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Enhancement of charge density wave correlations in a Holstein model
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The Holstein Hamiltonian describes itinerant electrons whose site density couples to local phonon degrees of
freedom. In the single-site limit, at half filling, the electron-phonon coupling results in a double-well structure
for the lattice displacement, favoring empty or doubly occupied sites. In two dimensions and on a bipartite
lattice in d � 2, intersite hopping causes these doubly occupied and empty sites to alternate in a charge density
wave (CDW) pattern when the temperature is lowered. Because a discrete symmetry is broken, this occurs in a
conventional second-order transition at finite Tcdw. In this paper, we investigate the effect of changing the phonon
potential energy to one with an intrinsic double-well structure even in the absence of electron-phonon coupling.
While this aids in the initial process of pair formation, the implications for subsequent CDW order are nontrivial.
One expects that, when the electron-phonon coupling is too strong, the double wells become deep and the polaron
mass gets large, an effect which reduces Tcdw. We show here the existence of regions of parameter space where
the double-well potential, while aiding local pair formation, does so in a way which also substantially enhances
long-range CDW order.
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I. INTRODUCTION

The Holstein Hamiltonian [1] provides a simplified de-
scription of the interactions between electron and phonon
degrees of freedom in a solid, including polaron and bipolaron
formation [2–10], and the origin of low-temperature phases
with diagonal charge density wave (CDW) or off-diagonal
superconducting (SC) long-range order [11–21]. Although the
electron-phonon (e-ph) interaction λ initiates these phases,
its effect is nonmonotonic [19,22–28]. Quantum Monte Carlo
(QMC) simulations show that pairs become heavy and CDW
and SC transition temperatures go to zero at strong coupling λ

[29]. This finding is in contrast to the approximate Eliashberg
theory, which predicts that Tcdw increases monotonically with
λ and provides a challenge to achieving high CDW transition
temperatures.

As a consequence, the search for situations in which large λ

does not reduce the tendency for long-range order has been an
ongoing focus of recent analytic and numerical studies. For
example, in the case of superconductivity, it has been sug-
gested that a Su-Schrieffer-Heeger (SSH) interaction [30–33]
might avoid the problem of large effective mass [34,35]. Ele-
vated CDW transitions have also been found in studies of the
SSH model on a three-dimensional Lieb lattice appropriate to
the bismuthates [36].

*Corresponding author: Claire.Kvande19@kzoo.edu

In infinite dimensions, using a technique similar to dynam-
ical mean field theory (DMFT), Freericks et al. [37] studied
the effects of a simple anharmonic term in the form of an
additional quartic potential energy for the phonons. They con-
cluded that a CDW phase exists for a large range of densities
at low anharmonicity but that the CDW is gradually replaced
at low and high densities by a SC phase as the anharmonicity
increases. The half-filled system always remains in a CDW
state. They also observed a decrease in the critical tempera-
tures at which CDW and SC phases appear with increasing
anharmonicity. Similar models have been studied in one di-
mension [38].

In this paper we consider a route to high CDW transition
temperatures driven by a double-well (anharmonic) phonon
potential resulting from negative quadratic and positive quar-
tic terms in the displacement. Such a potential favors the
development of a preexisting nonzero phonon field, without
the mediation of electron-phonon coupling, and then favors
electron occupations to organize into empty and doubly oc-
cupied sites when the e-ph interaction is present. A number
of previous studies of anharmonicity with positive quadratic
and positive quartic phonon potential energy terms [13,37–47]
found, in general, a suppression of charge order at half filling,
in agreement with the DMFT study noted above. Nonlinear-
ities in the coupling terms between fermions and phonons
[39–42] led to similar conclusions. This existing literature
brings into focus our key result: Anharmonicity can produce
an enhancement of Tcdw if it occurs in the form of an intrinsic
double-well potential.
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There are a number of experimental motivations for con-
sidering such a generalization of the Holstein Hamiltonian.
One is to understand Kondo/heavy-fermion physics in mate-
rials like SmOs4Sb12. Most typically, heavy-fermion behavior
arises due to the interaction of conduction electrons with
magnetic degrees of freedom (local moments). However, it
has been suggested, even dating back to Kondo [48], that other
two-level systems might cause similar phenomena. In the case
of SmOs4Sb12 a large applied magnetic field, which would
quench fluctuations of local magnetic moments and hence of
Kondo physics, does not destroy the heavy-fermion behav-
ior. It has been suggested, then, that rather than conduction
electrons interacting with local S = 1/2 spins, it is instead
the coupling to two-level phonon degrees of freedom that is
relevant [49,50].

