
PHYSICAL REVIEW B 103, 165127 (2021)

Magnetic properties of alternating Hubbard ladders
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We investigate the Hubbard Hamiltonian on ladders where the number of sites per rung alternates between
two and three. These geometries are bipartite with nonequal or equal number of sites on the two sublattices.
Thus they share a key feature of the Hubbard model in a class of lattices which Lieb has shown analytically
to exhibit long-range ferrimagnetic order while being amenable to powerful numeric approaches developed for
quasi-one-dimensional geometries. The density matrix renormalization group (DMRG) method is used to obtain
the groundstate properties, e.g., excitation gaps, charge and spin densities as well as their correlation functions at
half filling. We show the existence of long-range ferrimagnetic order in the one-dimensional ladder geometries.
Our work provides detailed quantitative results which complement the general theorem of Lieb for generalized
bipartite lattices. It also addresses the issue of how the alternation between quasi-long-range order and spin
liquid behavior for uniform ladders with odd and even numbers of legs might be affected by a regular alternation
pattern.
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I. INTRODUCTION

Artificially constructed quantum nanostructures of corre-
lated electrons in quasi-one (1D) and two (2D) dimensions
can be described using lattice models such as Heisenberg
and Hubbard Hamiltonians, as well as their extensions. Novel
experimental realizations of such systems include the fabrica-
tion of arrays of magnetic atoms on surfaces using scanning
tunneling microscopy [1–5], as well as optical lattice emula-
tors using ultracold atoms [6–8]. Bipartite lattices constitute
a particularly important class of geometries in which the
nearest-neighbor hopping (or magnetic exchange) is such that
the lattice has two subsystems A and B in which only B
sites are nearest neighbors of A sites and vice versa. E. Lieb
proved [9] a rigorous theorem for the Hubbard model on a bi-
partite lattice at half filling: the groundstate total spin quantum
number is given by S = (NB − NA)/2, where NA (NB) is the
number of sites in the A (B) subsystem. Subsequently, Shen
et al. [10] proved that both ferromagnetic and antiferromag-
netic long-range orders coexist in the degenerate ground state
with S �= 0, i.e., the system exhibits long-range ferrimagnetic
order. Subsequent work examining Lieb’s theorem has mostly
focused on 2D lattices such as Lieb’s original “CuO2” lattice.

On the other hand, during the past several decades, strongly
correlated electron materials with quasi-one-dimensional
(1D) ladder structures [11] have attracted much attention the-
oretically as well as experimentally. These ladder structures
reveal interesting phases including Luttinger liquids [12],
Mott insulators [13], antiferromagnetism [14], as well as
charge density waves [15]. Early theoretical studies of Heisen-
berg ladders with only nearest neighbor interactions and
without frustration revealed an interesting effect by changing

the number of legs [12]. Geometries with an even number
of legs are associated with a singlet ground state with a
spin gap to the lowest-lying excitations and short-range spin
correlations. For odd numbers of legs, the ground state has
quasi-long-range antiferromagnetic order and gapless spin
excitations. Lattices with an odd number of legs are in the uni-
versality class of the single leg spin- 1

2 Heisenberg chain [12].
Hubbard ladders at half filling (one electron per site) re-

veal similar behavior for the spin excitation modes, while the
charge excitation modes remain gapped [16]. This similarity
is expected since there is a mapping between the Heisenberg
model and the spin sector of the Hubbard model at strong
values of the on-site electron repulsion U . The density matrix
renormalization group (DMRG) [17–19] has proven to be
an especially powerful computational tool in uncovering this
physics.

In this paper, we introduce novel ladder configurations
which consist of an alternation of rungs with even and odd
numbers of sites, and study the strong correlation physics of
the Hubbard model. This structure serves as an intermediary
between the even rung, gapped ladder, and the odd rung case
which supports spin correlations with a power law decay.
The magnetic properties are discussed in the light of Lieb’s
theorem and the imbalanced sublattice site count induced by
the combination of an even and odd numbers of legs. Under-
standing the properties of these quasi-1D lattice geometries
offers the opportunity to further understand, and potentially
extend, Lieb’s theorem.

The paper is organized as follows. In the next section, we
discuss noninteracting nearest-neighbor tight-binding models
on alternating ladder geometries, and obtain their band struc-
ture and density of states (DOS), which are crucial starting
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points for consideration of the effects of electronic correla-
tions. With this groundwork, in Sec. III, we use the DMRG
method to investigate correlated Hubbard ladder systems with
two different alternation frequencies. One pattern has NA =
NB and the other has NA �= NB. Consideration of both cases
allows us to isolate the effects of imbalanced sublattice site
counts from that of alternating number of sites per rung. In the
last section, we summarize and discuss the main results of this
work. Appendices contain calculations for uniform three-leg
ladders, to facilitate comparison with our studies of alternat-
ing ladders, and some further details for the noninteracting
alternating ladders.

