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Charge density wave and superconductivity in the disordered Holstein model
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The interplay between electron-electron correlations and disorder has been a central theme of condensed
matter physics over the past several decades, with particular interest in the possibility that interactions might
cause delocalization of an Anderson insulator into a metallic state, and the disrupting effects of randomness on
magnetic order and the Mott phase. Here we extend this physics to explore electron-phonon interactions and
show, via exact quantum Monte Carlo simulations, that the suppression of the charge density wave correlations
in the half-filled Holstein model by disorder can stabilize a superconducting phase. Our simulations thus
capture qualitatively the suppression of charge ordered phases and emergent superconductivity recently seen
experimentally.

DOI: 10.1103/PhysRevB.103.L060501

Introduction. Although the problem of the localizing
effect of randomness on noninteracting electrons is well
understood [1–3], the combined effects of disorder and
electron-electron interactions remain an area of continued
theoretical and experimental interest [4–11]. A traditional
focus has been on the possibility of electron-electron in-
teractions inducing an insulator-to-metal transition in two
dimensions [12], but recent attention has also turned to
understanding the interplay in the context of modern de-
velopments including Majorana fermions [13], topological
bands [14], ultracold atomic gases [15], and many-body
localization [16–18]. Supplementing analytic calculations,
numerical approaches have attempted to address the issue
with techniques that treat disorder and electronic correlations
nonperturbatively [19,20]. Unfortunately, in quantum Monte
Carlo (QMC) methodologies, the combination of random-
ness and interactions often leads to the fermion minus-sign
problem, a bottleneck that dramatically limits their effective-
ness [21–23].

In this work, we use an exact sign-problem-free QMC
approach to investigate the interplay between randomness
and electron-phonon interactions. This is an area far less
explored with numerical simulations than that of randomness
and electron-electron interactions. This gives us the opportu-
nity, within the framework of the disordered Holstein model,
to address important fundamental qualitative issues. Among
them, we find the emergence of a superconducting (SC) phase
upon the suppression of the charge density wave (CDW) or-
der by randomness. Further, the absence of the sign problem

allows us to reach low temperatures, and thus use the full
power of QMC calculations, which cannot be fully exploited
for electron-electron interactions.

This paper is organized as follows: After describing our
Hamiltonian and methodology in the “Model” and “Meth-
ods” sections, we show in the “Results” section the details
of the quantum simulations that lead to a demonstration of
the emergence of a SC phase driven by the interplay of
electron-phonon interaction and randomness. Our final re-
marks are in the “Concluding remarks” section. Further results
about the magnitude of SC and CDW correlations in the full
temperature-disorder plane are presented in the Supplemental
Material (SM) [28].

Model. The Holstein model describes itinerant electrons
whose site density couples to the displacement of a local
phonon mode. Its Hamiltonian reads

H = −t
∑
〈i,j〉,σ

(d†
iσ djσ + H.c.) −

∑
i,σ

(μ − εi )ni,σ

+ω0

∑
i

a†
i ai + g

∑
i,σ

niσ (a†
i + ai ), (1)

in which the sum over i is on a two-dimensional square lat-
tice, with 〈i, j〉 denoting nearest neighbors. d†

iσ (diσ ) is the
creation (annihilation) operator of electrons with spin σ at site
i, with niσ ≡ d†

iσ diσ denoting the number operator. a†
i (ai ) is

the phonon creation (annihilation) operator. The first term on
the right-hand side of Eq. (1) corresponds to the hopping of
electrons, and the second term contains the global chemical
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potential μ. Disorder effects are introduced in the second term
by means of random on-site energies εi, chosen uniformly in
the range [−�/2,�/2], so that �/t represents the dimension-
less disorder strength. Local phonon modes, with energy ω0,
are included in the third term. Finally, the last term describes
their coupling to electrons, with strength g.

