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Supersolid phase in the diluted Holstein model
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The Holstein model on a square lattice at half-filling has a well-established finite temperature phase transition
to an insulating state with long range charge density wave (CDW) order. Because this CDW formation suppresses
pairing, a superconducting (SC) phase emerges only with doping. In this work, we study the effects of dilution
of the local phonon degrees of freedom in the Holstein model while keeping the system at half filling. We find
not only that the CDW remains present up to a dilution fraction f ~0.15, but also that long range pairing is
stabilized with increasing f, resulting in a supersolid regime centered at f =~ (.10, where long range diagonal
and off-diagonal correlations coexist. Further dilution results in a purely SC phase, and ultimately in a normal
metal. Our results provide a new route to the supersolid phase via the introduction of impurities at fixed positions
which both increase quantum fluctuations and also are immune to the competing tendency to phase separation

often observed in the doped case.
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Introduction. A regular arrangement of particle positions
on the one hand, and particle mobility on the other, are typ-
ically competing tendencies. Nevertheless, the possibility of
the coexistence of crystalline order and the most extreme type
of transport, superfluid flow, was considered in Helium almost
seven decades ago [1-4]. Although experimental confirmation
in Helium was controversial [5-7], studies of several model
Hamiltonians exhibiting such “supersolid” (SS) properties
have been reported [8—13]. In electronic models, a supersolid
phase is often identified by the coexistence between an in-
sulating phase that breaks translational symmetry (such as
a charge density wave, CDW) and a phase displaying off-
diagonal long-range order (such as superconductivity, SC).
Until now, supersolidity continues to be an intriguing area of
quantum matter research, including novel solid state realiza-
tions such as “spin” supersolids like Na;BaCo(POy), [14] and
K>Co(SeO3); [15]. More broadly, continuous systems such as
ultracold quantum gases offer the new platforms to achieve
the realization of supersolidity [16—19], and this kind of su-
persolidity with continuous translational symmetry breaking
is distinguished from the one in the lattice Hamiltonian with
discrete translational symmetry.

The Holstein Hamiltonian [20], where the electronic site
density is coupled to a local (dispersionless) oscillator mode,
offers a possible arena in which to explore supersolid behav-
ior. At half-filling, (n) = 1, the low temperature phase exhibits
CDW order and is insulating. The transition temperature
T.qw has been determined on a square lattice both via quan-
tum Monte Carlo (QMC) simulations [21-23] and machine
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learning methods [24], thus firmly establishing the existence
of a finite temperature transition to a commensurate solid.

One of the key properties of the Holstein Hamiltonian in
the dilute limit is polaron formation, in which an electron
localized to a site rearranges the local phonon configuration.
As a result, when the electron moves, it must carry the lattice
distortion along. Since Holstein polarons are quite heavy, as
their density increases to the point where condensation into a
superconducting phase becomes possible, the resulting critical
temperatures are very low [25]. While a SC phase has been
established [26-28], no coexistence of SC and CDW order
has been observed in QMC studies of the Holstein model as
the filling is varied [29-31], although a projector renormal-
ization group method does report a supersolid at very weak
coupling [32].

Supersolids are linked to the high mobility of quantum
fluctuation vacancies in the otherwise ordered background of
particle positions. A rather delicate balance is thus required:
the doping must be light enough to allow the rigid pattern
to coexist with the holes, yet sufficient quantum fluctuations
are needed to form a condensate. Moreover, the tendency
of the vacancies to phase separate from the ordered back-
ground must also be avoided. Here we demonstrate, using
QMC simulations, a new route to supersolid behavior in
an electron-phonon model in which the number of fermions
remains commensurate (i.e., no doping is introduced), but
the dilution is instead introduced in the bosonic degrees of
freedom to which they couple. Through this way, it provides
an interesting possibility to establish the physical system for
supersolids both experimentally and theoretically. We show
that measurements of the charge structure factor, superfluid
susceptibility, compressibility, and spectral function form a
consistent picture of the traversal of a CDW-SS-SC-normal
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sequence of phases as the dilution of the phonon modes
increases. Our approach bears conceptual similarities to the
investigations of supersolidity in Helium in that the dilution
of phonon modes provides a random landscape analogous to
the nanometer scale pore size of the Vycor glass in which the
solid Helium is placed.