The remainder of this paper is organized as follows: We
first define the model, its parameters, and physical observables
and then give a brief summary of our two complementary
QMC techniques. Results are then shown for local observ-
ables and for charge structure factors for different forms of
the anharmonic potential using energy scales close to those
typically chosen in the conventional Holstein model. Finite-
size scaling is employed to extract Tcdw. Similar calculations
are then done for parameters which fix the average phonon
displacement in order to demonstrate that the enhanced CDW
Tcdw is not a “trivial” effect associated with artificially large
displacements. A conclusion summarizes our work and points
to possible future directions. The Appendixes contain further
details of our model and simulations.

II. MODEL AND METHODS

We consider the Hamiltonian

H = −t
∑
〈�i �j〉σ

(c†
�iσ c�jσ + H.c.) − μ

∑
�iσ

n�iσ

+
∑

�i

(
−Ax2

�i + Bx4
�i +

p2
�i

2m

)

+ λ
∑

�i
x�i (n�i↑ + n�i↓ − 1). (1)

The sums run over the N = L2 sites of a two-dimensional
square lattice with periodic boundary conditions. The operator
c�iσ (c†

�iσ ) destroys (creates) a fermion of spin σ =↑ or ↓
on site �i = (ix, iy); n�iσ = c†

�iσ c�iσ is the corresponding number
operator, and x�i and p�i are the canonically conjugate dis-
placement and momentum operators of the phonon mode at
site �i. The first line of Eq. (1) represents the hopping energy
of the fermions between neighboring sites 〈�i, �j〉. A chemical
potential term is included to emphasize that our algorithms
perform simulations in the grand canonical ensemble. The
hopping parameter t will be used as the energy scale. The
second line in Eq. (1) represents the energy of the phonons
of the quadratic potential −Ax2

�i and anharmonic term Bx4
�i .

This form, with a negative quadratic term (i.e., A > 0), results
in a double well. Without loss of generality, we set m = 1.
The third line in Eq. (1) is the phonon-electron interaction,
written in a particle-hole-symmetric (PHS) form so that μ = 0

corresponds to half filling. Further discussion of this PHS
appears in Appendix A. The PHS also ensures the values of
displacement x corresponding to empty and doubly occupied
sites are symmetrically located about the origin x = 0.

In order to connect to previous QMC studies of the conven-
tional Holstein Hamiltonian [1], in which there is only a pos-
itive quadratic term in the phonon displacement with phonon
frequency ω0, we note that one would express the quadratic
coefficient in terms of the frequency as A = mω2

0/2. In that
situation, ω0 also enters the rewriting of the electron-phonon
interaction in terms of phonon creation (destruction) opera-
tors a†

�i (a�i ): λ
∑

�i x�i (n�i↑ + n�i↓ − 1) = g
∑

�i (a�i + a†
�i ) (n�i↑ +

n�i↓ − 1), with g = λ/
√

2ω0, where ω0 = √
2A. To make a

comparison with previous work on the conventional Holstein
model, we then choose a commonly used value of coupling g,
keep B fixed to a small value, and vary A to explore different
depths of the potential wells. The values of A are chosen to
keep ω0 = √

2A and λ = g
√

2ω0 of order unity, in the range
of values that are typically used for the conventional Holstein
model. Results corresponding to this choice of parameters will
be presented in Sec. III.

However, although analogous values of the e-ph coupling
and phonon frequency are used in this comparison, the anhar-
monic form of the full phonon potential leads to displacements
which are different in magnitude from the simplest harmonic
situation. One can ensure that the coupling to the electrons,
which combines λ and xi, is equivalent in magnitude to the
conventional Holstein case by choosing parameters A and B
which are tuned to keep the average phonon displacement
fixed at a certain value x0, where x0 is given by λ/ω2

0 in
the conventional Holstein case. This is accomplished through
the choice A = (4Bx3

0 − λ)/(2x0), a relation derived in Ap-
pendix B; results corresponding to this choice of parameters
will be presented in Sec. IV.

We employ two methods to study Eq. (1). The first is
determinant Quantum Monte Carlo (DQMC) [51]. In this
approach, the action for the phonon degrees of freedom
at inverse temperature (imaginary time) β is expressed as
a path integral over a space-imaginary time grid, and the
fermionic degrees of freedom, which appear only quadrati-
cally in Eq. (1), are integrated out analytically. The resulting
partition function consists of an integral over the phonon
field x�i(τ ) which is performed stochastically. The weight for
phonon field configurations takes the form of the square of
the determinant of a matrix (the fermionic traces over spin
up and down yield identical determinants) whose dimension
is the number of spatial sites N . Consequently, there is no
sign problem. However, a sweep through the space-time lat-
tice scales as N3β and possibly as N3β2, depending on the
degree to which numerical instabilities require more accurate
(numerically stable) treatment of the linear algebra.