It is worth noting that the square lattice dispersion relation
has a number of special features, such as a perfect nesting and
a van-Hove singularity in the density of states (at half-filling),
which lead to CDW order at weak electron-phonon coupling.
For stronger coupling cases, the occurrence of CDW order is
less dependent on the Fermi surface features, and its behav-
ior on a square lattice is generic, e.g., with CDW transition
temperatures being similar to those on other two-dimensional
(2D) bipartite lattices [24–27]. In this work, we analyze both
weak and strong coupling regimes at half-filling, 〈niσ 〉 = 1/2,
which is obtained by fixing μ = −2g2/ω0, regardless of the
lattice size or temperature, due to an appropriate particle-hole
symmetry. We further set t = 1 to represent the unit of energy,
and we use units where h̄ = kB = 1. We also define λD =
g2/(ztω0) as the dimensionless electron-phonon coupling,
where z = 4 is the coordination number for the square lattice.
In what follows, we consider two cases: (i) the adiabatic case,
with ω0/t = 1/2 and an intermediate coupling strength λD =
1/2 (g = 1); and (ii) the antiadiabatic case, with ω0/t = 4 and
a weak coupling strength λD = 1/4 (g = 2).

Methods. We employ the determinant quantum Monte
Carlo (DQMC) method [29–32], an unbiased auxiliary-field
approach that provides finite-temperature properties of inter-
acting fermions. Within this approach, both equal-time and
unequal-time quantities can be calculated. See [28] for more
details.

Charge modulations are probed by analyzing the density-
density correlation functions 〈ninj〉 and their Fourier trans-
form, the charge structure factor

S(q) = 1

N

∑
i,j

eiq·(ri−rj )〈ninj〉, (2)

where N = L2 is the number of lattice sites in the system.
Similarly, superconducting properties are examined by means
of the s-wave pairing susceptibility,

χs = 1

N

∫ β

0
dτ 〈�(τ )�†(0)〉, (3)

in which β = 1/T is the inverse temperature and �(τ ) =∑
i di↓(τ )di↑(τ ), with diσ (τ ) = eτHdiσ e−τH. Although the

equal-time pairing correlations at large spatial separation can
also be used to probe superconductivity, the full susceptibility
provides a more sensitive measure, especially in the case of a
Kosterlitz-Thouless transition, as is expected to occur in 2D
lattices [31,43,44].

Finally, we investigate transport properties by calculating a
proxy of the direct current (dc) conductivity [19,45]

σdc ≈ β2

π
�xx(q = 0, τ = β/2), (4)

where �xx(q, τ ) = 〈 jx(q, τ ) jx(−q, 0)〉 is the current-current
correlation function, and jx(q, τ ) is the Fourier transform of
jx(r, τ ) = −i t (d†

r+x̂,σ
dr,σ − d†

r,σ dr+x̂,σ
)(τ ). We carry out the

FIG. 1. (a) Charge structure factor, (b) kinetic energy of elec-
trons, (c) dc conductivity, and (d) s-wave pair susceptibility as
functions of the inverse temperature, and for different disorder
strength, at fixed L = 10, ω0 = 0.5, and λD = 0.5 (g = 1). Results
are shown for the dc conductivity only for larger �, where Eq. (4) is
valid [45].

calculations on lattices sizes from 6 × 6 to 12 × 12, and we
average our expectation values over 110 disorder realizations.

Results. We first consider the response of charge modula-
tions to disorder in the adiabatic case by fixing ω0/t = 0.5 and
λD = 1/2 (g = 1). When � = 0, there is a large enhancement
of S(π, π ) around β ≈ 4, as presented in Fig. 1(a), in line
with recent studies [46,47] that show a CDW transition at
βc = 4.1 ± 0.1 (see also the SM [28]). In the presence of weak
disorder, � � 0.3t , the behavior of S(π, π ) is only slightly
changed from that of the clean system, suggesting the contin-
ued existence of long-range charge correlations over length
scales up to the lattice sizes being simulated, as displayed
in Fig. 1(a). However, as disorder increases further, S(π, π )
has its characteristic energy scale shifted to larger β (lower
temperature), and its strength reduced. Eventually, for � ≈ t ,
long-range correlations seem entirely destroyed, even at very
low temperatures.

