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Bilayer Hubbard model: Analysis based on the fermionic sign problem
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The bilayer Hubbard model describes the antiferromagnet to spin singlet transition and, potentially, aspects
of the physics of unconventional superconductors. Despite these important applications, significant aspects of
its phase diagram in the interplane hopping ¢, versus on-site interaction U parameter space, at half filling, are
largely in disagreement. Here we provide an analysis making use of the average sign of weights over the course
of the importance sampling in quantum Monte Carlo simulations to resolve several central open questions.
Specifically, this metric of the weights clarifies the finite-sized metallic regimes at small U. Furthermore, at
strong interactions, it points to the existence of a crossover from a correlated to uncorrelated band insulator not
yet explored in a variety of existing, unbiased numerical methods. Our paper demonstrates the versatility of using
properties of the weights in quantum Monte Carlo simulations to reveal important physical characteristics of the

models under study.
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I. INTRODUCTION

In the wake of the discovery of high-temperature super-
conductors, and the unlikeliness of their description within
a conventional electron-phonon mechanism [1], strongly in-
teracting models that could explain the physical mechanisms
occurring in cuprates had a surge of investigation. Among
these, multilayer geometries such as the bilayer Heisenberg
model [2,3] are essential to understanding the robust (i.e.,
finite temperature) antiferromagnetic ordering observed in un-
doped materials. The bilayer #-J [4,5] and Hubbard models
[6-8] allowed the study of the interplay of itinerant elec-
trons and (short-ranged) magnetic ordering in the presence
of hole doping and hence spin fluctuation mediated pairing.
In the latter, original studies have pointed out the possibility
of a nodeless d-wave pairing, where the gap has opposite
signs in the bonding and antibonding Fermi surfaces, and that
interplane hybridization weakens in-plane superconducting
correlations.

Due to the presence of the sign problem [9-11] in the
doped regime [12], investigations using quantum Monte Carlo
(QMC) simulations had most success studying the half-filled
case [13,14], which allows the understanding of how global
long-range magnetic ordering takes place at sufficiently small
interplane hybridizations. More recently, large-scale ground-
state QMC calculations [15] have clarified the absence of
metallicity at finite values of the interactions, as initially
suggested to occur [13,16—19], and further corroborated the
existence of a magnetic transition in the 3D Heisenberg
universality class as the interplane hybridization was in-
creased, similar to that of the bilayer Heisenberg model [20].
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Dynamical cluster approximation calculations have also
examined the possibility of the enhancement of superconduc-
tivity as one of the bands approaches the Lifshitz transition,
and its implications for heavily electron-doped FeSe-derived
superconductors [21].

In this paper, we revisit the phase diagram of the half-filled
bilayer Hubbard model using the finite-temperature determi-
nant quantum Monte Carlo (DQMC) method [22,23], with a
goal of establishing its different phase boundaries in a way
that takes the average sign of partial weights in the sampling as
a minimal correlator. This metric, recently used to understand
criticality in a variety of quantum models [24], further allows
one to unveil a subtle and often unappreciated crossover from
a correlated to uncorrelated band-insulating regime at large
interplane hybridizations.

II. MODEL

The Hamiltonian of an L x L bilayer reads

H=—tY (¢, +He) =1L (h,e4, +He)
(
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where 6’120 is the fermionic creation operator on site i of the

layer £ (£ = 0, 1) with spin o (¢ =1, |), and 7, is the cor-
responding number density operator; ¢ and ¢, quantify the
nearest-neighbor intra- and interplane hopping amplitudes,
while U is the strength of the local repulsive interactions
with chemical potential u controlling the electronic density
[Fig. 1(a)].

In the noninteracting limit (U = 0) at half filling (1 = 0),
the system undergoes a metal-to-band insulator transition as
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FIG. 1. (a) Schematic illustration of the Hamiltonian, with relevant parameters annotated. (b) The contour plot of the average spin-resolved
sign (S,) in the space of parameters (¢,, U); (c) the equivalent for the antiferromagnetic structure factor Sapy. All data are extracted at
temperatures 7'/t = 1/20 in a 12 x 12 bilayer. Markers along the U/t = 0 axis in (b) and (c) depict the values of 7, /¢ that result in a nesting
condition with a wave vector (;r, ) for this lattice size. Examples of such nestings are shown in (d) and (e) for ¢, /¢t = 1.73 and 3.0, respectively.
Lines in (b) and (c) depict the results of Ref. [15] marking the magnetic transition obtained via the scaling of the antiferromagnetic order

parameter at T = 0.

t; /t > 4, with a gap opening between the bonding (—) and an-
tibonding (+) bands, 8§(k) = —2t[cos(ky) + cos(ky)] £ 1,
whose size is t; — 4¢. In the opposite, strongly interacting,
case (U > t,t,), the Hamiltonian at © = 0 is equivalent to
the bilayer Heisenberg model [2,20], which displays a mag-
netic transition from an antiferromagnetic ordered bilayer to a
quantum disordered phase featuring interplane singlets. Map-
ping the spin exchange interactions J to the hopping energy
scales at this limit gives a critical hybridization #{ /t = 1.588
separating these two regimes.