DQMC studies of the conventional Holstein model date
back to the same period as the Hubbard model [14,16,52–
54], but precise quantitative values for Tcdw have emerged
only more recently, e.g., on square [23], honeycomb [24],
and cubic [28] lattices. The delay in computing the transi-
tion temperature originated partly because of the quantum
simulation community’s focus instead on electron-electron
interactions as driving exotic superconductivity in cuprates
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but also because of the significant computational challenge of
very long autocorrelation times. In DQMC simulations of the
Hubbard model, updates of the Hubbard-Stratonovich field
at a single space-time point decorrelate very rapidly (a few
sweeps of the lattice). However, in DQMC for the Holstein
model, autocorrelation times are instead often hundreds or
thousands of sweeps.

This bottleneck has led to the development of QMC meth-
ods for electron-phonon Hamiltonians based on a Langevin
update of the entire space-time lattice [28,55–58]. Such ap-
proaches can be formulated in a way which scales linearly
in N (albeit with a smaller step size for each move than
in DQMC) via the replacement of the determinant by an
integration over a pseudofermion field. Equally important to
this linear scaling, Fourier acceleration methods [55,59] can
be employed to reduce autocorrelation times dramatically.
Quantitative details of DQMC and Langevin methods are
discussed in Appendix C. Alternate methods to address long
autocorrelation times use machine learning approaches [60]
and Wang-Landau sampling [61].

We employ both the DQMC and Langevin methods here.
Most of the simulations were performed with DQMC, and
the results presented here were obtained with this method
unless otherwise indicated in the figures. In certain key cases,
results are confirmed by comparing DQMC and Langevin
simulations.

The simplest observable we study is the density, n =∑
�i〈n�iσ 〉/L2, and its behavior as a function of μ. A plateau in

n(μ) signals a vanishing compressibility, κ = ∂n/∂μ, and the
presence of a charge gap 	. As noted earlier, the PHS form
of the Hamiltonian ensures half filling n = 1 corresponds to
μ = 0. This is the optimal density for a CDW phase since
it allows precise alternation of doubly occupied and empty
sites.

We also examine other local quantities such as the average
value of the phonon displacement 〈x�i〉, the double occupancy
D = 〈n�i↑n�i↓〉, and the x component of the kinetic energy K =
〈c†

�i,σ c�i+x̂,σ
+ H.c.〉.

To characterize further the presence of a (long-range)
CDW phase, we study the charge structure factor, the Fourier
transform at momentum (π, π ) of the density-density corre-
lation function,

Scdw = 1

N

∑
�i,�j

〈 n�i n�i+�j 〉(−1) jx+ jy . (2)

Here, n�i = n�i↑ + n�i↓ is the number of fermions on site �i. In a
phase with short-range order, 〈 n�i n�i+�j 〉 will decay rapidly to

zero as the separation | �j| increases. Thus, in the sum over all
sites �i and separations �j in Eq. (2), the only sizable contribu-
tions come from small separations �j, and the double sum is of
order N . The division by N then implies Scdw ∼ O(1), i.e., is
independent of lattice size. In a phase with long-range order,
on the other hand, the double sum is O(N2), and Scdw ∼ O(N )
(i.e., is extensive) after normalization. The optimal ordering
vector �q for a half-filled square lattice is at �q = (π, π ) owing
to the perfect nesting at this momentum. Incommensurate
order at �q 	= (π, π ) is possible upon doping, but we do not
see evidence of it here.

FIG. 1. Density n as a function of chemical potential μ for g = 1,
B = 0.01, and A = 0.2. λ = √

2ω0g, with ω0 = √
2A. At high tem-

perature T , n deviates immediately from half filling as μ is changed
from μ = 0. However, as T decreases, a plateau in n(μ) develops: the
density is frozen at half filling until |μ| exceeds a critical threshold,
half the single-particle gap 	. This gap formation around β 
 3 is
an indication of the entry into the ordered CDW phase at low T .
The simulations were performed only for μ � 0 since the system is
particle-hole symmetric.

III. SIMULATIONS FOR CANONICAL PARAMETERS

We first show results for values of Hamiltonian parame-
ters similar to those used in past studies of the conventional
Holstein Hamiltonian in order to facilitate a comparison of
our results with those in the literature. Specifically, we fix
the electron-phonon coupling g

∑
�i (a�i + a†

�i ) (n�i↑ + n�i↓ − 1)
at g = 1 and pick A = 0.1, 0.2, 0.5. These values correspond
to quadratic potential curvatures ω2

0/2 with ω0 = √
2A =

0.44, 0.63, 1.00, similar to the commonly used values ω0 =
0.5–2.0 [19,22–28,40,41]. When expressed in terms of a
coupling of fermionic density to lattice displacement, λ =√

2ω0 g = 0.94, 1.12, 1.41, again in the usual range of λ ∼ 1.