At this point, it is convenient to estimate the size of �

needed to break charge order. From a second-order perturba-
tion theory [48], the effective attraction between electrons is
given by Ueff = −2g2/ω0, therefore the CDW scale may be
estimated as 4t2/|Ueff | = 2t2ω0/g2. Given this, when � ex-
ceeds some fraction of this value, one should expect the charge
correlations to be suppressed. Indeed, this yields �c � 1 for
ω0 = 0.5, g = 1, in rough agreement with the vanishing of
the CDW correlations for � � 0.5, displayed in Fig. 1(a).

Further insight into this crossover is provided by the be-
havior of the electronic kinetic energy, exhibited in Fig. 1(b).
At weak disorder, despite the occurrence of a Peierls-like
charge gap, the alternation of empty and doubly occupied sites
associated with strong CDW correlations promotes charge
fluctuations, and hence the magnitude of the kinetic energy
increases as the temperature is lowered. By contrast, in the
strong disordered case, the pairs are localized randomly, with
some doublons at adjacent sites, precluding virtual hopping.
As a consequence, the kinetic energy decreases in magni-
tude as T → 0. Despite the suppression of the CDW order,
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FIG. 2. (a) Density of states as a function of energy, (b) elec-
tron density, ρ, as a function of shifted chemical potential, μ̃ =
μ + 2g2/ω0, and the electron distribution at half-filling (left) and
away from half-filling (right) at fixed (c) � = 0.2 and (d) � = 0.6.
L = 10, ω = 0.5, and λD = 0.5 (g = 1).

Fig. 1(c) shows that the conductivity decreases as T is low-
ered, with dσdc/dT > 0, indicating an insulating behavior for
all values of �. In line with this, the pairing susceptibility,
shown in Fig. 1(d), remains small for all �, suggesting that
local electron pairs are not correlated.

We now characterize in more detail the large � behavior.
Figure 2(a) shows the spectral function A(ω), obtained via
the analytic continuation of G(q, τ ) = 〈T d (q, τ )d†(q, 0)〉 =∫ ∞
−∞ dω e−τω

1+e−βω A(q, ω), where T is the imaginary time order-
ing operator, and A(ω) sums over all momenta; see, e.g., the
SM [28]. The spectral weight at the Fermi level is suppressed
at low T , with an opening of a single-particle gap. This
occurs for both clean and disordered cases, even for large
disorder, where the CDW has been completely destroyed,
suggesting an insulating behavior for any disorder strength.
Typically, the opening of such gaps in A(ω) is associated
with a vanishing compressibility κ = dρ/dμ. This happens,
e.g., in the half-filled fermionic Hubbard model, both in
the weak-coupling Slater and strong-coupling Mott regimes.
Similarly, in our disordered Holstein model, the compress-
ibility also vanishes at weak disorder, as shown in Fig. 2(b).
However, at large �, the gap in A(ω) is not accompanied
by κ = 0. As displayed in Fig. 2(b), the plateau in ρ(μ) is
substantially smeared at �/t ∼ 0.4, and completely destroyed
at �/t ∼ 0.6.

In both band and Mott insulators, A(ω) = 0 and κ = 0
go hand-in-hand. The unusual behavior whereby A(ω = 0) =
0 but κ �= 0 derives from the fact that the effective local
attractive interaction, due to phonon modes, favors the ad-
dition of pairs of fermions to the system, while resisting
the addition of individual ones. This picture is supported by
analyzing the electron distribution on the lattice during the
Monte Carlo simulations. In Figs. 2(c) and 2(d), histograms
of the local density nr are sharply peaked around 0 and 2
but not 1 for all disorder strengths, indicating that we mostly
have doubly occupied or empty sites. Similar distributions
are also observed away from half-filling. For instance, fixing

FIG. 3. (a) Charge structure factor S(π, π ), (b) s-wave pairing
susceptibility χs as a function of disorder strength �, at fixed β = 30,
ω0 = 4, and λD = 1/4 (g = 2). Inset: the normalized pairing suscep-
tibility χs/L2 as a function of 1/L at � = 0.7.