For the generic U # 0 case, we solve Eq. (1) by making
use of DQMC, in which the introduction of a real-space
imaginary-time auxiliary field {s;; } decouples the interactions,
allowing the fermionic integration to be taken exactly. As a re-
sult, the partition function is written in terms of the product of
weights for each fermionic flavor o, Z =) [], wo({sir}),
where the field {s;;} is being summed. Instead of solving
for all configurations {s;; }, importance sampling is performed
while observing the convergence of physical observables. The
single, controllable approximation used is the imaginary-time
discretization At which we take as 0.1 throughout.

The form of the partition function reveals a peculiarity
of the method: the weights being summed are not positive-
definite. In fact, in a large class of problems of interest this
sign problem precludes the accurate computation of physical
quantities in the most interesting parts of their phase diagrams
[9,25]. At half filling, however, due to the bipartite structure of
the lattice, there is no sign problem [23]. That is, the product
of the signs of the weights in the Monte Carlo sampling is
positive regardless of the configuration {s;;} of the Hubbard-
Stratonovich (HS) field. However, even though the tofal sign
of the weights is always positive, the sign of individual ones
are not. Indeed, recent results have demonstrated that the
average sign of individual weights, (S,) = (sgn(w,)), are
directly related to the physics of the Hamiltonian under inves-
tigation, following scaling laws similar to those for physical
observables in the vicinity of quantum phase transitions [24].

III. THE SIGN PROBLEM PHASE DIAGRAM

We start by studying the sign phase diagram of the bilayer
Hubbard model in Fig. 1(b), focusing on the regime U < t.
Lobes where (S,) is close to 1 appear at small interaction
strengths, while in a broad region of parameters (S,) — 0.
Not coincidentally, the boundaries of such lobes in the
U/t — 0 limit match the loci where a perfect nesting of the
Fermi surfaces, sar (k + Q) = —¢; (k), occur in a finite lattice
[see Figs. 1(d) and 1(e) for two examples] when spanning
the interplane hybrization ¢, /¢ [15]. These lobes are finite-size
effects which vanish in the thermodynamic limit, where the
spacing between nesting conditions similarly vanishes—other
system sizes are shown in Appendix A. Moreover, the Q =
(T, ) nesting suggests that the system is unstable toward
antiferromagnetic order and ensuing Mott insulating behav-
ior is the most probable scenario, as further pointed out by
mean-field calculations [15]. The immediate conclusion is that
the regions at small U/t with (S,) >~ 1 identify the metallic
regime observed in finite lattices over a variety of numerical
methods [13,16-19].

Going beyond small interactions, studies that use (S,) to
track the phase transitions [24] have shown that the region
with a vanishing spin-resolved sign can be identified in related
models and when approaching the thermodynamic limit, with
either the magnetically ordered regime or the one yielding a
Mott insulator. This is the case for the SU(2) Hubbard model
in the honeycomb lattice, for example, where both phases are
known to concomitantly occur [26-28]. Here, in the SU(2)
bilayer Hubbard model, however, by overlaying in Fig. 1(b)
the accurate numerical results from Ref. [15] for the critical
interaction strength U.(¢, ) that leads to the onset of mag-
netism in the 7 — 0 limit, we demonstrate that (S,) — 0 is
not tracking the magnetic phase transition. Our results resolve
the transition (or crossover) it probes and, in doing so, provide
insight into the transition between uncorrelated and correlated
band insulating regimes.
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FIG. 2. [(a)—(d)] The single-particle excitation spectrum Ag(w) across a path connecting high-symmetry points (I' =X — M —T') in
the Brillouin zone for the indicated hybridization amplitudes In (a), #, /t = 1.5, and (d), ¢, /t = 4.0, the single-particle gap Ay, is marked,
exhibiting, respectively, a direct and indirect behavior, respectively. (f)—(h) Dynamical spin structure factor S(k, w) at different ¢, /¢ as marked,
with a momentum integrated version shown in (e). Data are obtained at temperatures 7'/t = 1/20 in an L = 12 bilayer with U/t = 10.