A. Local observables

Phases with long-range order are typically characterized
by gaps in their single-particle excitation spectra. As noted
earlier, such gaps are most simply revealed via a vanish-
ing of the compressibility κ = ∂n/∂μ, i.e., by a plateau in
a plot of n versus μ. In Fig. 1 we fix A = 0.2, B = 0.01,
and g = 1. At high temperatures the compressibility at half
filling (μ = 0) is finite. However, when T � t/3, the slope
of n(μ = 0) becomes small. At T = t/5, n remains fixed at
n ∼ 1 until μ exceeds μ ∼ 2t , indicating a CDW gap 	 ∼ 4t .
The nonmonotonic evolution of the compressibility in Fig. 1
can be understood by the fact that, in addition to the nontrivial
physics of CDW formation which causes κ ∼ 0 at low T , in
the limit of very high temperature the compressibility must
also become small, i.e., κ ∼ 1/T .

Figure 2 generalizes Fig. 1 to several distinct values of A.
As explained before, for each A, the electron-phonon coupling
is chosen to mimic the procedure in the usual Holstein model,
namely, by identifying the frequency corresponding to the
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FIG. 2. Density n as a function of chemical potential μ for g = 1,
B = 0.01, and several values of A with λ = √

2ω0g and ω0 = √
2A.

β is chosen so that n(μ) no longer changes with further lowering of
the temperature, allowing the simulation to pick up only ground state
properties. (See also Fig. 6.) We observe a decrease in the charge gap
as A decreases from 0.5 to 0.1. For the A = 0.5 case, a comparison
of results for L = 8 and L = 10 shows that the width of the gap does
not change significantly with size.

curvature, ω0 = √
2A, and then determining the electron-

phonon coupling λ = √
2ω0 g with g fixed at g = 1. Figure 2

allows us to assess how the single-particle gap 	 is affected
by the (negative) quadratic phonon curvature. We find that
	 increases with increasing A. We will return to this point
in discussing the effect of varying A on the CDW transition
temperature.

We comment that for A = 0.5, one can see additional steps
in n above half filling. For L = 8 (N = 64), they occur at
integer densities corresponding to even numbers of particles
N↑ + N↓ = 66, 68, . . . on the lattice and reflect the tendency
to add particles in ↑↓ pairs due to the attractive interaction
mediated by the phonons. Similar steps are evident for L =
10. This is an effect seen also in QMC simulations of the
conventional Holstein model.

The double occupancy D is given in Fig. 3 for two val-
ues of A and different lattice sizes L = 6, 8, 10. D evolves
rapidly from its high temperature (uncorrelated) value D =
〈n�i↑n�i↓〉 ∼ 〈n�i↑〉 〈n�i↓〉 ∼ 1/4 as T decreases, reflecting the fact
that pair formation precedes the ordering of pairs into a CDW
pattern. The weak feature in D at β ∼ 2 will be seen to
coincide with CDW formation.

A final local observable is the kinetic energy K , given in
Fig. 4. K first evolves from its particle-hole-symmetric high-
temperature limit K = 0 to negative values as lower-energy
states dominate. This steady decrease is interrupted by upturns
in K (decreases in the magnitude of hopping). These local
maxima correlate with the CDW ordering transitions (see
below).

B. Long-range charge order

Two final observables directly probe charge order. The
first, shown in the top panel of Fig. 5, is the real-space

FIG. 3. The double occupancy D as a function of β for B = 0.01,
μ = 0, g = 1, different sizes L, and two different choices of A:
A = 0.1 (open symbols and dashed lines) and A = 0.2 (solid symbols
and solid lines). λ = √

2ω0g, with ω0 = √
2A. D saturates to a larger

value and at a higher temperature for A = 0.2 compared to A = 0.1.

density-density correlation function 〈n�i n�i+�j〉. At β = 1 it dif-
fers from its λ = 0 values 〈n�i n�i+�j〉 = 〈n�i〉 〈n�i+�j〉 = 1 only

on site, �i = �j. That is, pairs have formed locally but have
not yet ordered between different sites. However, at β = 4
the oscillating and nondecaying pattern indicates long-range
CDW formation. Figure 6 exhibits the Fourier transform of
Eq. (2), i.e., the structure factor Scdw. An additional normal-
ization to N = L2 is performed, so that Scdw/N ∝ 1/N at small