II. NONINTERACTING ALTERNATING
LADDER GEOMETRIES

In this section, we derive the noninteracting dispersion
relations and DOS of two, hitherto unstudied, geometries with
alternating rung length. We investigate two alternation peri-
ods. The first has period d = 2 in the leg direction: each unit
cell contains three sites in one rung and two sites in the second
rung. We call this geometry the 3-2 ladder. It is bipartite
with sublattices A and B, but of the class that Lieb studied,
with NA �= NB. The second structure has period d = 4. Each
unit cell contains three sites on the first and second rungs
followed by two sites in the third and fourth rungs. We call
this geometry the 3-3-2-2 ladder. It has NA = NB. Appendix A
reviews the band structure of uniform three-leg ladders.

The nearest-neighbor tight-binding model is described by
the Hamiltonian

H0 = −
∑
x,y,σ

tx,y(c†
x+1,y,σ cx,y,σ + c†

x,y,σ cx+1,y,σ )

−
∑
x,y,σ

t ′
x,y(c†

x,y+1,σ cx,y,σ + c†
x,y,σ cx,y+1,σ ). (1)

c†
x,y,σ (cx,y,σ ) denotes the creation (annihilation) operators for

an electron with spin σ on the site with coordinates (x, y)
where y = 1, 2, 3 denotes the Hubbard leg and x = 1, . . . , Lx

refers to the rung index. The parameters tx,y and t ′
x,y are hop-

ping amplitudes along and between the chains, respectively.
They depend on the ladder geometry considered.

A. The alternating 3-2 ladder

The 3-2 ladder system is sketched in Fig. 1. Defining Lx

as the total number of rungs, the total numbers of sites on the
two sublattices are unequal, with NA = 3Lx/2 and NB = Lx.

H0 can be written as a sum of commuting operators Hk

acting only on the Bloch states with wave number k in the
first Brillouin zone (see Appendix A to get the concrete form
of wave number k). In the present case, we have five sites per
unit cell, labeled j = 1, . . . , 5 in Fig. 1. Hk is the 5 × 5 matrix,

Hk =

⎛⎜⎜⎜⎝
0 −t1 0 0 0

−t1 0 −t2 −t3 − t̃6 0
0 −t2 0 0 −t4 − t̃7
0 −t3 − t̃∗

6 0 0 −t5
0 0 −t4 − t̃∗

7 −t5 0

⎞⎟⎟⎟⎠.

(2)
Here t̃ j = t j exp(ik).
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FIG. 1. 3-2 ladder geometry with alternating rung site numbers.
The red and blue circles indicates the sites belonging to the sublat-
tices A and B, respectively. Dashed lines label the nonzero hopping
terms.

We will investigate the system with equal hopping parame-
ters ti = t for i = 1, . . . , 7, since this simple choice already
contains several novel features. The diagonalization of Hk

leads to the five energy bands Ek,b (b = 1, . . . , 5) shown in
Fig. 2(a). One of these bands is flat and is located at zero
energy (the Fermi level for half filling), in accordance with
Lieb’s theorem [9]. For such a flat band, there are gapless
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FIG. 2. (a) Band structure for the 3-2 alternating ladder in the
noninteracting case for uniform hopping terms ti = t = 1. (b) Corre-
sponding local density of states (3) for each site j = 1, . . . , 5 of the
unit cell shown in Fig. 1.
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FIG. 3. Geometry of the alternating 3-3-2-2 ladder lattice. The
red and blue circles indicate the sites belonging to the A and B sub-
lattice, respectively. Dashed lines show the nonzero hopping terms.

single-electron excitations but the system is not metallic in
the sense that the effective mass of the low-lying excitations,
which is proportional to 1/t for a linear chain, is infinite.
Figure 2(b) shows the corresponding local DOS

N (E , j) = 1

Nc

∑
k,b

|ψk,b( j)|2δ(E − Ek,b), (3)

where ψk,b( j) represent the eigenvectors of Eq. (2) corre-
sponding to the eigenenergy Ek,b, j = 1, . . . , 5 are the sites of
the unit cell. Nc = Lx/2 is the number of unit cells (or equiva-
lently the number of wave vectors k in the first Brillouin zone).
Note that all DOS distributions in this paper are normalized so
that the integral over all energies E is equal to 1. To draw the
DOS we substitute a Lorentzian function of width η = 0.01t
for the Dirac δ function. The singularity at E = 0 in the local
DOS is due to the flat band. Figure 2(b) reveals that this flat
band is located on the A subsystem, i.e., sites 1, 3, and 4 in the
unit cell in Fig. 1.

B. Alternating 3-3-2-2 ladder

The real space 3-3-2-2 ladder geometry is displayed in
Fig. 3. The lattice is bipartite, with an equal number of sites in
the sublattices A and B. Similarly to the 3-2 ladder geometry,
H0 can be written as a sum of commuting operators Hk acting
only on the Bloch states with wave number k. Here there are
10 sites per unit cell. Its single-particle matrix representation
Hk is the 10 × 10 matrix given in Appendix B.

The diagonalization of the matrices Hk leads to the ten
energy bands Ek,b shown in Fig. 4(a). Since NA = NB, we do
not observe a flat band. The system is metallic at half filling
as the Fermi energy EF = 0 lies at a point where two bands
touch. This is also visible in the total DOS

N (E ) = 1

Ns

∑
k,b

δ(E − Ek,b) (4)

with division by the number of sites Ns providing the pre-
viously described normalization convention for N (E ). This
DOS is plotted in Fig. 4(b), which shows a finite density but no
concentration of spectral weight at the Fermi level, in contrast
to the peak seen in Fig. 2(b).