Model and method. The Holstein Hamiltonian [20],
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describes electrons of spin o = %, | hopping between nearest-
neighbor sites (i, j), and interacting with a local phonon mode
on each site. In Eq. (1), c?;, (c?id) are fermion creation (destruc-
tion) operators with the given site and spin indices and with
corresponding number operator 7, = aAIiZ ﬁia, whereas &: (@)
are phonon creation (destruction) operators. The parameters
t, wo are the hopping energy (which we set to be our energy
scale, + = 1) and phonon frequency, respectively, g; is the
electron-phonon coupling, and w is the chemical potential.
For the clean system with g; = g, the chemical potential cor-
responding to half-filling is o = —2g%/wo.

We introduce dilution by allowing for a random, site-
dependent, electron-phonon coupling g;j, such that the cou-

pling vanishes on a fraction f of the sites:

gi={g 17

: @
We consider N = L x L square lattices. Simulations are typ-
ically averaged over five to ten realizations of the random
locations. If fN is not an integer, we calculate a weighted
average of its adjacent integers, providing further disorder
averaging. Further discussion is found in the Supplemental
Material [33] (see also Refs. [34—46] therein).

We investigate the competition between SC and CDW or-
der through the determinant quantum Monte Carlo (DQMC)
method [31,47,48], an unbiased auxiliary-field approach for
the computation of finite-temperature properties. We perform
the usual mapping of the quantum oscillator degrees of free-
dom onto a path integral in imaginary time by discretizing
the inverse temperature B = AtL, [49], then the degrees of
freedom of the fermions moving in this fluctuating space and
imaginary time phonon field can be integrated out analyti-
cally. Since the fermionic operators appear quadratically in the
Holstein Hamiltonian, they can be integrated out analytically.
This results in an action that is the square of the determinant
of a matrix and that depends on the space and imaginary-
time dependent quantum phonon field, which is then sampled
stochastically. The square in the determinant arises because
the determinants of the up and down fermions are identical,
i.e., there is no sign problem. The discretization mesh At of
the inverse temperature 8 = 1/T was chosen small enough
so that the “Trotter errors” are smaller than those associated
with the statistical sampling. We set the system to half filling
with charge density (n) = 1, and define the dimensionless
electron-phonon coupling Ap = g*/(ztwy), where z = 4 is the
coordination number for the square lattice. In this work, we
mainly focus on systems with g = 1, wy = 1 (Ap = 0.25) and
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FIG. 1. DQMC results in the absence of dilution (f =0).
(a) CDW structure factor S.qw on an N = 10 x 10 lattice as a
function of temperature 7' for g = 1 and half-filling, (n) = 1. For
smaller wy there is a sharp increase in Scay for 7 < Tiqw, provid-
ing preliminary evidence of an ordered CDW phase. However, as
wy increases, charge correlations are diminished. (b) s-wave pair-
ing susceptibility P, as a function of T for the same parameters.
P; increases with increasing wy. For the largest phonon frequency,
where S.qy essentially vanishes, the pairing susceptibility grows
dramatically at low T. For fixed g/t = 1, the phonon frequencies
wp/t =0.8,1.0,1.2,1.4,2.0 correspond to dimensionless couplings
Ap = & /(ztwy) = 0.313, 0.250, 0.208, 0.179, 0.125, respectively.

g=72,wy =3 (Ap = 0.33), but also provide some results for
additional wq values.

In order to discern CDW and SC phases, we define the
equal-time, real-space charge correlation function,

c(r) = ((Ayy + Aiy ) Aigrr + Nigry)), (3)
and its Fourier transform S(q),
S(q) =Y &4Pe(r). “)

r

At commensurate filling (n) =1, the structure factor is
sharply peaked at q = (r, w) owing to the perfect nesting
of the noninteracting Fermi surface. Hence, we define S¢qy, =
S(m, m).

The s-wave pairing susceptibility is

B
p=— / de(A)AT(0)), )
N Jo

where A(t) =Y, &, (v)é1 (7). We study SC via the (imagi-
nary time integrated) susceptibility, rather than the equal time
structure factor, because the former provides a more sensitive
measure for pairing order, which is less robust than charge
order.

