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Interplay of flat electronic bands with Holstein phonons
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Existing quantum Monte Carlo studies have investigated the properties of fermions on a Lieb (CuO2) lattice
interacting with on-site or near-neighbor electron-electron coupling. Attention has focused on the interplay of
such interactions with the macroscopic degeneracy of local zero-energy modes, from which Bloch states can be
formed to produce a flat band in which energy is independent of momentum. The resulting high density of states,
in combination with the Stoner criterion, suggests that there should be pronounced instabilities to ordered phases.
Indeed, a theorem by Lieb rigorously establishes the existence of ferrimagnetic order. Here we study the charge
density wave phases induced by electron-phonon coupling on the Lieb lattice, as opposed to previous work on
electron-electron interactions. Our key result is the demonstration of charge density wave phases at one third
and two thirds fillings, characterized by long-range density-density correlations between doubly occupied sites
on the minority or majority sublattices, and an accompanying gap. We also compute the transition temperature
to the ordered phase as a function of the electron-phonon coupling.
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I. INTRODUCTION

A number of periodic tight-binding lattices contain a
macroscopic degeneracy of local, zero-energy eigenstates
which arise from the perfect cancellation of hopping for an
appropriately phased occupation state [1,2]. These include the
kagome, sawtooth, Creutz, diamond-octagon, square-octagon,
and decorated honeycomb lattices and, finally, the dice lattice,
where the phenomenon was first noted [3]. One of the most
prominent examples is the Lieb lattice, shown in Fig. 1, which
is of special interest as the structure of the CuO2 planes of the
cuprate superconductors.

The existence of these “compact localized states” is a
property of the noninteracting system. Several years after
their discovery, it was pointed out that precise statements can
be made concerning the role of repulsive electron-electron
interactions in flat-band systems. Specifically, the existence
of a ferrimagnetic ground state can be rigorously established
[4]. Subsequent work further investigated flat-band ferro-
magnetism [5–8]. The effect of attractive electron-electron
interactions is also of interest [9–12], especially since the
momentum at which Bose-Einstein condensation of fermionic
pairs might occur is uncertain in a flat band [13–15].

Flat bands have also been considered within the context
of the fractional quantum Hall effect [16], Chern insulating
behavior [17], Tomonaga-Luttinger liquids [18], and Haldane
phases [19]. Perhaps the most dramatic explosion of theo-
retical and computational interest coincided with the recent
discovery that bilayer graphene, when twisted at a “magic
angle” of about 1.1◦, displays unconventional superconduc-
tivity (SC), which is likely closely linked to the appearance
of a nearly dispersionless bands in the effective moiré pattern
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lattice [20–25]. This SC is characterized by a ratio of critical
temperature to Fermi temperature higher than the cuprates.

In addition to realizations in these solid-state materials,
flat-band physics has also been explored in photonic Lieb
lattices [26,27] and optical Lieb [28,29], kagome [30], and
honeycomb [31] lattices.

Here we investigate the phases of interacting electron-
phonon systems for flat electronic bands [32]. Specifically,
we study the Holstein Hamiltonian on a Lieb lattice. Al-
though there are suggestive analogies between the Holstein
model and the attractive Hubbard model, the former has a
nontrivial frequency-dependent coupling which distinguishes
the two situations, the most significant consequence of which
is the presence of a finite-temperature phase transition even on
two-dimensional (2D) lattices, which are the most commonly
investigated flat-band geometries. It is only in the extreme
antiadiabatic limit, where the phonon frequency is one to two
orders of magnitude larger than the electronic bandwidth, that
the Holstein and attractive Hubbard models become quantita-
tively equivalent [33].

The structure of this paper is as follows: After introduc-
ing the model (Sec. II) and computational methodologies
(Sec. III), we show the behavior of the compressibility, dou-
ble occupancy, spectral function, and charge density wave
structure factor (Sec. IV). Together these observables point to
the formation of a gapped charge density wave (CDW) state
below a critical temperature Tc, whose value we determine
using finite-size scaling. The final section summarizes our
findings.