Although the 3-2 and 3-3-2-2 geometries share an al-
ternation of number of sites in different rungs, they differ
significantly due to the presence of a flat band in the 3-2
case. We will analyze in the next section how this difference is
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FIG. 4. (a) Band structure and (b) DOS, Eq. (4), of the noninter-
acting alternating 3-3-2-2 ladder. Compared to the 3-2 geometry in
Fig. 2 the key difference is the absence of the flat band at E = 0.

reflected in the properties of ladders with the on-site interac-
tion turned on.

III. DMRG RESULTS FOR ALTERNATING LADDERS

In this section, we analyze and compare the properties of
the 3-2 and 3-3-2-2 ladder geometries in the presence of the
Hubbard interaction using the finite-size DMRG method. The
full Hamiltonian is

H = H0 + U
∑
x,y

nx,y,↑nx,y,↓ (5)

with nx,y,σ = c†
x,y,σ cx,y,σ .

DMRG is widely considered to be the most powerful nu-
merical method for quasi-1D correlated electron systems [20].
The details of this method have been reviewed in Ref. [21].
In our DMRG calculations, open boundary conditions are
applied in both x and y directions. Our program uses the
conservation of the particle numbers Nσ but not the SU(2)
spin symmetry. The number m of density-matrix eigenstates
in the renormalization procedure is increased progressively
until it reaches m = 2500 in the last sweep. The total number
of used sweeps is up to 13. The discarded density-matrix
weight (truncation error) varies from 10−5 to less than 10−9.
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FIG. 5. (a) Energy of the lowest eigenstate and (b) its total spin
density Sz(y) on each leg of the 3-2 ladder geometry as a function
of the z projection of the eigenstate total spin Sz for Lx = 128, half
filling and U = 8. Note that the energy E is an even function of Sz

while the densities are odd functions of Sz.

We extrapolate the groundstate energy to the vanishing dis-
carded weight limit [22] and estimate the error from the
difference between the extrapolated energy and the energy in
the last sweep. The finite-size error is obtained by varying the
system length and extrapolating to vanishing ratio 1/Lx. In
our calculations, the ladder length Lx is varied up to 200. We
have implemented the one-dimensional DMRG path through
all lattice sites of the alternating ladder geometries so that
the sites are ordered as in the standard approach for homo-
geneous ladders [21]. The groundstate energy, spin, charge,
and single-particle gaps, the pair-binding energies, correlation
functions, as well as spin and charge densities are investigated
for a wide range of parameters. We use homogeneous hopping
parameters ti = 1 everywhere.

A. 3-2 alternating rung geometry

According to Ref. [9], we expect the ground state at
half filling to be ferromagnetic, with total spin S = (NA −
NB)/2 = Lx/4 for any finite value of the on-site interaction
U > 0. We have first computed the eigenstate with the lowest
energy as a function of the z projection of the total spin Sz =
(N↑ − N↓)/2. Results for the corresponding eigenenergies are
shown in Fig. 5(a) for U = 8 and Lx = 128. The ground
state is degenerate for all |Sz| � S = 32 and thus ferromag-
netic, in agreement with Lieb’s prediction. For |Sz| > 32, the
eigenstates are excited states. As S increases proportionally
to the ladder length Lx, the ground state is macroscopically
degenerate in the thermodynamic limit.

The DMRG method can be used to compute the charge and
spin density profiles, defined by

N (x, y) = 〈nx,y,↑ + nx,y,↓〉, (6)

Sz(x, y) = 〈nx,y,↑ − nx,y,↓〉, (7)

where 〈. . . 〉 denotes the expectation value in the lowest eigen-
state for a given number Nσ of electrons of each spin in
the system. Due to the particle-hole symmetry of the Hamil-
tonian (5), the charge density is distributed homogeneously
N (x, y) = 1 at half filling, despite the nominal inequivalence
of different sites. This is even the case for arbitrary, unequal
values of the nearest-neighbor hopping terms ti.

The behavior of the total spin density for each leg

Sz(y) =
∑

x

Sz(x, y) (8)

is, however, nontrivial. Sz(y) is depicted in Fig. 5(b) as a func-
tion of the z projection of the total spin, for Lx = 128 and U =
8. We see that the spin density on each leg increases linearly
for the values |Sz| � Lx/4, corresponding to the degenerate
ground state in Fig. 5(a). For higher Sz, corresponding to ex-
cited states, the increase continues linearly but with a different
slope. Most of the spin density is concentrated on the first leg
for 0 < |Sz| � Lx/4. Thus the ferromagnetic state is due to the
unpaired electrons localized on this first leg. We remark that
the macroscopic degeneracy in the thermodynamic limit is a
consequence of Lieb’s theorem in which our numerical results
agree with it.

