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Stripes and the emergence of charge z-phase shifts in isotropically paired systems
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The interplay of spin and motional degrees of freedom forms a key element in explaining stripe formation
accompanied by sublattice reversal of local antiferromagnetic ordering in interacting fermionic models. A long-
standing question aims to relate pairing to stripe formation, intending to discern the applicability of simple
models that observe this phenomenon in understanding cuprate physics. By departing from fermionic statistics,
we show that the formation of stripes is rather generic, allowing one to unveil its competition with superfluid
behavior. To that end, we use a combination of numerical methods to solve a model of interacting hardcore
bosons in ladder geometries, finding that once stripes are formed, either via external pinning or spontaneously, a
sublattice reversal (77 -phase shift) of charge ordering occurs, suppressing the superfluid weight. Lastly, we show
that when the Cooper pairs are not local, as in the attractive Hubbard model with finite interactions, auxiliary-
field quantum Monte Carlo calculations show evidence of fluctuating stripes, but these are seen to coexist with
superfluidity. Our results corroborate the picture that static stripes cannot be reconciled with pairing, unlike the

case of fluctuating ones.

DOI: 10.1103/PhysRevB.110.L161101

Introduction. Clarifying whether simplified lattice models
capture the salient features of certain classes of high-
temperature superconductors, such as the cuprates, has been
at the forefront of scientific research in condensed matter
physics for over three decades [1-3]. One of the aspects that
complicates this quest is the absence of controlled analytical
methods in dimensions larger than one that can tackle the so-
lution of the corresponding Hamiltonians. Additionally, such
a problem is even more elusive because of the small energy
scales separating competing orders, creating challenges for
numerical simulations.

While much remains to be settled, a recurring feature of
existing calculations, which reproduces experimental observa-
tions [4], is the presence of charge stripes, wherein the doped
holes unidirectionally condense over periodic regions in the
lattice [5-23]. An additional aspect revealed by experimen-
tal and theoretical results is the emergence of a reversal of
the sublattice magnetization across a stripe region in certain
regimes of parameters, dubbed a w-phase shift (spin stripe).
The common lore is that the high-temperature superconduc-
tors are characterized by intertwined orders [24], whose fate
of competition/cooperation in suppressing/aiding the pairing
properties is a question yet to be definitively answered.

Recently, however, large-scale numerical studies that com-
bine constrained path quantum Monte Carlo [25] and density
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matrix renormalization group (DMRG) methods [26,27] to
investigate the doped Hubbard model in large cylinders have
started to converge toward the solution of this problem at
the ground state [13,22,28]. Other approaches, such as un-
biased auxiliary-field quantum Monte Carlo [14,15,29] or
dynamical cluster approximations [18,21], are limited to low-
but-finite temperatures, owing to the emergence of the sign
problem [30,31]. Finite-temperature extensions of the DMRG
method (minimally entangled typical thermal states [32,33]),
however, allow one to bridge this gap, corroborating the emer-
gence of charge and spin stripes over different temperature
ranges [34].

In extensions to strongly coupled regimes, where a descrip-
tion in terms of a #-J model is appropriate [3], the formation
of stripes is also observed. Still, the pairing in the hole-doped
regime seems unattainable [35,36], defying the expectation
that this particular model has “the right stuff” [37] to describe
the cuprate physics. Note, however, that the inclusion of next-
nearest-neighbor terms for both hoppings and exchange can
change this picture, making superconductivity more robust in
the hole-doped regime [38—42]. More recently, it has also been
noted that observing phase reversal across hole-rich regions is
not unique to repulsive models but is too seen on the charge
degrees of freedom instead in the attractive Hubbard model
[43]. Here, in the strong-coupling limit, the typical size of the
Cooper pairs becomes increasingly small, asymptotically ap-
proaching a regime where a description of repulsive hardcore
bosons (a composite fermionic pair) is relevant [44].

Many of the limitations that prevent the numerical study of
the interplay of stripes and pairing do not occur if considering
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the attractive Hubbard Hamiltonian [45] or repulsive hardcore
bosons without frustration. Furthermore, from an experimen-
tal point of view, the study of the competition between pairing
and stripes/charge ordering is friendlier in the scope of quan-
tum emulators based on ultracold atoms in optical lattices
since the temperature scales for the onset of isotropic (s-wave)
superfluidity are higher, potentially allowing its observation
within existing regimes accessible [46], even if not directly
aiming to tackle the physics of the cuprate-like materials. In
this paper, we take advantage of the capabilities of quantum
simulations of such models; our key conclusions are: (i) In the
strong coupling (bosonic) limit, static stripe density patterns
emerge with doping; (ii) the charge density wave correlations
are characterized by a phase shift across the stripes for suffi-
ciently large intersite repulsion; (iii) regardless of the presence
of this phase shift, superfluidity is suppressed by such static
stripe formation. (iv) In contrast, at weaker coupling, the
attractive fermionic Hubbard model, stripe formation is not
inimical to pairing—quantum fluctuating stripes are central to
coexistence with superconductivity. In addition, the simula-
tions’ accuracy allows us to quantify the energy differences
of the competing phases precisely, something which is often
referred to but not commonly evaluated.