FIG. 4. K , the x component of kinetic energy, as a function of in-
verse temperature for different values of A, A = 0.1, 0.2, and 0.5, and
different sizes L = 6, 8, and 10. All data have B = 0.01, μ = 0, and
g = 1. λ = √

2ω0g, with ω0 = √
2A. Red circles show L = 10, green

squares show L = 8, and blue triangles show L = 6. The lines show
the average over the different lattice sizes at each point. Because
of particle-hole symmetry, the high-temperature (small-β) value of
K vanishes: The noninteracting energy levels ε(k) are symmetric
around ε = 0, and at high T , all levels are occupied equally. As β

increases, the ε < 0 states are preferentially occupied, and K < 0.
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FIG. 5. Density-density 〈n�in�i+�j〉 and phonon displacement
〈x�ix�i+�j〉 correlators along the side of the square lattice at high (β = 1)
and low (β = 4) temperatures at μ = 0 (half filling). As β increases,
the system goes from an unordered phase to a charge density wave
phase where an order develops in both the charge density and phonon
displacements. One should notice that, for �j = �0, due to the double-
well potential, 〈x�ix�i〉 is sizable even in the high-temperature phase.

β, and Scdw/N ∝ 1 at large β. An abrupt change indicates the
CDW transition. The invariance of the low-T value across
different lattice sizes is another indication the order is long
range.

The positions of these steps are close to the locations of
the local minima in the absolute value of the kinetic energy
K in Fig. 4. We interpret this to indicate that the preferential
occupation of bands with ε(k) < 0, which occurs even in the
noninteracting limit as T is lowered, gets interrupted by the
CDW formation.

FIG. 6. Evolution of the charge structure factor Scdw with in-
verse temperature. Here, B = 0.01, μ = 0, and g = 1. From left to
right, we have A = 0.5, A = 0.2, and A = 0.1 with corresponding
ω0 = √

2A and λ = √
2ω0g. As A increases, the structure factor

Scdw saturates at a larger value, and the transition occurs at a larger
temperature.

The bottom panel of Fig. 5 indicates that the alternating
pattern in the fermionic density is accompanied by an alter-
nating pattern in the phonon displacements.

The key features of Fig. 6, however, are the high val-
ues of the transition temperatures Tcdw for the larger values
of A where the double-well phonon potential energy favors
nonzero displacements. Typical values of Tcdw in the conven-
tional Holstein model are in the range Tcdw/t ∼ 0.2–0.3 for
analogous choices of g and ω0 [25]. In the next section, we
verify that these high Tcdw persist even when the product of the
electron-phonon coupling and typical phonon displacements
are restricted to be the same as in the conventional Holstein
model.

We conclude this discussion by presenting a scaling anal-
ysis to determine Tcdw more precisely. When normalized by
N−1 = L−2, a lattice-size-independent structure factor pro-
vides evidence for ground state long-range order, as already
seen in Fig. 6. The temperature at which this order first occurs
can be determined by examining L−γ /νScdw. The theory of
finite-size scaling predicts that curves of L−γ /νScdw as func-
tions of T (or β) for different lattice sizes should all cross
at one point, thus yielding the value of Tcdw. Here, in the
Holstein model on a square lattice, the transition is in the
two-dimensional (2D) Ising universality class with γ /ν =
7/4, simplifying the analysis. Figure 7 shows the result for
the two cases with A = 0.1 (top) and A = 0.5 (bottom). The
crossing is at Tcdw = 0.29 ± 0.02 (βcdw = 3.5 ± 0.2) for A =
0.1 and as high as Tcdw = 1.8 ± 0.2 (βcdw = 0.56 ± 0.06) for
A = 0.5.

We also demonstrate that the two computational methods,
DQMC and Langevin, give consistent results by comparing
results for L = 8 in the insets of Fig. 7.

IV. SIMULATIONS AT FIXED AVERAGE
PHONON DISPLACEMENT

In the preceding section we reported values for Tcdw/t
which exceed by a factor of 2 or 3 those obtained over a
range of values of electron-phonon couplings λ and phonon
frequencies ω0 previously reported for the conventional Hol-
stein Hamiltonian.