Additional information is provided by the gaps to the
various excitations. The spin gap corresponds to the lowest
excitation energy from the ground state with Sz = 0 to an
excited state in which the up and down fermion numbers differ
by one (Sz = 1). That is,

Es = E (Nσ + 1, Nσ − 1) − E (Nσ , Nσ ), (9)

where E (N↑, N↓) is the ground-state energy for a Hubbard lat-
tice with Nσ electrons of each spin σ . Experimentally, the spin
gap Es can be determined from the dynamical spin structure
factor measured using inelastic neutron scattering [23].

The charge gap is the lowest excitation energy from the
Ne-particle ground state to the (Ne ± 2)-particle ground states
with the same Sz. Its experimental value is deducible from,
for example, the gap in the dynamical charge structure factor
measured using electron-energy-loss spectroscopy [24]. It is
defined as [25]

Ec = 1
2 [E (N↑ + 1, N↓ + 1) + E (N↑ − 1, N↓ − 1)]

− E (N↑, N↓). (10)

Finally, the single-particle gap is the lowest excitation en-
ergy Ep seen in the single-particle spectral function, which
can be measured in experiments such as angle resolved pho-
toemission spectroscopy (ARPES) [26]

Ep = E (N↑ + 1, N↓) + E (N↑ − 1, N↓) − 2E (N↑, N↓). (11)

Consequently, Ep is the gap due to the excitation of a single-
electron (with both charge and spin features) from the highest
level below the Fermi level to the lowest level above the Fermi
level.

The three gaps vanish in the half-filled noninteracting 3-2
ladder geometry. The spin gap remains small for a coupling
U > 0 at finite system size Lx and extrapolates to zero within
numerical accuracy. This is consistent with the degeneracy of
the ferromagnetic ground state. An interaction U > 0 gener-
ates a gap to the lowest charge excitations. The charge gap Ec,
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FIG. 6. Charge gap for the 3-2 and 3-3-2-2 ladders as a function
of the interaction strength U for Lx = 128 at half filling. The inset
(a) shows the small coupling region on a smaller scale. The inset
(b) shows the charge gap Ec of the 3-2 ladder geometry at half filling
as a function of the inverse ladder length 1/Lx for U = 8.

depicted in Fig. 6 for Lx = 128, evolves monotonically with
increasing U . Ec extrapolates to finite values for 1/Lx → 0
[see the inset (b) of Fig. 6] in agreement with Lieb’s predic-
tion [9]. The small finite size slope reflects the low velocity
(almost zero) of the lowest excitations in this system. As for
the homogeneous ladder, the charge gap is roughly linear
in U at strong coupling. Finally, the single-particle gap Ep

extrapolates to the same finite value as the charge gap Ec for
1/Lx → 0 with very small finite size effects. This behavior of
excitation gaps is characteristic for the insulating ferromag-
netic phase of the 3-2 geometry.

Although at half filling the particle-hole symmetry implies
that the charge density is distributed homogeneously between
the three legs, this symmetry is lost away from half filling.
Using DMRG we calculate the change �N (x, y) in the charge
density distribution N (x, y) when two electrons are added
to a half-filled ladder. Figure 7 shows the results for each
leg of the half-filled 3-2 ladder at maximal Sz. The added
charges are mainly on the third and second legs. One sees
the presence of a double density peak that is typical for two
independent particles in a box. This suggests that the two
added electrons do not bind in this system in agreement with
the vanishing of the pair binding energy in the thermody-
namic limit (Ec = Ep). Note that the asymmetric distribution
�N (x, y) (i.e., added charge not centered at x = Lx/2 = 64) is
due to a poor DMRG convergence and reveals that the charge
excitation band width is narrow as already suggested by the
small finite-size corrections to the excitation gaps in Fig. 6,
inset(b).

According to Shen et al. [10], a half-filled Hubbard model
on a bipartite lattice with NA �= NB should exhibit a ferri-
magnetic long-range order. More precisely, spins on the same
sublattice should be ferromagnetically ordered while spin
pairs on different sublattices should be antiferromagnetically
ordered. This exact result applies to the 3-2 ladder geometry.
Thus we should be able to observe this one-dimensional long-
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FIG. 7. Change �N (x, y) in the charge density distribution
N (x, y) on the three legs (y = 1, 2, 3) when two electrons are added
to a half-filled 3-2 ladder with U = 8, Lx = 128, and Sz = 32.

range order although it breaks the continuous SU(2) symmetry
of the spin sector in the Hubbard model.

For this purpose, we now investigate the ground-state spin
correlations. The transverse spin correlation function between
a site x0, y = 1 and the other sites x0 + x, y is defined by

C+−
y (x) = 〈

c†
x0,1,↑ cx0,1,↓ c†

x0+x,y,↓ cx0+x,y,↑
〉
. (12)

These correlations are calculated using the DMRG method
with the reference site x0 located in the center of the chain,
i.e., x0 = Lx/2, in order to minimize boundary effects.