Model. Our starting point is the attractive Fermi-Hubbard
model [47-50]

(i,)),0 i io

where ¢, (6;) annihilates (creates) an electron with spin o in
the site i of an L, x L, lattice and #;, is the corresponding
number operator; ¢ gives the hopping integral with on-site
interactions U < 0, and the chemical potential u regulates
the fermionic density. For |U|/t > 1, the pairs induced by
the attractive interactions turn local, describing a composite
fermion satisfying the hardcore constraint: second-order per-
turbation theory recasts this Hamiltonian in terms of repulsive
hardcore bosons in the presence of a rescaled chemical poten-

tial [44], ' = =205 blb,+ 23 () — 1/2)(, —
1/2) + (JU| — 2u) 3,(1 — /), where b, (b)) is the ith site
annihilation (creation) operator satisfying [Ei , Bj.] =0ifi#
J, while {B; , l;j} = 1, with the constraint 5;2 = l;lz =0 [51];
i, = Bji;,. is the associated number operator. This Hamiltonian
for repulsively interacting hardcore bosons, generalized to al-
low the hopping amplitude to differ from the nearest-neighbor
interaction strength, has been extensively studied [52-57].
With only nearest-neighbor interactions in a square lattice,
the possible phases are either ordered solids (with different
arrangements depending on the density (#’)) or a superfluid
phase; their coexistence, i.e., a supersolid, has been ruled
out [52,53]. At the first-order phase transition between the
quantum solids and the superfluid phase with (') close to
1/2, instability toward phase separation emerges, signaled by
discontinuities in the equation of state [inset in Fig. 1(e)]
and characterized by domain walls separated by antiphased
checkerboard patterns [55]. This stripe formation can be ex-
plained via the contribution to the kinetic energy gain in
second-order perturbation theory in the atomic limit [55,57]
[see Fig. 1(b)].
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FIG. 1. (a) Schematic representation of the lattice with rele-
vant terms of the hardcore boson Hamiltonian annotated, including
staggered pinning potential at the edges with magnitude /. (b) Rep-
resentation of the “charge m-phase shift” that emerges in the strongly
interacting limit (V/J > 1), with contributions in second-order per-
turbation theory indicated. While the kinetic energy gains within a
checkerboard domain are o t2/nV (n =2, 3) for a given site, bosons
can freely hop across the dashed lines marking the stripe locations.
(c) Density profile in 32 x 4 ladder exhibiting four hole regions in
its short direction; here 4/J = 1. (d) The average staggered hole-
density profile. (e) The density structure factor S(k,, 77 ) shows robust
peaks at k, = w(1 £ 268), § = 1/16, even in the absence of pinning
potential (h = 0); the inset shows the phase separation characteristics
for the studied densities emerging in the equation of state ((n’) vs ).
All data are obtained for V/J = 8.

Stripes in hardcore boson ladders. We start by character-
izing the interplay between superfluidity and the emergence
of stripes in ladder geometries. By breaking lattice rotational
symmetry, they facilitate the manifestation of charge stripes
along the short direction [11-15,19,22,23,58]. The Hamilto-
nian reads

Flneo = —J Y _(bb, +Bib) +V Y iy — Y i, (2)
(i j) (i.j) i
where we use the stochastic series expansion quantum Monte

Carlo method [59-61] at sufficiently low temperatures 7" by
setting 8 = 1/T = 2L,. Convergence is assisted towards the
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formation of stripes when including a pinning staggered po-
tential at the edges of the system [13,19,22], h(—1)®+»)a! for
iy = 0and L, — 1; see Fig. 1(a). Finally, we adjust the chem-
ical potential u such that the hole doping § = 1/2 — (#/) ~
1/16. In the original picture of spinful fermions, this would
correspond to the doping § = 1/8, often studied in the context
of stripe formation in the repulsive Hubbard model [13,58]
and where the “stripe anomaly” emerges in certain classes of
cuprates (i.e., where stripes are most robust while suppressing
bulk superconductivity [4,62]).