This becomes more evident if contrasting Figs. 1(b)
and 1(c). By plotting the antiferromagnetic structure fac-
tor Sapm = (1/2L%) 3=, (=1 ((Aiy — i) )(Rjy — fijy)), in
arelatively large lattice (L = 12) [Fig. 1(c)], the critical points
U, () systematically border the regime where Sapy is large.
The average spin-resolved sign, on the other hand, departs
from zero at larger interplane hybridizations [Fig. 1(b)]. In
particular, that the magnetic transition is not accompanied
by a Mott transition in the bilayer Hubbard model was ini-
tially shown within cluster dynamical mean-field (DMFT)
calculations [17], which demonstrated the existence of a
paramagnetic Mott insulator preceding the onset of a band
insulating state at larger 7, [29].

IV. THE MOTT INSULATOR-BAND INSULATOR
CROSSOVER

Differentiating between Mott and band insulators at suf-
ficiently large ¢, is challenging. This difficulty has been
illustrated not only in theoretical studies of model Hamilto-
nians but also in the experimental characterization of certain
transition-metal dichalcogenides [30], which exhibit a com-
petition of on-site Coulomb repulsion and interlayer hopping
in its layered structure. As both phases naturally manifest a
finite gap A, for single-particle excitations, either separating
the upper and lower Hubbard bands in the Mott phase or the
bonding and antibonding bands in the band insulating regime,
a useful distinguishing characteristic is provided by the trend
of Ay, with growing interplane hybridization [17] as well as
the direct or indirect nature (in momentum) of Agp.

To implement this approach, we start by reporting the
single-particle spectral function Ax(w) in Fig. 2, calculated
via the stochastic analytic continuation of imaginary-time de-
pendent QMC data [31],

ko= [ 12" 4w, @
7 1+ePo

where G(k,t) is the space Fourier transform of the
imaginary time (t) displaced Green’s function G(k, 7) =
(VriR.0 (r)\llj’g (0)), where the creation operator is given as
wio= (610.0, 511.0) with the creation operator of the electron
at unit cell r and sublattice 0, 1 with spin o.

By focusing on large interactions, U/t = 10, we notice
that at small 7, [r; < 2¢, see Fig. 2(a)], the single-particle
excitation bands display a direct gap at the X = (i, 0) point
of the Brillouin zone as in the single-layer Hubbard model,
whereas for larger interlayer hoppings (¢, = 2¢), the gap
becomes indirect, connecting the I'-M [(0,0)-(z, )] points
instead, Figs. 2(c) and 2(d). Moreover, for values of ¢, ~ 3¢,
the indirect gap reaches a minimum, whereupon increasing
hybridization leads to a larger Agp. This is summarized in
Fig. 3(b) for different system sizes—additional details in the
Ak (w) results are described in Appendix B and an indepen-
dent scheme (with similar results) that bypasses the analytic
continuation is given in Appendix C.

This analysis allows us to divide the dependence of Ag,
on the hybridization at fixed interaction strength in three
classifications: (i) a gap that is largely robust to the increase
of ¢, up until 7,/ ~1.5—2, (ii)) a decrease of the gap
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FIG. 3. (a) A cut along U/t = 10 of the spin-resolved average
sign (S,) with growing interplane hopping ¢, and various system
sizes. The inset highlights the significant drift in the upturn loca-
tion 7, /t of (S,) as one decreases the temperature 7 (or increases
the inverse temperature B = 1/7T) for an L = 12 bilayer. (b) The
corresponding single-particle gap Ag, extracted by the minimum
gap of single-particle excitations across the whole Brillouin zone, at
comparable system sizes; also shown the gap to spin excitations A,
finite once the AFM order is absent. This is also demonstrated by
the vanishing of the normalized (by the system size) AFM structure
factor, shown in (c), in the thermodynamic limit at 7, = 2.05(5)r—
see first vertical shaded region in (b). The second shaded region
at t; = 5.75(25)t describes the onset of Ay, ~ A, also seen in
the zoom-in of the saturation of (S,) in (d). Data are extracted at
temperatures 7'/t = 1/20.

with 7, as the hybridization approaches ¢, /¢ >~ 3, and (iii) a
growth of Ay, for values ¢, /t 2 3. The observed trend of the
gap dAg,/dt) < 0 (dAgy/dty > 0) was used before [17] in
cluster-DMFT results to discern the Mott (band-insulating)
phases. Consequently, the three regimes we describe can
be interpreted, respectively, as the antiferromagnetic Mott
insulator, paramagnetic Mott insulator [32], and band insula-
tor. Noticeably, quantitatively similar conclusions about the
gap change and the Mott-to-band insulator transition were
obtained in smaller clusters using dynamical cluster approxi-
mation [33], albeit at more modest interactions (U/t = 6).