II. HOLSTEIN MODEL

The Holstein model [34] we consider consists of a col-
lection of electrons, described by fermionic creation and
destruction operators d̂†

iσ , d̂iσ hopping between near-neighbor

2469-9950/2020/102(23)/235152(9) 235152-1 ©2020 American Physical Society

https://orcid.org/0000-0002-8794-7605
https://orcid.org/0000-0002-0521-3692
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.235152&domain=pdf&date_stamp=2020-12-23
https://doi.org/10.1103/PhysRevB.102.235152


CHUNHAN FENG AND RICHARD T. SCALETTAR PHYSICAL REVIEW B 102, 235152 (2020)

FIG. 1. The Lieb lattice geometry. Additional sites (blue and
green) are added to the midpoint of each of the bonds linking the
sites of a square lattice (red). The resulting structure is bipartite and
has three sites per unit cell. Note especially that the red sublattice
contains only half as many sites as the sublattice comprising blue
and green sites. The blue-green pattern of sites surrounding one of
the vacancies illustrates a zero-energy mode. See the text for more
details.

sites on the Lieb lattice shown in Fig. 1. The electron
density on each site, n̂i = n̂i↑ + n̂i↓, with n̂iσ = d̂†

iσ d̂iσ , where
i denotes lattice sites and σ is the spin index, couples linearly
to the displacement x̂i of a local quantum oscillator degree of
freedom. The Hamiltonian is therefore

H = − t
∑
〈i,j〉,σ

(d̂†
iσ d̂jσ + H.c.) − μ

∑
i,σ

n̂iσ

+ 1

2

∑
i

(
p̂2

i + ω2
0 x̂2

i

) + λ
∑
i,σ

x̂in̂iσ . (1)

We have set the oscillator mass M = 1 and will also use units
in which h̄ = kB = 1 and the hopping amplitude t = 1. The
chemical μ = −λ2/ω2

0 corresponds to half filling.
The Lieb lattice Hamiltonian is sometimes studied with an

additional “charge transfer” term in the form of an energy
difference between the sites on the two sublattices. We do
not include such a term here. Its inclusion would favor one of
the two degenerate CDW phases and preempt the spontaneous
symmetry-breaking phase transition which is our focus here.

The electronic density of states in the absence of the
electron-phonon interactions is given in Fig. 2. The δ-function
spike at E = 0 reflects the macroscopic degenerate collection
of local E = 0 vectors |ψ〉 constructed by forming a state
with equal amplitude and opposite phases on the four blue
and green sites surrounding any vacant site on the Lieb lattice
(see Fig. 1). All these |ψ〉 have the property K̂|ψ〉 = 0, where
K̂ is the first (hopping) term in Eq. (1). The band structure is
given in Fig. 3

When λ �= 0, the qualitative physics of the Holstein model
is as follows: At low densities individual electrons distort the
lattice sites in their vicinity. The resulting composite particle,

FIG. 2. The density of states of the Lieb lattice. Energy levels of
two dispersing bands bracket the δ-function peak at E = 0. Particle-
hole symmetry is reflected in the property N (E ) = N (−E ).

a “polaron,” possesses an increased effective mass, reflecting
the fact that when the electron hops between sites, the oscilla-
tor degrees of freedom must reconfigure themselves [35–39].
These dressed quasiparticles tend to attract one another since
the distortion caused by one provides a favorable environment
for another. Indeed, solving the t = 0 Holstein model, one
can see an effective attraction Ueff = −λ2/ω2

0 exists between
spin-up and -down fermions. This independent site form is
consistent with the interaction between electrons mediated
by a phonon propagator, Veff (ω) = λ2/( ω2 − ω2

0 ), if one sets
ω = 0.

The pairs of up and down electrons which arise from this
attraction can participate in ordered phases. One possibility,
which dominates on half-filled (ni,σ = 1/2) bipartite lattices
with equal numbers of sites in the two sublattices, such as
square and honeycomb geometries, is a CDW arrangement in
which pairs occupy one of the two sublattices. CDW forma-
tion is energetically favorable because, by surrounding itself

FIG. 3. The band structure of the Lieb lattice.
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with empty sites, a pair of electrons has the optimal ability
for virtual hopping processes to adjacent sites, thereby lower-
ing its energy by J ∼ −zt2/Ueff , where z is the coordination
number. This situation is similar to that giving rise to antifer-
romagnetic order in the half-filled repulsive Hubbard model.

Another possible ordered state occurs when the pairs con-
dense into a superconducting phase. This is expected to
occur when the system is doped away from fillings which
favor CDW order and has been studied with, for example,
Eliashberg theory [40–45]. Quantum Monte Carlo (QMC)
simulations have given indications of pairing as well [46–48].

In this paper, we consider the CDW transition in the Hol-
stein model on the Lieb lattice. We set the phonon frequency
ω0/t = 1 to facilitate comparisons with most of the existing
QMC literature [46,47,49–56]. This historical choice was, in
part, made as a simple starting point to explore the qualitative
physics of the CDW and SC transitions but also because it
facilitated the determinant quantum Monte Carlo (DQMC)
simulations, which are known to exhibit long autocorrelation
times at ω0/t � 1/2. Recent algorithmic improvements have
made possible the study of smaller ω0 [57–61].