According to Ref. [10] this correlation function should
reveal the ferrimagnetic long-range order between the spins
in the Sz = 0 ground state. Figure 8 shows DMRG results for
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FIG. 8. Transverse spin correlation function C+−
1 (x) in the Sz =

0 ground state of the 3-2 alternating ladder. Dots show the DMRG
results calculated at half filling for Lx = 128 and various values of U .
The straight lines represent the fitting function axp. The inset shows
the exponent p as a function of U .
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the first leg, C+−
1 (x), for a half-filled 3-2 ladder with Sz = 0

and several values of the interaction U . The correlations decay
very slowly with increasing distance x as shown by a log-
log scale. A fit to a power-law function yields very small
exponents |p| � 0.07 as seen in the inset of Fig. 8. Antiferro-
magnetic correlations decrease as 1/x in the antiferromagnetic
isotropic Heisenberg chain. Figure 8 indicates our 3-2 ladder
system corresponds to the ferromagnetic isotropic Heisenberg
chain. In both these models, the ground state is macroscopi-
cally degenerate and has true long-range ferromagnetic order.
If you approach the isotropic point of the Heisenberg chain
from its Luttinger liquid phase, ferromagnetic correlations
decay as x−p with an exponent p that vanishes at the isotropic
point [12]. While the homogeneous three-leg ladder is in the
universality class of the antiferromagnetic Heisenberg chain,
the novel 3-2 ladder considered here seems to be in the class
of the ferromagnetic chain.

The correlation functions for the second and third legs,
C+−

y (x) for y = 2, 3, reveal long-range antiferromagnetic cor-
relations (not shown). Thus our results for the transverse
correlation functions C+−

y (x) in the Sz = 0 ground state agree
with the exact results [10].

To the best of our knowledge there is no concrete predic-
tion for the correlation functions C+−

y (x) in the ground states
with Sz �= 0. However, the exact results of Ref. [10] imply that
the SU(2) invariant correlation function

Cy(x) = 〈 
Sx0,y · 
Sx0+x,y
〉

(13)

must also exhibit long-range ferrimagnetic order for all
ground states −S � Sz � S. Thus C+−

y (x), and the comple-
mentary longitudinal correlation function

Czz
y (x) = 〈(

nx0,1,↑ − nx0,1,↓
)(

nx0+x,y,↑ − nx0+x,y,↓
)〉

, (14)

must display long-range ferrimagnetic order.
Our DMRG results reveal that the spin correlation C+−

y (x)
decay very slowly for ground states with spin Sz �= 0. Figure 9
shows the correlation function C+−

1 (x) on the first leg for
the ground state with maximal spin Sz = 32. The exponents
of power-law fits, |p| � 0.04, are even smaller than for the
Sz = 0 ground state. Again, this is compatible with long-range
ferromagnetic order in the thermodynamic limit.

Turning to the longitudinal correlation function Czz
y (x), we

find that it decays rapidly for the Sz = 0 ground state. For the
ground states with Sz �= 0, however, Czz

y (x) can also reveal
the long-range ferrimagnetic order. Figure 10 plots Czz

y (x)
for all legs y = 1, 2, 3 at fixed U for the ground state with
the maximal spin Sz = S. Figure 11 shows the behavior of
these correlations on the first leg only, varying U . Clearly,
the ferromagnetic correlations do not decay with distance.
A power-law fit yields exponents |p| � 0.005, as seen in the
inset of this figure.

The ferrimagnetic long-range order is not visible in the
spin density [Eq. (7)] of the Sz = 0 ground state because
the spin flip symmetry imposes Sz(x, y) = 0. However, the
existence of this ordering can be seen in the spin density of
the other ground states, in particular for the maximal spin
Sz = S. The sign of these spin densities alternates between
nearest-neighbor sites as sketched in Fig. 12.
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FIG. 9. Transverse spin correlation function C+−
1 (x) in the Sz =

S = 32 ground state of the 3-2 alternating ladder. Dots show DMRG
results at half filling for Lx = 128 and various values of U . The
straight lines represent the fitting function axp. The inset shows the
exponent p as a function of U .

The ferromagnetic order parameter is the magnetiza-
tion pro site |NB − NA|/(NA + NB), which is independent of
U > 0. It is difficult to compute an order parameter for
the antiferromagnetic ordering because the ground states are
inhomogeneous in real space and break the spin rotation sym-
metry. In principle, one could compute the square root of the
staggered average of the correlation function (13) over all sites
for long ladder lengths Lx, but the computational cost would
be excessive with our DMRG program.

In summary, our results for the 3-2 ladder geometry agree
with the exact results in Refs. [9,10]. The ground state is
gapped for charge excitations and ferromagnetic with a to-
tal spin S �= |NA − NB|/2. Moreover, the electron spins are
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FIG. 10. Longitudinal spin correlation function Czz
y (x) in the

Sz = S = 32 ground state of the 3-2 alternating ladder. Dots show
DMRG results at half filling for Lx = 128 and U = 8.
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FIG. 11. Longitudinal spin correlation function Czz
1 (x) in the

Sz = S = 32 ground state of the 3-2 alternating ladder. Dots show
DMRG results at half filling for Lx = 128 and various values of U .
The straight lines represent the fitting function axp. The inset shows
the exponent p as a function of U .

ferrimagnetically ordered. Our results also quantify the pre-
cise behavior of the correlation functions.