These results are already significant because the existence
of a maximal Tcdw/t at intermediate λ and ω0 suggests a
fundamental limit to the CDW transition temperature in the
conventional Holstein model. However, one could still ask
whether the high critical transition temperatures of Fig. 6
are associated with anomalously large phonon displacements
or some related unphysical parameter choice. In this sec-
tion we reproduce many of the preceding results tuning the
anharmonic potential (that is, A and B) to keep fixed phonon
displacement. More specifically, we show in Appendix B that
the choice

A = 4Bx3
0 − λ

2x0
(3)

keeps 〈x〉 = x0. Thus, when we vary A, we do so with an
accompanying change in B to fix the mean phonon displace-
ment. We choose to compare our results to the conventional
Holstein model with λ = 2 and ω0 = 1, for which x0 = 〈x〉 =
λ/ω2

0 = 2. In addition, we use the same value of λ = 2 in
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FIG. 7. Scaling analysis of the charge structure factor for B =
0.01, g = 1, μ = 0, and A = 0.1 (top) or A = 0.5 (bottom) with
corresponding ω0 = √

2A and λ = √
2ω0g. When Scdw is normalized

by Lγ /ν with γ /ν = 7/4, the 2D Ising values, a crossing that is
a function of inverse temperature β occurs at the critical point.
The top panel shows the A = 0.1 case for which we observe the
crossing around βcdw = 3.5 ± 0.2. In the bottom panel, A = 0.5, and
βcdw = 0.56 ± 0.06. The insets show a comparison between results
obtained with DQMC and Langevin methods for L = 8 in the critical
region.

both models to keep the products λx similar. We study cases
with B = 0.1 and B = 0.2, which give A = 0.3 and A = 1.1,
respectively.

A. Local observables

To ensure the observation of the high CDW transition
temperatures reported in the preceding section is robust, we
focus here on measurements of long-range order which more
precisely determine Tcdw. Nevertheless, it is useful to examine
one local measurement, the kinetic energy, since its nonmono-
tonic behavior was seen earlier to provide an important initial
indication of the onset of the insulating CDW phase. Figure 8
exhibits this decrease in the magnitude of K in the vicinity of
the CDW ordering transition.

FIG. 8. Kinetic energy as a function of β. The nonmonotonic
behavior of the kinetic energy reflects the development of charge
correlations. Parameters are A = 0.3, B = 0.1, and λ = 2 and were
chosen to obtain a phonon field x0 = 2.

B. Long-range charge order

Figure 9 shows a finite-size scaling crossing plot for these
“fair comparisons” in which the phonon displacement is re-
stricted to be the same as for the conventional Holstein model.
We find βcdw ∼ 3.25 (Tcdw ∼ 0.31), which is higher than the
transition temperature of the Holstein model on a half-filled
square lattice with λ = 2, ω0 = 1 [26]. Choosing A = 1.1
and B = 0.2 and keeping λ = 2, ω0 = 1, and x0 = 2, we in-
crease the transition temperature to βcdw = 2.5. This shows
that for the same fixed average value of lattice displace-
ment x0, we obtain higher critical temperatures by increasing
A and B. Furthermore, as noted earlier, Tcdw as a function

FIG. 9. Langevin data for the rescaled structure factor ScdwL−7/4

for (a) A = 0.3, B = 0.1, and λ = 2 and (b) A = 1.1, B = 0.2, and
λ = 2. Both cases correspond to a phonon field x0 = 2. A cross-
ing at βcdw ∼ 3.25 in (a) gives the position of the CDW transition
for A = 0.3 and B = 0.1, whereas the transition is shifted towards
βcdw ∼ 2.5 for A = 1.1 and B = 0.2 in (b). One should notice that
our simulations are limited to L = 10 for the second case.
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of λ in the Holstein model is nonmonotonic, with a maxi-
mum Tcdw ∼ 0.25 at dimensionless electron-phonon coupling
strength λD ∼ 0.4 when ω0 = 1 [26]. Meanwhile, the transi-
tion temperature does not depend on ω0 sensitively as long
as the effective attraction in the Holstein model U = −λ2/ω2

0
is fixed [58]. The large Tcdw ∼ 2 shown in Fig. 7 (bottom),
much higher than the maximum Tcdw we can achieve in the
pure Holstein model, indicates that the Holstein model with
anharmonic potential we study here significantly increases the
CDW phase transition temperature.

V. CONCLUSIONS

In this paper we have used determinant Quantum Monte
Carlo and Langevin simulations to examine the properties of
a square lattice Holstein model with an anharmonic phonon
potential. This potential has an intrinsic double-well struc-
ture favoring nonzero phonon fields and, consequently, empty
and doubly occupied sites. Unlike most previous extensions
of the Holstein model to include anharmonicity, our results
show a marked increase in the CDW transition temperatures,
from Tcdw ∼ t/6–t/4 for the conventional Holstein model to
Tcdw ∼ t/2–t . Our result is not a consequence of a trivial
rescaling of Tcdw resulting from larger phonon displacements;
we demonstrated this by choosing parameter sets in which the
average phonon displacement is similar to those in the conven-
tional Holstein model. In any case, in the Holstein-Hubbard
model, Tcdw has a maximum that is a function of electron-
phonon coupling, phonon frequency, and the resulting phonon
displacement, which is well below the transition temperatures
found here.