III. COMPUTATIONAL METHODOLOGIES

A. Mean-field theory

We use the adiabatic approximation, ignoring the p̂2
i term,

and assume a staggered pattern of phonon displacements with
the ansatz xi = x0 − � for sublattice A and xi = x0 + � for
sublattice B/C. Inserting this ansatz into Eq. (1), the resulting
quadratic fermion Hamiltonian can be diagonalized. Then the
free energy is a function of x0, �, and inverse temperature β,

F = 1

2
Nω2

0

(
x2

0 + �2 + 2

3
Nx0�

) − 1

β

∑
α,σ,k

ln (1 + e−βεα ),

(2)

where

εα =
{

λ� + λx0 − μ,

±
√

(λ�)2 + 4t2
(
cos2 kx

2 + cos2 ky

2

) + λx0 − μ

are the three fermion energy bands and k = (kx, ky) are al-
lowed momentum vectors. At a fixed temperature T , we
determine the (x∗

0 , �∗) which minimize F . Results obtained
by this approach will be presented in the next section.

B. Determinant quantum Monte Carlo

Although much insight can be gleaned from mean-field
theory (MFT), especially concerning the possible types of or-
der, it has a number of well-understood defects, especially an
overestimate of the tendency to long-range order arising from
ignoring fluctuations. This is particularly evident in lattice
models like the Hubbard and Holstein Hamiltonians, where
it fails to distinguish two separate energy scales. The first is
the temperature T ∼ U at which local moments (in the case
of repulsive interactions) or pairs (in the case of attractive
interactions) form. The second is the temperature at which
intersite ordering occurs. Since the former grows linearly with
the interaction strength U and the latter falls as 1/U , MFT
overestimates Tc by a far wider margin at strong coupling than

in simpler classical descriptions of long-range order such as
the Ising model.

To provide a more accurate treatment of the electron-
phonon correlations, we turn to the use of the DQMC
methodology [62,63]. In this approach, the full imaginary
time propagator e−βĤ is written as a product of incremental
factors e−�τĤ. This discretization allows for the “Trotter” ap-
proximation, e−�τĤ ≈ e−�τĤ1 e−�τĤ2 , with Ĥ = Ĥ1 + Ĥ2.
The purpose of dividing up the imaginary-time evolution
is that the matrix elements of the individual pieces can be
evaluated analytically. In particular, upon the introduction of
complete sets of phonon states, the fermionic trace in the
resulting quadratic form of fermionic operators can be per-
formed, leaving a trace over a phonon field x(i, τ ) which
depends on both spatial site i and imaginary time slice τ .
The integrand has both a bosonic piece from the quantum
oscillator term in Ĥ and a product of two determinants (one
from each spin species) which depend on x(i, τ ). For the
Holstein model, because the up and down species couple to
the phonon coordinate in the same way, the determinants are
identical. The fermion sign problem is absent in the resulting
square of determinants. x(i, τ ) is sampled stochastically.

DQMC treats interacting quantum Hamiltonians exactly.
The sole (controlled) approximation is in the discretization of
β. With the usual choices of �τ the associated errors are eas-
ily made smaller than those arising from the sampling. (The
exception is for local quantities like the energy and double
occupancy whose statistical errors are extremely small. For
these observables, a �τ → 0 extrapolation is straightforward
to perform.) Simulations are carried out on lattices of finite
size, necessitating a finite-size scaling analysis, as described
below.

We focus on several local observables, the density ρ =
〈n̂i〉 and double occupancy D = 〈n̂i↑n̂i↓〉, and on the CDW
structure factor, the Fourier transform of the real-space
density-density correlation function.

S(q) =
∑

r

c(r) eiq·r,

(3)
c(r) = 〈�n̂i+r �n̂i 〉

where �n̂i = ∑
σ �n̂i,σ = ∑

σ n̂iB,σ + n̂iC,σ − 2n̂iA,σ is the
charge density difference within a unit cell, labeled by i. When
only the A or B/C sublattice is occupied, corresponding to
one third or two thirds filling, the dominant S(q) will be
Scdw = S(0, 0).