B. 3-3-2-2 alternating rung geometry

We now turn to the Hubbard model on the 3-3-2-2 ladder
geometry. This structure allows for unequal rung lengths, but
unlike the 3-2 case, this system represents a bipartite lattice
with NA = NB. We have verified using DMRG that the ground
state for U > 0 at half filling has spin S = 0 and is not
degenerate.

The charge gap Ec increases with U and is very close to the
charge gap of the 3-2 ladder geometry for U � 5t as seen in
Fig. 6 for a finite ladder length. For weak coupling, the charge
gap of the 3-3-2-2 ladder is clearly smaller than in the 3-2
ladder. For U � 4t , our DMRG data indicate that the charge
gap of the 3-3-2-2 ladder remains finite in the thermodynamic
limit. For smaller U we cannot determine whether the charge
gap vanishes or is only very small in the thermodynamic limit.

FIG. 12. Schematic illustration of the ferrimagnetic spin order-
ing in the 3-2 alternating ladder.
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FIG. 13. Spin gap Es and pair-binding Epb energies of the half-
filled 3-3-2-2 ladder with Lx = 128 as a function of the coupling
strength U .

In contrast to the 3-2 system, spin excitations are gapped
in the 3-3-2-2 ladder. As shown in Fig. 13 for a ladder of
finite length Lx = 128, the spin gap Es increases with U � 2,
reaches a maximum around U = 8 and then decreases ∼t2/U
for strong coupling. This behavior is similar to the behavior
found in homogeneous two-leg ladders [19]. DMRG numer-
ical errors and finite-size effects are not negligible for weak
coupling U < 2 and are responsible for the nonmonotonic
behavior of the spin gap. (This is the case for many numerical
methods including quantum Monte Carlo. Larger U breaks
degeneracies and eliminates finite size “shell effects,” which
are present at U = 0.) For U � 4t , we clearly see in Fig. 14(a)
that the spin gap converges to a finite value in the thermody-
namic limit, in contrast to the noninteracting system.

In Fig. 15, we show the total spin density on each leg of the
3-3-2-2 ladder with U = 8 and Lx = 128 as a function of the
total spin Sz. The unpaired electron spins are distributed over
the three legs but the first leg density is significantly lower
than for the second and third legs. Thus in the presence of an
external magnetic field, the unpaired electron spins are mostly
localized on the second and third leg in the 3-3-2-2 system, in
contrast to the magnetization of the first leg in the 3-2 system,
see Fig. 5(b).

The behavior of the single-particle gap Ep is very similar
to that of the charge gap Ec. In contrast to the case of the 3-2
ladder, however, we observe a difference between both gaps
in the 3-3-2-2 ladder. The pair binding energy [27] is defined
as

Epb = Ep − Ec. (15)

Finite positive values of Epb indicate that it is energetically
preferable for electrons or holes injected into the half-filled
band to form pairs [28]. It has been shown for homogeneous
2-leg Hubbard ladders that the pair binding energy can be
positive for some parameter ranges [19,29,30]. The finite-size
scaling shown in Fig. 14(b) confirms that the pair-binding
energy is positive and remains finite in the thermodynamic
limit of the 3-3-2-2 ladder at least in the regime U > 4t .

165127-7



KAOUTHER ESSALAH et al. PHYSICAL REVIEW B 103, 165127 (2021)

0 0.01 0.02 0.03 0.04 0.05
1/Lx

-0.1

0

0.1

0.2

0.3

Epb

U=4
U=8
U=12
U=16
U=20

0

0.05

0.1

0.15

0.2

0.25

(a)

(b)

Es

U=0
U=4
U=8
U=12
U=16
U=20

FIG. 14. (a) Spin gap of the half-filled 3-3-2-2 ladder as a func-
tion of the inverse ladder length 1/Lx for different values of U .
(b) Pair-binding energy Epb of the half-filled 3-3-2-2 ladder as a
function of 1/Lx for several values of U .

As seen in Fig. 13, the pair binding energy seems to reach
its maximum Epb ≈ 0.22t for U ≈ 8 where the spin gap
Es is also the largest. Again this behavior is similar to the
observation made for homogeneous symmetric [19] and an-
tisymmetric [31] two-leg Hubbard ladders. One can conclude
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FIG. 15. Total spin density Sz(y) on each leg of the half-filled
3-3-2-2 ladder with U = 8 and Lx = 128 as a function of the z
projection of the total spin.
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FIG. 16. Change �N (x, y) in the charge density distribution
N (x, y) on the three legs (y = 1, 2, 3) when two electrons are added
to a half-filled 3-3-2-2 ladder with U = 8 and Lx = 128.

that the pair binding energy is intimately related to the behav-
ior of the spin gap energy [32].

As for the 3-2 system, the charge density N (x, y) of the
half-filled 3-3-2-2 ladder is uniformly distributed because of
the particle-hole symmetry of the Hubbard Hamiltonian (5)
on a bipartite lattice. Figure 16 shows the change �N (x, y)
of this charge density distribution when two electrons are
added to the half-filled system with U = 8 and Lx = 128. As
was the case for the 3-2 system, the increase of the charge
density in the first leg is smaller than the second and the third
leg. The single peak resembles the distribution expected for a
single particle in a box. This suggests that the two electrons
build a pair (mostly localized on the second and third leg)
in agreement with the observation of a finite binding energy.
The asymmetric distribution �N (x, y) is due to a poor DMRG
convergence as already discussed in the previous section.