V. CHARACTERIZING BAND INSULATORS

The classification of the onset of a band insulator via the
evolution of Ay, with 7, is, however, incomplete. It has been

argued that a true (or uncorrelated) band- insulator is charac-
terized by identical gaps for particle and spin excitations [34].
To verify this, we compute the dynamical spin structure factor,
S(k, w) via the inversion of the integral equation,

—Tw

A A d
Bk S0y = [ L. )

where x”(k, w) is the dynamical spin susceptibility, which
allows the extraction of S(k, w) = x"(k, w)/(1 — e~ ). Fig-
ures 2(f)-2(h) reports the dynamical spin structure factor
for a representative path in the Brillouin zone. A finite
spin gap A, appears at values 7, /t 2 2 at the M = (7, 7)
point, in agreement with the disappearance of antiferromag-
netic long-range order, as also seen in the 1/L extrapolation
of the normalized equal-time antiferromagnetic spin struc-
ture factor, Sapm = # Zi,j expf{i(rw, ) - (r; — r))}{(Aiy —
i, )4 — 1)) [Fig. 3(c)]. Larger interplane hybridizations
lead to a much reduced momentum dependence in S(k, w);
a momentum-integrated version is shown in Fig. 2(e), and a
compilation of the spin gap extracted from S(w) is presented
in Fig. 3(b). Both gaps, Ay, and A, acquire similar values
at ¢, /t = 5.8, thus marking the onset of the uncorrelated
band-insulating phase.

We are now in position to analyze how (S,) captures
different crossovers, as reported in Fig. 3(a). Despite not in-
significant system-size dependence, these data indicate that
the upturn of the average spin-resolved sign at sufficiently
low temperatures occurs close to the Mott insulator-band
insulator crossover at around ¢; =~ 3¢ [as originally seen in
Fig. 1(b)]. In turn, (S,) saturates at one precisely when the
uncorrelated band-insulating regime takes place. Figure 3(d)
shows a detailed zoom-in of this (S,) — 1 approach. Such
saturation is also seen in quantifiers of the typically sam-
pled fields in DQMC, e.g., the average Hamming distance
[35]—see Appendix F. Although a scaling analysis based on
the average sign of the weights (S,) [24] is elusive, likely
due to the absence of an intrinsic order parameter charac-
terizing either phase, other models where a band-insulating
phase takes place, as the square lattice ionic Hubbard model
[36—40], also exhibit a convergence of (S, ) toward one, as we
similarly observe here [11,24]. Further characterization of this
crossover is shown in Appendix E, which describes several
local spin correlators.

VI. SUMMARY AND OUTLOOK

By using a combination of quasiparticle excitation gaps
with the average sign of the weight of one fermionic flavor
(Sy) in the importance sampling of DQMC simulations, we
identified the different phases of the bilayer Hubbard model
at half filling. Beyond the clarification of the system size-
influenced metallic regimes at small interactions, one of our
main results using this tracker is the onset of an uncorrelated
band-insulating regime at large interplane hybridizations.
While this transition is likely a crossover, i.e., without an asso-
ciated order parameter, the saturation of (S, ) at one coincides
with the regime where spin and single-particle excitations
are comparable. As a result, in both uncorrelated phases
at finite lattices, metallic and band-insulating, (S,)— 1.
That (S) might signal transitions in model Hamiltonians is

125116-4



BILAYER HUBBARD MODEL: ANALYSIS BASED ON THE ...

PHYSICAL REVIEW B 106, 125116 (2022)

consistent with its role as a necessary ingredient to compute
any physical observable [23], thus inherently revealing details
of the physics at play. Moreover, for the specific case of the
crossover between band-insulating phases, it has the added
advantage that it does not require the quantification of, often
expensive, time-displaced correlation functions, neither ana-
Iytic continuation of the data.

A testament of the relevance of these results is provided
by experiments involving ultracold atoms trapped in optical
lattices, which have recently succeeded in emulating the bi-
layer Hubbard model [41,42], opening a further, and highly
controllable, realization for precision investigations of its dif-
ferent phases.

Going beyond half filling, our exploration of the sign
problem in this model may allow one to tackle the regime
which is mostly relevant to the doped cuprates, where bilayer
features have been observed [43] and numerically interpreted
[44], culminating in the investigation of the potential onset of
a finite-temperature superconducting transition governed by
a Kosterlitz-Thouless form. Such analysis has been recently
carried out for the case of a single layer [24]. Its extension
to a bilayer model might reveal the impact of the interplane
hybridization on the finite critical temperature 7, as well as
on the dominant pairing channel before this transition takes
place [45-48].
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APPENDIX A: LOCAL QUANTITIES AND DIFFERENT
SYSTEM SIZES

From the discussion presented in the main text, the loca-
tion of the system size-influenced metallic regions is already
evidenced by the regimes where the (S,) converges to one.
To make this connection clearer and observe how they extend
as the lattice size is reduced, we show in Figs. 4(a) and 4(c)
the sign phase diagram for L =4 and 8, respectively. The
lobe boundaries in the noninteracting limit are again given
by the values of 7, /¢ where a nesting condition occur, even
more clearly as the number of such matches is proportional to
the system size. A systematic shrinking of these regions takes
place with growing L.