S(q) and P, are both normalized in such a way that in a
high-temperature or otherwise disordered phase, their values
are independent of lattice size N = L? aslong as £ < L, where
& is the correlation length. However, in an ordered phase
with & 2 L, Scqw and P, grow linearly with N. This provides
an immediate, albeit somewhat crude, means by which long
range order can be discerned.

Results. We start from the undiluted case, f =0. In
Fig. 1 we show S.w and Py as functions of temperature T
for electron-phonon coupling g = ¢ and varying phonon fre-
quency wy, as well as linear lattice size L = 10 (N = 100).
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FIG. 2. CDW structure factor and s-wave pairing susceptibility
as functions of T for different dilution fractions f. Starting from
a CDW-dominant situation, f first enhances and then inhibits P,
whereas it always inhibits Scgy-

Forwy < 1.41 (Ap 2 0.18), Scqw rises sharply below a critical
temperature that becomes smaller as the dimensionless cou-
pling decreases (wy increases). For small wy, there is no signal
of superconductivity, since P, is small and almost temper-
ature independent. When the phonon frequency approaches
wo = 1.4¢, the pair structure factor grows as T decreases.
This enhancement is, however, terminated at the temperature
for which Scqy rises, reflecting the competition of charge and
pairing order. For the highest phonon frequency, wy = 21+,
for which S 4y remains small down to at least T =t /20, P
shows an especially marked growth at low temperatures. That
superconductivity is most easily observed in the antiadiabatic
limit of large wy is an established conclusion of prior QMC
studies of the Holstein model [25,26].

Having briefly reviewed the charge and pair correlations in
the clean limit to establish a baseline for comparison, we now
explore nonzero dilution f. We begin, in Fig. 2, by choosing
two parameter sets: g =1, wp =1 (Ap = 0.25); and g = 2,
wp =3 (Ap = 0.33). In both cases, Ap is greater than the
value Ap ~ 0.18 above which the data of Fig. 1 show a sharp
rise in Seqw as T is lowered. Thus, charge correlations are
dominant at f = 0 in these regimes, enabling us to investigate
the effect of dilution on the small pairing correlations in a
system that begins with a dominant CDW phase in the clean
limit. Importantly, since the CDW gap completely gaps out the
Fermi surface at half filling, the CDW phase is incompressible
(i.e., insulating), characterized by a vanishingly small com-
pressibility; we will return to this point later.

As shown in Fig. 2, dilution suppresses the CDW phase.
For dilution f = 0.1, the value of S.gy at 8¢ = 20 is reduced
by roughly a factor of two. In addition, the convergence of
Scaw to its ground state value is shifted to lower temperature.
In contrast, the SC behavior is more complex. In the clean
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FIG. 3. Pairing and CDW correlations as functions of w, for
different dilution fractions. Dashed lines represent P; while solid
lines represent S.q,. The inverse temperature is fixed at gt = 10.
CDW and SC compete, but coexistence is possible in the region of
transition between them.

system, the pairing susceptibility P, slowly decreases with
decreasing temperature at low 7. The introduction of dilution
first significantly enhances the value of P; and makes it grow
sharply as T — 0. This effect is strongest at f ~ 0.1 —0.2.
As f increases further, P; decreases. Therefore, SC benefits
from the destruction of CDW order with a small amount
of dilution, but eventually too much dilution suppresses the
electron-phonon coupling essential for pairing. While the two
parameter sets show the same trends, the pairing correlations
for larger wy = 3 [panel (d)] are significantly larger in magni-
tude than those for smaller wy = 1 [panel (b)].

This nonmonotonicity is reminiscent of the “supercon-
ducting dome” of the cuprates, and of the Hubbard model,
where, in a similar way, doping first eliminates long range
antiferromagnetic order, but too much doping removes the
spin-fluctuations providing the pairing “glue.” The analogy is
incomplete, since in the Hubbard Hamiltonian there are only
electronic degrees of freedom. Moreover, the role of remnant
CDW fluctuations in mediating the pairing in the Holstein
model is unclear [48,50].

An alternative display of the effects of dilution is shown in
Fig. 3, where P, and S 4y at different f are shown as functions
of wy. The most evident message, common to all values of
f, is the competition between CDW and pairing order. The
crossing between the two quantities is shifted to smaller wy
with increasing f. Moreover, for small @y, where CDW order
is dominant, f enhances the pairing susceptibility, whereas in
the absence of CDW order at large wy, dilution suppresses
pairing.

