and a shallower minimum in the small-λD

region.
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