μ̃ = μ + 2g2/ω0 = 0.28, and comparing the electron dis-
tribution at �/t = 0.2 with �/t = 0.6, the same chemical
potential adds more pairs of electrons into the system and
causes a more distinguished imbalance between empty and
doubly occupied sites at larger disorder. This supports the
picture that adding pairs of electrons is the mechanism
by which the system responds to increasing μ. Unlike
the repulsive Hubbard model, where the electron-electron
interaction U favors moment formation (singly occupied
sites) and the random site energies favor pairs, here the
electron-phonon interaction, g, and � both promote bind-
ing. Together, the properties shown in Fig. 2 point to
an insulating phase characterized by a gapless fermion
pair excitation, but a gapped spectrum for single-particle
ones.

We now discuss the antiadiabatic regime, fixing ω0/t = 4
and λD = 1/4 (g = 2). Figure 3(a) shows the evolution of
S(π, π ) with disorder, at a fixed low temperature T = t/30.
As in the adiabatic regime, increasing � strongly suppresses
the charge response, destroying the CDW phase. However,
in stark contrast with the former case, here the behavior of
the pair susceptibility is dramatically different: χs is two
orders of magnitude larger, and it exhibits a peak around
�/t = 0.7, as displayed in Fig. 3(b). The magnitudes of these
charge structure factors and superconducting susceptibilities
are consistent with those of their magnetic and pairing analogs
indicating long-range order in the repulsive [49] and attractive
Hubbard models [34,44,50]. Although these large values of χs

are suggestive, finite-size scaling (FSS) is required to establish
the nature of the phase. One approach to this FSS is to take
data at very low temperatures, such as T/t = 1/30 in Fig. 3
so that one is essentially at T = 0, on the simulated lattice size
for that value of randomness. The inset of Fig. 3(b) shows that
χs/L2, at �/t = 0.7, has a finite value when extrapolated to
L → ∞, corresponding to long-range order and a divergence
of χpairing in the thermodynamic limit. The qualitative picture
is that, for these parameters, disorder drives a SC state at
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FIG. 4. The effective KT power law ηeff (T ) is shown as a func-
tion of disorder � for two fixed low temperatures. ηeff (T ) < 1/4 for
T/t = 1/30 in a range of intermediate �, suggesting a superconduct-
ing state.

commensurate filling as charge correlations are suppressed,
and new energy states are created near the Fermi surface for
pairing. Given this, the results of these QMC simulations are
a crossover from a phase consisting of CDW-puddles to a SC
ordered one.

A more refined FSS analysis proceeds as follows: We ex-
pect the 2D superconducting transition suggested by the data
of Fig. 3 to be in the Kosterlitz-Thouless universality class.
Thus the pair susceptibility χs ∼ L2−η(T ) with a temperature-
dependent exponent η(T ). At the KT transition point, η(Tc) =
1/4 and η(T ) → 0 in the ground state. Meanwhile, for T >

TKT, the pair correlations decay exponentially on sufficiently
large lattices, therefore χs ∼ L0 according to Eq. (3), i.e., η =
2. Figure 4 shows the results for such FSS analysis, in which
we have used plots of ln(χs) versus ln(L) to extract ηeff at the
fixed temperatures T/t = 1/20, 1/30 of the simulations, as
displayed in the inset. We refer to this as an “effective” η to ac-
knowledge finite-size effects. The main panel of Fig. 4 shows
ηeff at these two temperatures as a function of disorder �. At
small �, deep in the CDW phase, pairing correlations decay
rapidly and we see the expected ηeff = 2. For T/t = 1/20, ηeff

comes down rapidly as disorder strength is increased, indica-
tive of pairing correlations that are approaching the size of
the lattice. However, ηeff still exceeds the universal KT value
ηeff (Tc) = 1/4 for all �. There is no superconductivity at this
temperature. For T/t = 1/30, on the other hand, ηeff < 1/4
in a range of intermediate �. In this window, T = 1/30 < Tc

and the system is in a superconducting phase. The error bars
are conservatively estimated, and they represent a complex
combination of statistical uncertainty for individual disorder
realizations, the disorder averaging, and uncertainty associ-
ated with the FSS fit to extract η.