It would be interesting to explore superconducting cor-
relations in this model. One expects the CDW and super-
conductivity to be competitive, so that the emergence of
superconductivity will surely require doping away from half
filling. QMC is especially useful here, especially given the
uncertainty in how to include anharmonicity [46] in ana-
lytic approaches like Migdal-Eliashberg theory [62,63], which
have been central to the understanding of the conventional
Holstein Hamiltonian [29,42,64,65]. Progress has been made
in that method by generalizing the single-phonon spectral
density [46].

Although we have mainly characterized our CDW phase
as one in which the electron density is modulated, there is
an accompanying alternation of phonon coordinates in our
model, as seen in the bottom panel of Fig. 5. Since our phonon
degrees of freedom are not directly coupled to each other,
this oscillating structure forms via coupling to the conduction
electrons. This effect is similar to that occurring in the dense
limit of the Kondo lattice model [66–68], in which local
moments which have no direct coupling can, nevertheless,
order antiferromagnetically via an indirect Ruderman-Kittel-
Kasuya-Yosida [69–71] interaction mediated by conduction
electrons.

A potentially interesting application of the use of QMC
to compute the properties of anharmonic electron-phonon
systems is to study the physics of “rattlers” for high-figure-
of-merit thermoelectric materials, specifically the thermal
conductivity [72,73].

ACKNOWLEDGMENTS

The work of R.T.S. was supported by Grant No. DE-
SC0014671 funded by the U.S. Department of Energy, Office
of Science. C.K.’s work was supported by the University of
California, Davis, Physics REU program under NSF Grant
No. PHY2150515.

APPENDIX A: PARTICLE-HOLE SYMMETRY IN
THE PRESENCE OF AN ANHARMONIC POTENTIAL

There are two related ways to discuss the particle-hole
symmetry of the model. As the one-particle band due to the
kinetic term is symmetric around μ = 0, the first way is to
consider a single-site model (that is, t = 0) with the phonon
potential of Eq. (1),

V (x) = −Ax2 + Bx4 + λx(n − 1) − μn, (A1)

and to show it has a similar particle-hole symmetry.
The average density is given by

〈n↑〉 = Z−1
1∑

n↑=0

1∑
n↓=0

∫
dx n↑ e−βV (x),

Z =
1∑

n↑=0

1∑
n↓=0

∫
dx e−βV (x). (A2)

If we introduce the notation I (n↑, n↓) to denote the integral
for a specific choice of number operators, we can rewrite
Eq. (A2) as

〈n↑〉 = I (1, 0) + I (1, 1)

I (0, 0) + 2I (1, 0) + I (1, 1)
, (A3)

where the denominator is the partition function. Rearrang-
ing this shows that the half-filling condition 〈n↑〉 = 1/2 is
I (0, 0) = I (1, 1), which can be true only when μ = 0. When
μ = 0, the curves of V (x) for n = 0 and n = 2 are reflections
of each other in the y axis, thus giving us symmetry between
the “hole” and “particle” curves.

A more formal analysis is to apply a particle-hole transfor-
mation (PHT), d�iσ = (−1)ix+iy c†

�iσ , on the Hamiltonian. This
choice of alternating signs between different sublattices sites
ensures that the electron hopping term remains the same under
the PHT. Meanwhile, the density operator n�iσ transforms into
1 − n�iσ . If we also introduce y�i = −x�i, we see that the original
Hamiltonian is recovered except for a change in sign of the
chemical potential μ. This demonstrates that density of the
system obeys n(μ) = 2 − n(−μ). From this, it is obvious that
μ = 0 yields half filling n = 〈n�i↑ + n�i↓〉 = 1.

APPENDIX B: RELATION BETWEEN A AND B TO FIX x0

In order to compare the results of simulations of the anhar-
monic model to the original Holstein Hamiltonian, setting the
e-ph coupling λ and phonon frequency ω0 (with ω0 = √

2A)
to be the same, as done in Sec. III, is not sufficient. The reason
is that the electrons move in an energy landscape given by the
product of λ and phonon displacement. A comparison which
ensures equivalence of the energy landscape is obtained by
requiring that λx0 be the same in the double-well potential as
in the conventional Holstein model. Here, x0 is the position of
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FIG. 10. Plots of V (x) = −Ax2 + Bx4+λx(n − 1) for n = 0 and
n = 2 for (A, B) = (0.1, 0.01) (red solid lines), (0.2, 0.01) (blue
dashed lines), and (0.5, 0.01) (green dot-dashed lines). Here, λ =√

2ω0g, where ω0 = √
2A and g = 1.

the minima in the phonon potential corresponding to empty
(n = 0) and doubly occupied (n = 2) sites.