Spin correlations decrease exponentially with distance in
the half-filled 3-3-2-2 ladder, as expected for a spin gapped
system. These correlations reveal short-range antiferromag-
netic order. Figure 17 illustrates the exponential decrease of
the correlation function C+−

y (x) with the distance x between
two sites on each leg y for U = 8 and Lx = 128. We see that
the decay of spin correlations is similarly fast in all legs.

In Fig. 18, the exponential decay of spin correlations is
plotted for different values of U . We derive a correlation
length ξ by fitting these data to an exponential function. The
results are shown in the inset of Fig. 18 as a function of U . The
correlation length decreases rapidly with increasing coupling
U but seems to saturate at a finite value for strong coupling.
This can be explained by the fact that the correlation length
is roughly given by the ratio between the band width and the
gap of spin excitations. For weak U , we know that the band
width is ∝ t while the spin gap is small, see Fig. 13, leading to
a divergence of ξ for U → 0. For strong U , however, both the
band width and the spin gap scale with the effective exchange
coupling J ∝ t2/U .

In order to get information about the relative orientation
of spins on nearest-neighbor sites, we calculate the spin bond
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FIG. 17. Spin correlation function C+−
y (x) for the 3-3-2-2 ge-

ometry along each leg y = 1, 2, 3 at half filling with U = 8 and
Lx = 128.

order defined as

B(x, y, x′, y′) = 〈(nx,y,↑ − nx,y,↓)(nx′,y′,↑ − nx′,y′,↓)〉, (16)

where (x, y) and (x′, y′) are nearest-neighbor sites. Note that
the isotropic spin bond order is equal to (16) up to a factor 3/4
because the ground state of the 3-3-2-2 ladder geometry has
spin S = 0.

Figure 19 shows DMRG results for this spin bond order.
We see that the spin bond is much stronger between the
nearest-neighbor spins on the first leg than all other spin
bonds. This suggests that each nearest-neighbor pair on the
first leg builds a strong singlet which is then weakly coupled
to the rest of the system. The second and third legs build
an effective two-leg ladder. This structure is illustrated in
Fig. 19(b). This (partial) decoupling of the first leg from the
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FIG. 18. Spin correlation function C+−
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3-3-2-2 geometry at half filling for various values of U . The inset
shows the derived correlation length ξ as a function of U .
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FIG. 19. (a) Spin bond order between nearest-neighbor sites
for the 3-3-2-2 ladder at half filling with U = 8 and Lx = 128.
(b) Schematic illustration of the 3-3-2-2 configuration.

other two legs explains the similarities between the 3-3-2-2
system and two-leg ladders that we observe, in particular the
pair binding of two added electrons.

IV. CONCLUSION

The alternation between gapped and ungapped spectra in
uniform ladder systems has been of profound importance
in condensed matter physics [11,33–39]. The focus of the
present work was to explore spin and charge properties of
novel Hubbard ladder systems whose geometry consists of
alternating numbers of sites per rung and thus ‘mix’ the
structures which are associated with these two situations.
Analogs of such structures, chains with spins alternating
between S = 1/2 and S = 1, have revealed a number of
unexpected phenomena driven by a competition between
half-integer and integer spin physics, including transitions
between antiferromagnetic and ferromagnetic behavior as the
temperature is varied [40–43]. Here we can investigate such
physics for itinerant electrons rather than quantum spins, in
geometries which combine features of odd and even rung
systems. Our consideration of the Hubbard rather than the
Heisenberg Hamiltonian also allows us to consider the effects
of the unique zero energy bands associated with bipartite
lattices with unequal number of sites per sublattice. Our find-
ings are consistent with available analytical results for such
geometries [9,10].
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Investigating two different geometries has allowed us to
isolate the effects of unequal sublattice site numbers from
that of a periodically varying number of sites per rung. We
have found that the low-energy properties of the two three-leg
ladder systems at half filling differ radically. The magnetic
properties of an alternating ladder with unequal number of
sites in each sublattice are similar to those predicted for the
Hubbard model on a Lieb lattice. The ground state has a total
spin S proportional to the system size and the electron spins
are ordered ferrimagnetically. Thus this is a rare example of
long-range magnetic order in a one-dimensional quantum sys-
tem with short-range interactions. Moreover, we have found
that electron or hole pairs added to the half-filled system do
not seem to bind. In contrast, the properties of the alternating
ladder with equal number of sites in each sublattice resemble
the properties found in two-leg ladders because the spins on
the depleted leg tends to build strong singlets. The ground
state is paramagnetic and nondegenerate. Added electron and
hole pairs tend to bind with a binding energy that seems to be
set by the size of the spin gap.