The overall picture that emerges from Figs. 3 and 4 is
that substantial charge correlations are present at T/t � 1/10
in the weak disorder region, �/t � 0.5, while a SC dome
emerges for stronger disorder values at T/t � 1/20. The issue
of how the CDW and SC phases meet at temperatures below
T = 0.033 is beyond the scope of the present set of simula-
tions. The heat maps of Fig. S1 of the SM [28] suggest that
there is a narrow region where both S(π, π ) and χs are large.

However, while we are able to perform definitive FSS analysis
within the individual CDW and SC phases, the corresponding
data at the interface between them do not provide an un-
ambiguous conclusion. Furthermore, the coupling of random
fields to the CDW order parameter prevents the occurrence
of true diagonal long-range order [11]. Notwithstanding, the
emergence of SC is allowed in the ground state, as indicated
by our FSS analysis, and also emphasized in the heat map
presented in the SM [28].

Concluding remarks. Although the two parameter regimes
for which we have presented results are distinguished by the
value of ω0/t , we believe the qualitative explanation for the
difference in behavior, i.e., the presence of an intermediate SC
phase, lies in the fact that the former corresponds to intermedi-
ate and the latter to weak dimensionless coupling. For strong
and intermediate couplings, the composite electron-phonon
polarons are small, and hence easily localized by disorder. At
weak dimensionless coupling, the polarons are much larger,
and the disorder potential is therefore to some extent averaged
out over their volume. Thus, after � destroys the CDW, it does
not yet localize the pairs, which remain mobile and condense
into a SC phase.

Tuning between CDW and paired phases can be accom-
plished via pressure or doping, and it is a phenomenon that
has also been extensively explored experimentally. Analo-
gies between antiferromagnetic-SC and CDW-SC phases
have also been remarked [30,51]. However, the latter tran-
sition has received much less attention from the QMC
community. Early work on the doping-driven CDW-SC tran-
sition in the Holstein model [52,53] has been extended
to transitions at commensurate filling caused by the intro-
duction of band dispersion [54], and a comparison with
Migdal-Eliashberg theory [55]. Additional QMC literature
has also considered the interplay between electron-electron
and electron-phonon interactions, as in the Hubbard-Holstein
model [56–61].

This paper has described a detailed QMC study of the ef-
fect of disorder on the CDW transition, and it has shown that,
in certain parameter regimes, randomness can give rise to a
SC state. Earlier work has suggested that the electron-phonon
coupling can renormalize the disorder potentials, leading
to a ground state that may not exhibit Anderson localiza-
tion [62–65]. The present study suggests an even more subtle
consequence of the disorder-interaction interplay, namely the
emergence of off-diagonal ordered phases from diagonal dis-
order at commensurate filling.

We expect our results to apply quite generally to the Hol-
stein model on other bipartite geometries (e.g., 3D cubic)
where CDW order is dominant at half-filling [25,26,61]. The
honeycomb lattice might be particularly interesting to inves-
tigate, since it has a quantum critical point for couplings
below which CDW order is absent. SC might still emerge with
added disorder in this semimetallic regime from the filling
up of the density of states, which vanishes linearly in the
clean limit. We also expect our results to apply generally to
different choices of λ, ω0 which have the same λD [66]. In the
clean case, the CDW transition temperature has recently been
found as a function of λD [24–26], a feature whose behavior
with randomness would be interesting to examine in future
work.
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