In the conventional Holstein Hamiltonian, at half filling
(μ = 0)

V = 1
2ω2

0x2 + λx(n − 1), (B1)

and the minima are at x0 = ±λ/ω2
0 for n = 0 and n = 2,

respectively. It is straightforward to determine A and B in the
anharmonic double-well potential to give the same x0. The
phonon potential is given by Eq. (A1) with μ = 0 at half
filling. The minimum of the n = 0 curve is at positive x0 (the
minimum for n = 2 is at −x0) and is given by the condition

−2Ax0 + 4Bx3
0 − λ = 0. (B2)

Therefore, to keep the locations of the minima fixed, A and B
must satisfy

A = 4Bx3
0 − λ

2x0
. (B3)

In addition, one should use the same value of λ in both models
so that the product λx0 is the same. Thus, in Sec. IV we
proceed by fixing a (small) B and using Eq. (B3) to deter-
mine A. Commonly used parameters are, for example, λ = 2
and ω0 = 1, which yield x0 = 2. We used these parameters
for comparison. We note that the height of the barrier at x0

between the minima is given by Ax2
0 + Bx4

0 − λx0.

APPENDIX C: COMPARISON OF DQMC
AND LANGEVIN METHODS

The determinant quantum Monte Carlo (DQMC) and
Langevin QMC algorithms differ in how they sample the
fermion determinant. The partition function of the system is
given by

Z = Tre−βH (C1)

= Tre−	τH e−	τH · · · e−	τH , (C2)

FIG. 11. Plots of V (x) = −Ax2 + Bx4+λx(n − 1) for n = 0 and
n = 2 for (A, B) = (0.3, 0.1) (red solid lines) and (1.1, 0.2) (blue
dashed lines). Here, λ = 2, and ω0 = 1, giving x0 = 2 for both pa-
rameter sets.

where H is given by Eq. (1) and 	τ is the imaginary time
step, β ≡ Lτ	τ . Complete sets of phonon coherent states
{x�i,τ } are inserted at each imaginary time slice, which then
allows us to express the trace over the phonon operators as a
path integral. In addition, since the fermion operators appear
only in quadratic form, they can be traced out, leading to the
well-known expression [51]

Z =
∫

Dx�i,τ e−Sph [det M({x�i,τ })]2, (C3)

where the “phonon action” is

Sph = 	τ

2

⎡
⎣ω2

∑
�i

x2
�i,τ +

∑
�i

(
x�i,τ+1 − x�i,τ

	τ

)2
⎤
⎦. (C4)

In DQMC, the statistical weight, the integrand in Eq. (C3),
is sampled directly by using the Metropolis update scheme:
every site is visited, and an attempt is made to change the
phonon variable there. The attempted change is accepted or
rejected using the Metropolis criterion [74]. In the Langevin
approach [55], the partition function is first written as

Z =
∫

Dx�i,τ e−S, (C5)

where

S = Sph − ln(det M )2. (C6)

Now the phonon field {x�i,τ } is evolved using the Langevin
equation, which, in the simplest Euler discretized time form,
is given by [55]

x�i,τ,t+dt = x�i,τ,t − dt
∂S

∂x�i,τ,t
+

√
2 dt η�i,τ,t , (C7)

where t is the Langevin time and η is a Gaussian distributed
stochastic variable. In practice we use higher-order Runge-
Kutta discretization, and because the entire field is updated
in one time step, we also use Fourier acceleration [55], which
greatly reduces critical slowing down, speeding up the conver-
gence of configurations to equilibrium. Fourier acceleration
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cannot be used with DQMC because the field is updated one
site at a time.

For more technical details, see Refs. [51,75,76] for DQMC
and Ref. [55] for Langevin.

APPENDIX D: VISUALIZATION OF ANHARMONIC
POTENTIALS

Throughout this paper, we discussed results from five dif-
ferent choices of parameters A and B of the anharmonic

potential given in Eq. (A1) at μ = 0. The first three choices,
for commonly used parameters, are shown in Fig. 10. For
visual simplicity, we show only the n = 0 and n = 2 curves
for each parameter set.

We also show in Fig. 11 the two potentials for the pa-
rameters that fix the average phonon displacement. Again,
only the n = 0 and n = 2 curves are shown for each param-
eter set. The minima are aligned, showing that x0 is fixed
at 2.
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