Past investigations of uniform spin and fermion ladders
already revealed profoundly different low-energy magnetic
properties, e.g., depending on the number of legs [12]. At-
tention subsequently turned to refinements including DMRG
calculations that revealed transitions between gapped para-
magnetic and ferrimagnetic phases in two-leg ladders with
alternating spin-1/2 and spin-1 degrees of freedom [40,44–
46]. Our work shows that ladders with varying number of sites
per rung exhibit a similar rich physics, including long-range
magnetic order, while being amenable to well-established
methods for one-dimensional quantum many-body systems.

It will be interesting to explore further aspects of the
physics of uniform ladders in our alternating geometry, in-
cluding both how pairing correlations decay [47,48], and also
the nature of spin correlations in the vicinity of magnetic
impurities [49].
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APPENDIX A: HOMOGENEOUS THREE-LEG LADDER

Here we review some results for homogeneous noninter-
acting three-leg ladders and detail the method that we also
use to study the alternating ladder geometries in Sec. II. The
structure of the homogeneous three-leg ladder lattice is shown
in Fig 20. It consists of three chains, with intra-chain hopping
t and inter-chain hopping t ′. We focus on the band structure
and DOS of this system with t = t ′ = 1 for both noninteract-
ing and interacting cases.

If we use periodic boundary conditions in the leg direction
and the noninteracting Hamiltonian (1) is periodic with period
d in that direction, we can write it as a sum

H0 =
∑

k

Hk (A1)

t

t ’

FIG. 20. Homogeneous three-leg ladder with intra-leg hopping
term t and interleg hopping term t ′.

of commuting many-body operators Hk . Each Hk acts only on
the single-particle Bloch states with the wave number

k = 2π jd

Lx
(A2)

in the first Brillouin zone where the quantum number j sat-
isfies −Lx/(2d ) < j � Lx/(2d ). Lx is the number of rungs
and Nc = Lx/d is the number of unit cells or equivalently the
number of wave numbers k. The Bloch states are given by the
transformation

d†
k,x,y,σ =

√
d

Lx

Lx/d∑
n=1

c†
x+nd,y,σ exp(ikn). (A3)
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FIG. 21. (a) Band structure for the noninteracting homogeneous
3-leg ladder with t = t ′ = 1. (b) Corresponding density of states on
each leg y = 1, 2, 3. Note that N (E , 1) = N (E , 3).
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where x = 1, . . . , d . For the homogeneous three-leg ladder,
we have d = 1. Each many-body Hamiltonian Hk acts on as
many single-particle states as there are sites in one unit cell.
For the homogeneous three-leg ladder, this dimension is three.
Thus we obtain the 3 × 3 matrix representation of Hk for
single-particle states

H (1)
k =

⎛⎝−2t cos(k) −t ′ 0
−t ′ −2t cos(k) −t ′
0 −t ′ −2t cos(k)

⎞⎠.

(A4)

In order to gain some insight into this system, we calculate
the single-particle eigenenergies by diagonalizing this matrix,
which leads to three bands with the dispersion relation

Ek,b = −2t cos(k) + εb (A5)

where εb = 0,±√
2t ′. The index b (= 1, 2, 3) numbers the

bands. The band structure is shown in Fig. 21(a).

As we consider a homogeneous ladder with inequivalent
legs, it is useful to calculate the leg-resolved DOS

N (E , y) = 1

Nc

∑
k,b

|ψk,b(y)|2δ(E − Ek,b) (A6)

for y = 1, 2, 3 rather than the total DOS (4). Here ψk,b(y)
represents the eigenvector of the matrix (A4) corresponding
to the eigenenergy Ek,b and Nc = Lx. The DOS for the ho-
mogeneous three-leg ladder is plotted in Fig. 21(b). It shows
six Van Hove singularity peaks for the first and third leg,
with N (E , 1) = N (E , 3). The DOS on the second leg exhibits
only four singularities because the band (A5) with εb = 0 is
antisymmetric under reflection in the y-direction and thus the
corresponding single-particle eigenstates vanish on the middle
leg, ψk,b(x, y = 2) = 0. For all finite values of t and t ′, the
system is metallic, i.e., there is at least one band crossing
the Fermi level EF = 0 at half filling.

APPENDIX B: HAMILTONIAN MATRIX FOR THE NONINTERACTING 3-3-2-2 LADDER GEOMETRY

The single-particle matrix representation H (1)
k of the Hamiltonians Hk for the noninteracting 3-3-2-2 ladder geometry is the

following 10 × 10 matrix with t̃ j = t j exp(ik):

H (1)
k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −t1 0 0 0 −t5 0 0 0 t̃15

−t1 0 −t2 0 −t4 0 0 0 t̃14 0
0 −t2 0 −t3 0 0 0 0 0 0
0 0 −t3 0 −t6 0 0 0 0 0
0 −t4 0 −t6 0 −t7 0 −t8 0 0

−t5 0 0 0 −t7 0 −t9 0 0 0
0 0 0 0 0 −t9 0 −t10 0 −t12

0 0 0 0 −t8 0 −t10 0 −t11 0
0 −̃t∗

14 0 0 0 0 0 −t11 0 −t13

−̃t∗
15 0 0 0 0 0 −t12 0 −t13 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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