The window of intermediate wy/f ~ 1 in Fig. 3 raises the
possibility of a coexistence of pairing and CDW orders in-
duced by dilution. Such a phenomenon does not occur in the
Holstein model with randomness introduced in the on-site
energies [51]. In order to explore whether such a “supersolid”
phase exists, we must perform a finite-size scaling study of
the two order parameters.

We determine the window of supersolid regime in Fig. 4.
We first ascertain the critical dilution that totally destroys

L220506-3



JINGYAO MENG et al. PHYSICAL REVIEW B 110, L220506 (2024)
/L2 f
0.00 0.01 00 01 02 03 04 (a) g=1 o =1/L=10 (b) g=1 ,=1 L=10
0.5 T T T T 10 440
(a) ®,=3 g=2 B=10 (b) ©,=3 g=2 B=20 L=10
041 4 =0.10 L : : o Sepy : z
o o f=0.125 | | 8
20310 =015 | | . IPY IR
g v 01875 L 5a
v 0.2 -
|
0.1 : |
| | 0
0.0 ' ' 0
(b) 0,=3[g=2 £=0.125 B=10/(d) 0,3 g=2 L=10 _ 140
& L=8 & £=0.05 000 001 0.0; 003
1.8 fo 1104 5 O £0.10 g roiopo |3 .
E L:12,' o =030 &~ -~ A
— - @)
s T 2 & : f 10 @
O=FEg 2 £=0.00
1 0§§ \\g/i‘ / 18\\ }J’— 1 o £=0.05
3 v o £=0.10
04 : ! 0
0.6 0
B 0 A B 00 0.1 02 03 03 0.0 0.3
R T Ap

FIG. 4. (a) Normalized CDW correlations Seq, /L? as a function
of inverse squared lattice size L™2. A positive intercept represents
long range order. (b) Pairing and normalized CDW correlations as
functions of dilution fraction at a fixed low temperature (8¢ = 20).
The red dashed line demarcates where CDW ends, and the black
dashed lines give the range of SC order. Thus, the pink shaded region
shows the supersolid phase. (c) Charge correlations c(r) along the
path shown in the inset. (d) 1/P; as a function of T'. For intermediate
dilutions f = 0.10 and f = 0.30, 1/P; vanishes at finite 7. This
divergence of the susceptibility signals a SC phase transition.

CDW order. In panel (a), we show the normalized CDW cor-
relations as a function of 1/L?. When increasing f from 2/16
to 3/16, dilution suppresses Scqw /L? for each lattice size, and
the intercept of the curve in the thermodynamic limit, which is
the square of the CDW order parameter, goes to zero. Indeed,
for f > 0.15, Seqw/L? tends to zero when L — 00, suggesting
that the CDW correlations are not long ranged and that there
is short range order only. The real space charge correlation
function c(r) is shown in panel (c).

We now turn to the SC response. The reciprocal of the
s-wave pairing susceptibility, 1/P;, is shown as a function of
T in Fig. 4(d). For f = 0.05, P; remains finite for all T, since
1/P; does not vanish. However, for f = 0.10 and f = 0.30
there is a nonzero SC critical temperature, signaled by the fact
that the extrapolated 1/P; crosses the horizontal axis, that is,
the P curve diverges at T — 0. Increasing dilution further to
f = 0.40 leads to the vanishing of long range SC order. We
also show in the insert a finite value of normalized pairing
susceptibility when extrapolated to L — oo at f = 0.10, sug-
gesting the dilution does enhance the SC long-rang order. We
summarize the results in panel (b). While a SC phase exists
in an intermediate dilution range, f € (0.075, 0.35), CDW
order, which is dominant in the clean f = 0 limit, remains
present up to f ~ 0.15. A supersolid window, where CDW
and SC phases coexist, is present and centered around f ~
0.10. The evolution of the single particle spectral function
provides further evidence for the coexistence of CDW and SC
order, as we show in the Supplemental Material [33].

FIG. 5. Density (n) as a function of the shift in chemical potential
A away from g = —2g%/w,, which gives half-filling in the clean
(f=0) limit. (a) g=1, wp=1 and (¢c) g=2, wy = 3. Scaw as a
function of density n at (b) g=1, wy =1 and (d) g =2, wy = 3.
The peak of S.qy is shifted from (n) = 1 by f.