While the weight of the configurations in the sampling
might initially be thought to be an artifact of the quan-
tum simulation algorithm, it directly captures the behavior
of physical observables, including the double occupancy,
() =1/ 2L%) > i{fiufyy). In an insulator-to-metal (metal-
to-insulator) transition, the double occupancy increases (de-

d(ny,)/dt,
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FIG. 4. [(a),(b)] The average spin-resolved sign (S, ) [derivative
of the double occupancy with respect to t,, d(fi;,)/dt,] on the T
versus U/t map for a 4 x 4 bilayer. (c) and (d) show the same for an
L = 8 lattice. As in Fig. 1, markers along the U/t = 0 axis denote
nesting conditions for the corresponding lattice size, and data are
extracted at temperature 7/t = 1/20.

creases) with changes in the parameter driving the evolution,
for example, the interplane hybridization. Figures 4(b) and
4(d) show that the derivative of the double occupancy with
respect to ¢, d(fiy})/dt,, reflects this prediction and identi-
fies the metallic region boundaries in a finite lattice, in direct
agreement with the average sign analysis.

APPENDIX B: QMC RESULTS: SPECTRAL FUNCTION
AND DOS

Following the discussion in the main text that establishes
that the magnetic transition is accompanied by a transition
from a direct-to-indirect gap of the single-particle excitations,
we display in Figs. 5(a)-5(d) the momentum-resolved Ax(w)
for a range of 7, values. To contrast these results, we fur-
ther show the full density of states, N(w) = >, Ax(®w) in
Figs. 5(e)-5(h).

For the spectral function, the change of the gap type, from
direct to indirect, is seen to happen at values ¢, /¢ = 2, with
adirect [(7, 0) — (r, 0)] gap giving way to [(7, ) — (0, 0)],
closely following the magnetic transition at U/t = 10 [15].
Deep in the nonmagnetic phase, the (7, ) contribution to
the excitations departs from the Fermi energy and thus be-
comes less relevant at low energies. In turn, the density of
states, which is always gapped when increasing the interplane
hoppings, displays a variety of incoherent peaks that are a
characteristic of the superposition of singlet-states formed
across the bilayer in the regime ¢, /¢ > 1. In the main text,
Fig. 3(b), the gaps were extracted via the energy difference
given by the location of the maximum values of the §-like
functions closest to the Fermi energy at w = 0.
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FIG. 5. The spectral function Ax(w) [(a)—(d)] and the single-
particle density of states N(w) [(e)-(h)] for various interplane
hoppings as marked. For values ¢, /t 2 2 the gap turns indirect, con-
necting the two bands at the conduction and valence bands at (7, )
and (0,0), respectively. The density of states at large ¢, /¢’s displays
a collection of features connected to the incoherent superposition of
interplane singlet-states. Data is obtained for U/t = 10, T/t = 1/20
in an L = 12 bilayer.

APPENDIX C: DIRECTLY EXTRACTING
THE SINGLE-PARTICLE GAP

In the main text, we make use of stochastic analytic con-
tinuation to invert the integral equation [Eq. (2)] that allows
one to retrieve the spectral function Ax(w) (and consequently
the single-particle gap) via the examination of the smallest
gap across the allowed momentum points, Ag,(k). Here, we
employ a direct approach that complements this procedure.
The single-particle gap can be similarly obtained by notic-
ing that G(k, ) o e¥*+®7_ for imaginary-time 7 sufficiently
away from its limits at T = 0 and 7 = §. In particular, for
the case of t < 8/2 (v > B/2), one obtains the gap w,
(w-) above (below) the Fermi energy at u = 0. As a result,
the single-particle gap is extracted as Ay, = ming[w, (k)] +
ming[w_(k)]. Figures 6(a) and 6(b) exemplify the T depen-
dence of the imaginary-time displaced Green’s functions at
two momentum points, k = (0, 0) and (, ), respectively.

k = [0,0]

1'2-|(a)| A T]
- 0.8 ; -5
i) g T
5 0.4F L

0.0h —

0 10
5t

ty/t

FIG. 6. [(a), (b)] The imaginary-time (t) dependent Green’s
function G(k, t) at U/t = 10, ¢, /t = 4.5 for L = 12. Inset: G(k, 7)
on semilogarithmic scales. (c) The single-particle gap A, extracted
by the minimum gap of fitting InG(k, ) ~ £w, (k)T across the
whole Brillouin zone (see text).