The site-resolved average density is shown in Fig. 1(c) on
a 32 x 4 lattice with open (periodic) boundary conditions in
the long (short) direction at the strongly interacting regime
with V/J = 8, making immediately apparent the regions
with increased hole density, periodically modulated along the
ladder. Additionally, charge stripes separate regions where
robust checkerboard patterns emerge. These two aspects can
also be readily seen in the average staggered hole density,
(—1)*+ir(1/2 — (7)), along the ladder [Fig. 1(d)] showing the
region of antiphase, which is separated by hole-rich stripes
wherein a node of the staggered hole density emerges.

To quantify the characteristic stripe wavelength, we com-
pute the structure factor of the two-point, connected, density
correlations,

S(k) =

" i

where we focus on the momenta k = (k,, 7). In the undoped
case (6§ = 0), this quantity peaks at k = (7, w) owing to the
robust checkerboard solid that emerges at such strong val-
ues of the nearest-neighbor interactions. In the presence of
finite doping, we observe that its peak is now displaced to
k. = (1 £ 28) [Fig. 1(e)], a direct signature of the stripe
formation and the antiphase the checkerboard domains exhibit
across stripes [20,34]. Notably, for this case of hole-doping
with § = 1/16, even without edge pinning potentials (h = 0),
the m-phase striped charge density wave (CDW) is robust; see
Supplemental Material (SM) [63] for a system-size analysis
showing that this behavior persists for longer ladders but may
exhibit competing stripe periodicities at wider ones.

Figure 2 shows how V/J affects this picture. The density
inhomogeneity associated with the stripes is only seen for
large values of V/J [inset Fig. 2(a)], a signature that just when
doping the (#') = 1/2 checkerboard solid, originally formed
atV/J > 2 in the § = 0 regime, one may then observe charge
stripes. Figure 2(b) shows that a robust density 7 -phase shift,
ie., S(r, ) — S(@(1 £28), 1) <0, is intimately tied to the
stripe formation at large interactions. Lastly, we notice that
increasing V/J, inducing the checkerboard solid formation,
suppresses the superfluidity [Fig. 2(a)], quantified by p; =
W2+ Wyz) /(2BJ), where Wy, is the winding number of the
bosonic world-lines in x(y) directions [64]. The formation of
sublattice reversal of checkerboard domains does not change
this picture—a finite superfluid density is incompatible in
this case as well. If enforcing the stripe emergence by an
externally imposed potential [43,65,66] such anticorrelation
between finite superfluidity and a robust manifestation of a
7 -phase shift persists; see the SM [63].
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FIG. 2. (a) The superfluid weight vs interaction strength V with
(6§ = 1/16) and without (6 = 0) doping on the hardcore boson model
shows that in the presence of stripes, p; >~ 0. These are seen in the
inset, the shaded-horizontal area gives the average total density tar-
get, and the markers the calculated density—once charge stripes are
formed for V' 2 7J, these lead to a second lower density for § = 1/16
at certain regions. (b) The difference in the density structure factor
for two values of k,, 7 and (1 & 24); when negative, it signals the
emergence of stripes with antiphase density ordering—the undoped
(6 = 0) case is rescaled by 0.5 for easier visualization.

Stripes in U < 0 Fermi-Hubbard ladders. Having estab-
lished that stripes naturally emerge in a model for hardcore
bosons and that these compete with the superfluid properties
once CDW domains are formed (with antiphase or not), we
tackle the spinful attractive Hubbard model (1) to investigate
if similar conclusions carry over. While its strongly interacting
regime with increasingly local pairs is suggestive that similar
results of the hardcore boson case would emerge, we argue
below that much stronger quantum fluctuations lead to very
different outcomes. In particular, the mapping to the hardcore
boson Hamiltonian shows that in approaching the |U|/t > 1
limit, the corresponding hardcore boson model displays inter-
action strengths (V = J), which are not sufficient to induce a
checkerboard solid at § = 0; see Fig. 2(b).