The “conventional” picture of a SS phase is one of the
condensation of mobile vacancies (e.g., through a shift of
the chemical potential ) whose motion does not sufficiently
destroy the solid order. This scenario appears inapplicable
here, since although we dilute the phonon degrees of freedom,
we remain at half-filling for all the data of Fig. 4. Figures 5(a)
and 5(c) lend insight into this question by showing the density
(n) as a function of Au = u — g, for different f values.
Here, j1p = —2g%/wy is the chemical potential for half-filling
of the clean system. What we observe is that, upon dilution,
the plateau in (n) no longer occurs at commensurate filling
(n) = 1. In other words, the filling n = 1 is away from the fill-
ing which gives insulating behavior. In that sense, our system
displays “self-doping.” While the data shown are for a single
realization, a discussion of disorder averaging is included in
the Supplemental Material [33].

Figures 5(b) and 5(d) provide confirmation of this picture.
Scaw 18 shown as a function of filling (n) for different dilutions
f. The most robust CDW order does not occur at (n) = 1,
but rather at a filling (n) # 1 corresponding to the density
at which the compressibility k = d(n)/0p vanishes in panels
(a) and (c). Thus, the filling n = 1 can be viewed as being
doped away from the filling of largest CDW order. Further
insight into this can be obtained by a calculation of the spectral
function, shown in the Supplemental Material [33].

Discussion. The experimental search for supersolidity in
Helium [5], although later rebutted [7], had nevertheless an
intriguing premise: by placing the Helium in the porous envi-
ronment of Vycor glass, the number of delocalized vacancies
associated with zero point fluctuations of the quantum solid
might be enhanced, thereby increasing the tendency to super-
fluidity.
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Inspired by this general idea, in this work, using DQMC
simulations, we have studied the effect of a fractional dilution
f of local oscillators in the Holstein Hamiltonian on the com-
petition between superconductivity and charge density wave
formation. Through an analysis of the CDW structure factor
and SC susceptibility we provide evidence that a SS phase
can be induced even at half filling. The seemingly surprising
occurrence of a SS without (carrier) dilution is explained by
the fact that that even though the fermion filling (n) nominally
remains at the commensurate value (n) = 1 (no “vacancies”),
the shift in the optimal filling for CDW order away from
half-filling effectively results in vacancies at (n) = 1.

One of the obstacles to conventional supersolid formation
is the possibility of phase separation of the mobile vacan-
cies, a phenomenon known to obscure supersolid formation
for bosonic systems on square lattices [52]. The realization
of supersolidity presented here avoids that obstacle, because
the phonon dilution pattern is fixed in space. Thus, the mo-
bile vacancies that are introduced are necessarily spread out
spatially.

It is interesting to ask whether the dilute Holstein model
studied here could be realized in materials. While an in-
depth analysis is beyond the scope of this work, we note
that transition metal dichalcogenides (TMDs) are well known
for displaying CDW which, in some cases, coexists with
or is in proximity to a SC phase. More specifically, this is
the case of two nonmetallic TMDs: 17-TiSe,, which dis-
plays semiconductinglike transport properties in the CDW
state [53,54], and 17-TaS,, which is believed to be a Mott

insulator in the CDW phase [55,56]. In the case of 17-TiSe,,
Cu intercalation [53] or pressure [54] suppresses the CDW
phase and promotes SC, with both states overlapping in the
phase diagram. Because Cu is introduced between the Ti-Se
layers, it is expected to locally affect the crystal structure,
which in turn should cause a local change in the electron-
phonon interaction, as the atoms will be displaced from their
original positions. In the case of 17-TaS,, it has been shown
that application of pressure [55] leads to a SC phase as the
CDW is suppressed, with a possible region of coexistence.
However, whether SC occurs in Cu intercalated samples re-
mains to be seen [56]. Recently, it has been confirmed that Pd
intercalation induces disorder in the crystal lattice of ErTe3,
suppressing CDW formation and leading to a SC ground
state [57].

Of course, the microscopic description of these two mate-
rials is much more complicated than our simple model—for
instance, Cu intercalation also adds charge carriers in the
case of 17-TiSe,. Nevertheless, it is an interesting possibility
that intercalation in nonmetallic CDW TMDs can provide a
mechanism for a spatially inhomogeneous electron-phonon
coupling.
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