A least-squares fitting of the exponential form close to its
ends reveals the gap sizes, and also an indirect gap between
these two momenta forms at values of ¢, /t = 4.5, as reported
in the main text. Compiling these results across a range of
interplane hybridization values at U/t = 10 [Fig. 6(c)] leads
to a Ay, largely consistent with the one originally presented
in Fig. 4(b), with a larger size dependence, however. The
minimum at ¢, /¢ >~ 3 still locates the transition from a para-
magnetic Mott insulator to the band-insulating regime.

APPENDIX D: ANALYSIS OF A POSSIBLE
BOND-ORDER WAVE

The energy gaps displayed in Fig. 3(b) in the main text
gave us indications for the existence of multiple phases with
growing ¢, . In particular, a possible candidate to explain the
intervening regime in between the AFM Mott insulator and
the band-insulator at large interplane hybridization is a rung
bond-ordered wave (BOW). To account for this possibility, we
calculate the BOW order parameter,

AN — A Ao
(Bi) = Z(C,‘oq%a + ¢i15Cio0 )
o

v

(DD

where, in the notation presented in the main text, the
second subindex refers to the fermionic operator layer.
Verification of the existence of long-range order is accom-
plished via monitoring the BOW structure factor, Spow =
(1/L2) Zij e—ik.(ri—r,)(éiéj)'

In Fig. 7, the structure factors are shown as a function
of the interlayer hopping for two system sizes, as obtained
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FIG. 7. BOW structure factor Sgow as a function of the interlayer
hopping ¢, /t for two system sizes at U/t = 10 and T/t = 1/20. Dif-
ferent symmetry channels are displayed, (a) k = [x, 7], (b) [, 0],
and (c) [0,0]. The absence of any significative size dependence indi-
cates there is no long-range bond order.

for a system with U/t = 10. In all channels we investigate,
k = [, 7], [0, ] or [0,0], no apparent size dependence of
the BOW structure factor can be observed for a large range
of interplane hybridizations, suggesting the absence of such
ordering in the thermodynamic limit.

APPENDIX E: LOCAL CORRELATORS

While BOW rung correlations are short-ranged, other local
correlators aid in drawing a picture of the low-energy physics
as the interplane hopping is increased. The density-density
correlations within a unit cell [Fig. 8(a)] start at the value
0.25 when the planes are uncoupled (#, = 0) and evolve such
that equal-spin correlations are quickly suppressed whereas
opposite spin ones are enhanced until 7, /¢ >~ 2.1. Accompa-
nied by the large negative interplane, intra-unit cell spin-spin
correlations [Fig. 8(c)], these point to a robust interplane
singlet formation in this regime, as a local signature of the
overall antiferromagnetic state. Past this threshold in the hy-
bridization ¢, (S‘; OS‘i 1) decreases in magnitude, signaling the
long-range order is absent and interplane singlets in different
unit cells become more and more independent. This can be
seen explicitly in Figs. 8(b) and 8(d), which report the inter-
plane two-point correlations (density and spin, respectively)
for nearest-neighbor unit cells: they asymptotically approach

1+ 1,0

t o
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FIG. 8. Top: Cartoon depicting the different sites (i,/) where
the two-point correlations are computed as displayed in the lower
panels. Bottom: The interlayer (a), (b) density-density correlations
for same (0 = ¢’) and different spin components (o # ¢’ = —0)
within the same unit cell (a) and nearest-neighbor unit cells (b).
(c) and (d) display the equivalent for the spin-spin correlations. All
data are extracted at U/t = 10 for L = 14 and T/t = 1/20. Spin
summation is implicitly assumed for the density correlations.

their uncorrelated values, pointing to the decreasing inter-
dependency of the different singlets within a unit cell. This
approach is continuous (at the low, but finite temperatures
T/t = 1/20) and does not indicate a sharp transition to the
collective product state of singlet states. Rather, they are
suggestive of a crossover, which is behind the explanation
of the smooth transition from the correlated to uncorrelated
band-insulating phases.

APPENDIX F: HAMMING DISTANCE

Recent investigations in various fermionic models have
shown that the onset of criticality can be directly tracked by
quantities related to metrics of the auxiliary HS field [35,50],
bypassing the necessity of extraction of physical observables.
This field, local to each orbital in the spinful Hubbard model
in its (d + 1)-dimensions formulation [22], is the quantity be-
ing sampled via a Metropolis algorithm over the course of the
Monte Carlo sampling [23]. A useful metric (although others
exist [51,52]) is given by the average distance traveled with
respect to a given point in the phase space of configurations
{s;}, and can be defined by the L;-distance (or Hamming
distance) of configurations,