We start by showing in Fig. 3 the density structure fac-
tor [Eq. (3) with density operators for the fermionic case]
with hole-doping § =1 — (1) ~ 1/8 and |U|/t = 15 on the
same 32 x 4 ladder at Br = 24. We focus on a torus ge-
ometry (periodic boundaries in both directions) with an
antiphase staggered potential h(—1)>T5+x/87; applied at i, =
0, 8, 16, 24; see Fig. 3(a). Imposition of a pinning potential
provides a useful tool to filter a single stripe mode and assess
its effect on pairing. Here, in particular, the competition of
states that emerge at these low temperatures becomes clear:
The simulations statistically converge such that S(k,, ) ex-
hibits peaks at K = 7, 157 /16, or 77 /8 and their relative
weight [i.e., the fraction of independent Markov chains (real-
izations) that converge to show a given peak in S(k,, )] can
be tuned according to the magnitude of the pinning potential
h; see Figs. 3(b)-3(d). The corresponding average energy per
site (1)/ (LLy) (insets) explicitly depicts this competition,
demonstrating that they are energetically very close. Such
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FIG. 3. (a) Schematic representation of the 32 x 4 ladder with
periodic boundary conditions and the antiphase staggered pinning
field at i, =0, 8, 16, 24. [(b)—(d)] Structure factor S(k,, =) for the
fermionic model at Bt = 24 with increasing magnitude of the modu-
lated pinning potential /¢t = 0;0.03 and 0.1, respectively. Here, the
realizations are filtered according to the peak location kP***—the pie
chart gives the fraction of the total number of realizations exhibiting
a given peak in S(k,, ) and the remaining inset the average energy
per site for each corresponding k, value. (e) The difference between
the CDW structure factor and the one that gives a period-8 stripe
averaged over all realizations: only after imposing a large pinning po-
tential can a single-mode stripe be formed. [(f)—(h)] The temperature
dependence of S(k,, w) with A/t = 0.1 for realizations exhibiting
kpeak = %n, %n, and 7, respectively.

competition, associated with different stripe periodicities, is
clear indication of their fluctuating nature.

Using AS = S(mr, ) — S(7n /8, ) as a proxy of robust
antiphase period-8 stripe formation, Fig. 3(e) shows the
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FIG. 4. (a) Saturation of the s-wave pair structure factor with
the inverse temperature for three different system sizes without an-
tiphase staggered pinning potentials i(—1)x*+5+x/83; The effect of
h on the pairing for the 32 x 4 lattice, resolved by kP (b) or by
temperature and system size (c). Note the broken axis with a value
included at a large s, showing an overall reduction of the pairing once
stripes become increasingly pinned. Data are shown for [U|/t = 15;
imaginary-time discretization is t At = 0.05 as in Fig. 3.

necessity of including a pinning potential to tip the balance
in favor of a single-mode stripe state with AS < 0, also for
smaller values of the attractive interactions strengths |U| and
temperatures. Focusing on the latter, we notice that in re-
solving S(k,, ) by the corresponding peak location across
different realizations [Figs. 3(f)-3(h)], one can see relatively
resilient peaks away from kP # 7 even at T/r =4 for
h/t = 0.1. This bodes well for observation in current experi-
ments of trapped cold atoms emulating the attractive Hubbard
model that has been shown to tackle a similar temperature
range [46].

Lastly, we focus on the interplay of stripes and pairing, here
quantified by the zero-momentum s-wave pair structure fac-
tor Py =Y, (A, Al)/(L,L,), where A; = ¢;;¢;; annihilates
a fermionic pair at site i. Low temperatures lead to a satu-
ration of this quantity that is extensive with the system size
[Fig. 4(a)], indicating an expected pairing long-range order
when approaching the ground state [47]. While these results
in the absence of pinning potential are not a guarantee that
stripes are necessarily influencing them [see Fig. 3(b)], only
a negligible decrease of the pairing is observed once small,
single-mode stripe modulations are induced via the antiphase
pinning potential at low temperatures [Fig. 4(c)], even if ex-
plicitly resolving the realizations that exhibit different k7
in S(k,, ) [Fig. 4(b)]. The decrease is only substantial once
one makes two orders of magnitude larger pinning potentials,
leading to stripes that are increasingly static. This is what
connects with the case of hardcore bosons, where stripes
and superfluidity were incompatible, hinting that the larger
quantum fluctuations when the stripes are not yet static in the
fermionic case allow one to see concomitant manifestation of
pairing and phase flip density modulations.
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Summary and outlook. Disentangling the interplay of
density modulations and pairing is at the core of under-
standing the physics of high-temperature superconductors.
Here, we showed that stripes with antiphase checkerboard
density are inimical to the superfluidity in interacting hard-
core boson models: These can naturally form at strong
interactions, leading to a stripe crystal that suppresses Bose-
Einstein condensation. When these bosonic Cooper pairs
are not tightly bound, stripe states emerge with more than
one characteristic wave vector at low-T’s [k, = w (1 £ §)
or w(1+£6/2)], consistent with fluctuating-stripe proposals,
and are not seen to hurt the isotropic pairing significantly.
Such a picture, here shown not to be necessarily tied to
the repulsive Hubbard model, enlarges the scope in which
multiple orders intertwine, opening the prospects of its obser-
vation in trapped ultracold atom experiments with controlled

attractive interactions [46,67-69] where correlations of the
attractive Hubbard model at different interaction strengths
already identify regimes of tightly bound pairs. The acces-
sible temperature range is close to the values that we show
here are sufficient to see a m-phase shift across stripes.
Systematic analysis of the correlations could provide sig-
nals of m ordering, as well as peaks at w =25 we find in
Fig. 1(e).
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