1 .
HD = — > |si: — s, (F1)
2V z; T
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FIG. 9. (a) Average Hamming distance and averaged standard
deviation of Hamming distances versus interplane hybridization with
U/t =10 and L = 14. (c) The corresponding spin-resolved sign
(S5 ). Vertical shaded regions in (a) and (d) display the QCP obtained
by AFM structure factor t{/t ~ 2.1, whereas the shaded regions
in the zoomed-in panels (b) and (d) mark the confidence region
in ¢, that indicates the correlated-to-uncorrelated band insulating
crossover (see main text).

with respect to a reference configuration {s{if ‘}. Here V is the
length of the field, L, - 2L7% in our case, with L, being the
number of imaginary-time slices that discretize the inverse
temperature: 8/L, = At. Assuming that {sfef'} is a typical
configuration (namely, one obtained after a sighiﬁcant number
of warmup sweeps in the field), storing HD after each sweep
on the sampling allows one to quantify the average distance
the Markov chain probes in the (d + 1)-dimensional phase
space. This was shown to be intrinsically related to the physics
of the models being investigated [35]. For example, unordered
phases were demonstrated to be associated with completely
uncorrelated HS configurations, rendering an average Ham-
ming distance, 7D, equal to 0.5. Departure from this value
signals correlation within the sampled space, and thus physi-
cally ordered phases.

Applying this idea to the bilayer Hubbard model, we report
in Fig. 9 the average Hamming distance HD as a function of
the interplane hybridization at large interactions U/t = 10. A
significant departure from the uncorrelated sampling occurs
att; =~ 5.8t, which marks the regime where the uncorrelated
band-insulator gives way to a correlated one [see Fig. 3(b) in
the main text]. Another metric of the sampling is the typical
width oyp of the Gaussian-distributed Hamming distances
within a given realization. Averaging among independently
seeded Markov chains, o 4p, results in a marked location
for the change of the distributions, which coincides with the
onset of the ordered phase at ¢, /t ~ 2.1. That is, Hamming
distances obtained at each sampling process are much more
diverse within the ordered phase in comparison to the ones
within the physically unordered regime. These results lend
extra insight about the location of the different phases, and
have been checked to exhibit qualitatively small finite-size
effects.

X = intra
X = inter 7|

0.0100
0.03

0.0075

).02

w/(Mu)p

0.0050 <
0.01 0.0025

0.0000

0.00

i/t

FIG. 10. ED results of observables in a +/8 x +/8 bilayer at
U/t = 10 versus interplane hybridization: (a) the expectation value
of the staggered charge and spin-structure factor, (b) intra- and
interplane spin-spin nearest neighbor correlations, (c) double occu-
pancy, and (d) the fidelity susceptibility. [(e)—(h)] The same for U =
32t; vertical dashed line in (h) depicts the Heisenberg result from
Refs. [2,20] J{ /J = 2.521 81(3) converted to ¢{ /t = 1.58802(1) via
their correspondence in the strongly interacting regime, J oc t2/U.

APPENDIX G: ED RESULTS

We start by analyzing the strongly interacting regimes,
where finite-size effects are typically less dramatic: Fig-
ures 10(a)-10(d) for U/t = 10, and Figs. 10(e)-10(h) for
U/t =32. The dependence of the antiferromagnetic spin
structure factor (see main text for definition) is shown in
Figs. 10(a) and 10(e). As the system evolves from a typical
planar antiferromagnet to a bilayer one as ¢, increases, i.e.,
the number of neighbors effectively grows, this quantity (com-
puted in the ground-state |\Wy)) initially increases. However,
at larger interplane hybridization, it is then suppressed for
t; 2t as singlets form, similar to the behavior seen in the
DQMC results in the main text. Concomitantly, given the
reduced spin ordering, the staggered charge structure factor,
Seaw = (1/2L2) 3=, (=D (i + i) )y + 1)) slightly
increases with ¢, , albeit with an overall small magnitude, sug-
gesting the absence of a charge density wave formation. The
smooth evolution of these two quantities is evidence against
the manifestation of a first-order phase transition in the range
of parameters studied.

The reduction of global antiferromagnetic order giving
way to a unordered state displaying interplane spin singlets
can be also seen by directly computing the nearest-neighbor
intra- and interplane spin correlation functions, (@) =
((Ajp — 7y )(Ajp — 71jy)). All such spin correlations are neg-
ative, which signals their local antiferromagnetic character.
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FIG. 11. Color maps of several quantities in the space of param-
eters ¢, versus U for the 2 x 8-site bilayer lattice. (a) Expectation
value of the antiferromagnetic spin-structure factor, (b) derivative
of the double occupancy in respect to ¢,, (c) interplane spin-spin
nearest-neighbor correlations, and (d) the fidelity susceptibility g;, .
Star markers depict the magnetic transition at 7 = 0 obtained using
QMC in much larger lattices in Ref. [15]; cross marker on the
right (large U) panel edge denotes the Heisenberg limit [2,20]; and
diamond-shaped ones mark the nesting conditions in the noninteract-
ing regime for this cluster size.

With increasing ¢, , interplane spin correlations surpass intra-
plane ones in magnitude, preceding the onset of the quantum
disordered phase.

The double occupancy, (7)) = (fiy/1}), in analogy with
Figs. 4(b) and 4(d), can give the locations of the insulator-
metallic pseudo-(or finite-size influenced) transitions at small
interactions, in particular, when its derivative, d{fi;)/dt, is
evaluated. At large U/t, Fig. 10(g), their absolute value is
relatively small and reflects the approach to the Heisenberg
regime of localized spins.

While much can be captured by the dependence of few-
body correlators as we have done so far, a direct account of
how the many-body ground state changes with the increasing
interplane hybridization can be understood in terms of the
fidelity susceptibility g, = & 1—'<‘”°<’L>0'l‘f§<’l+d‘ﬂ>' [53-56],
which can locate a quantum phase transition without mak-
ing direct assumptions regarding a possible order parameter
[57-59]. This quantity displays a peak that is extensive and
independent of the (sufficiently small) parameter perturbation
for continuous phase transitions. Here, we take df; = 1073,
and we note the presence of a first peak at small 7, as related
to the crossover from planar to bilayer antiferromagnetism. A
second peak is also visible, which in the case of almost fully
formed local spins captures the magnetic transition, closely
following the results obtained for the Heisenberg model for
much larger lattices [2,20].

A more general description of such quantities across the
t; —U phase diagram is given in Fig. 11. At small in-

)t

FIG. 12. The charge gap A, (right axis) versus interplane hy-
bridization for a +/8 x +/8 bilayer, computed via ED with U/t = 10.
For comparison, we also show the fidelity susceptibility (left axis)
at the same interaction strength. The local minimum (maximum) of
A, (g, ) is marked via a dotted (dashed) vertical line at 7, /t = 3.3
(. /t =2.8).

teractions, the various observables are deeply affected by
finite-size effects, manifesting the influence of the metallic
region extending at finite values of U. In this small clus-
ter, only eight k points are available in the Brillouin zone.
In this case, the nesting condition (see main text) between
the two bands occurs only at ¢, /t =0 and 4. As a result,
the phase diagrams are remarkably similar to the ones ob-
tained in small clusters in DMFT [17]. In particular, we
can highlight (i) the large antiferromagnetic structure fac-
tor at small ¢, denoting the magnetically ordered phase
[Fig. 11(a)]; (i) the d(fy,)/dty >0 [d{(ny,)/dtL < 0] de-
scribing the insulator-metal [metal-insulator] transition for
this small cluster [Fig. 11(b)], similar to the results of Fig. 4;
(iii) the onset of the quantum disordered phase, signified by
the close-to-saturation of the interplane nearest-neighbor spin
correlations, (#7171 )ineer in Fig. 11(c); and (iv) the second peak
(branch) of the fidelity susceptibility at ¢, /¢t & 4 describes
the magnetic transition at small interactions and converges
to the Heisenberg limit at sufficiently large values of U/t
[Fig. 11(d)].

Lastly, we provide a simplified view of the single-particle
gap within ED calculations by computing the charge-gap for
excitations,

Ac = [Eo(Ne + 1) — Eg(Ne)] — [Eo(Ne) — Eo(Ne — 1)1,
(G

where Ey(N,) is the ground-state energy with N, electrons.
Since the lattice is small, this quantity displays relatively
large finite-size effects, but in principle should capture similar
information as the single-particle gap extracted from QMC
simulations in the main text, in particular, in the case where
twisted-boundary conditions are applied [60].

Here, using standard periodic boundary conditions, we re-
port A, in Fig. 12, accompanied by the corresponding fidelity
susceptibility. We avoid the regime of small interactions, fo-
cusing on U/t = 10, and contrast it with the results in much
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larger systems obtained via QMC in Fig. 3(b) of the main
text.

Although at small values of 7, the gaps A, and A,
extracted from ED and QMC, respectively, do not display
similar behavior (notwithstanding the strikingly different lat-
tice sizes), at large hybridization, both exhibit a minimum at
around ¢, /t >~ 3, which we have associated to a crossover
from a paramagnetic Mott insulator toward a band insulator

in the main text. To argue that the magnetic transition is not
aligned with the above described crossover, we overlay the
data originally shown in Fig. 10(d) for the fidelity suscepti-
bility in Fig. 12. The peak at large ¢, /¢, which we inferred
to be related to the magnetic transition, does not coincide
with the local minimum of A, opening room for a potential
paramagnetic Mott insulator surviving at 2.8 < ¢, /t < 3.3 for
this lattice size and for U/t = 10.
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