The spectral function A(r, ω) is obtained by an analytic
continuation of the nonequal-time Green’s function

G(r, τ ) = 〈 ĉi+r,σ (τ )ĉi,σ (0) 〉
= 〈 eτĤĉi+r,σ (0)e−τĤĉi,σ (0) 〉,

G(r, τ ) =
∫

dωA(r, ω)
e−ωτ

eβω + 1
. (4)

We report the Fourier transform of the spectral function at zero
distance, a quantity which is the analog of the noninteracting
density of states in a correlated system.
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FIG. 4. Mean-field order parameter �∗ as a function of temper-
ature T/t at half filling, μ = − λ2

ω2
0

= −4. Here and in all subsequent

figures ω0/t = 1. For T > Tc ∼ 1.9t , the MFT critical temperature
�∗ = 0, and each site has ρi = 1/2 per spin. For T < Tc there are
two degenerate values of � = ±�∗ which minimize F . These cor-
respond to 1/2 − dρ and 1/2 + dρ (and hence the average density
is half filled). (See Fig. 5 and the text for more discussion.)

DQMC has been used to explore various properties of the
attractive and repulsive Hubbard models on the Lieb lattice
[15,64,65] but has not yet been used for the Holstein model.

IV. RESULTS

A. Mean-field theory

We first explore the effect of electron-phonon interac-
tion by using the mean-field theory approach described in
Sec. III A. Since the λxini term in the mean-field Holstein
Hamiltonian can be viewed as a chemical potential λxi acting
on site i, a nonzero bond dimerization � implies a stag-
gered pattern of electron density, i.e., a CDW phase. We set
μ = − λ2

ω2
0

so that the lattice is half filled. The corresponding

x0 = − λ

ω2
0
.

The value �∗ which minimizes F is plotted as a function
of temperature T in Fig. 4. For T > Tc ∼ 1.9t , the order
parameter �∗ = 0, and there are equal sublattice densities
ρA = ρB/C = 1/2 per spin (see also Fig. 5). Below Tc, we
find there is a degenerate pair of nonzero solutions ±�∗ and
distinct densities ρA; ρB/C on the two sublattices. We denote
the densities per spin on the whole lattice, i.e., averaged over
sublattices, (ρA + 2ρB/C ) / 3, by 1/2 ± dρ. The two signs are
associated with the two signs ±�∗. A change in sign of �∗
can be viewed an interchange A ↔ B/C of the high- and
low-occupation sublattices. Since the numbers of sites in the
two sublattices are unequal, this also shifts the density on the
whole lattice (unlike the more conventional cases of square
and honeycomb bipartite lattices).

Perfect CDW order, in which 1/2 ± dρ = 1/3, 2/3 and
(ρA; ρB/C ) = (1, 0) or (0,1), requires the absence of both
thermal (T → 0) and quantum (λ2/ω2

0 → ∞) fluctuations.
In Fig. 4, �∗ increases to a maximal value �∗ ∼ 1.85 at
zero temperature. �∗ = 2 would yield a perfect CDW pattern.
That �∗ < 2 reflects the presence of some residual quantum
fluctuations: λ2/ω2

0 is finite. Not surprisingly, in Fig. 5, the

6420
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FIG. 5. Black solid (−�∗) and dashed (+�∗) curves denote the
electron density per spin on the whole lattice, ρ. Blue and red give
densities on the two sublattices ρA and ρB/C . The horizontal axis
is temperature T . For T > Tc ∼ 1.9t , the MFT critical temperature,
each sublattice has ρA = ρB/C = 1/2 per spin. For T < Tc, there are
two degenerate states. The densities bifurcate into two curves associ-
ated with the pair of degenerate values ±�∗ of the order parameter.

density per spin ρB/C (red) is closer to the perfect CDW state,
ρ = 0 (empty) or ρ = 1 (doubly occupied), than the density
ρA (blue). This is because sites A have twice as many nearest
neighbors as sites B/C. The larger number of hoppings t
produce more quantum fluctuations.

All MFT results presented in this paper are obtained on
a 3 × (40 × 40) Lieb lattice with a dimensionless electron
phonon coupling constant λD ≡ λ2

ω2
0W

= √
2/2. Here W =

4
√

2t is the fermion bandwidth for a Lieb lattice in the nonin-
teracting limit. We will see later the MFT Tc ∼ 1.9 t is more
than an order of magnitude higher than Tc given by DQMC.

For different chemical potentials μ, we follow the same
steps to determine (x∗

0,�
∗) minimizing the free energy and

find �∗ > 0 (ρ = 1/3 CDW pattern) when μ < − λ2

ω2
0
; �∗ < 0

(ρ = 2/3 CDW pattern) when μ > − λ2

ω2
0
. The electron den-

sity can be obtained by n = ∑
α,k

1
1+eβεα

. Figure 6 shows the
density ρ per spin as a function of chemical potential μ.
As temperature is lowered, plateaus at ρ = 1/3 and ρ = 2/3
develop, indicating that a 1/3 filling CDW pattern and its
partner at 2/3 filling extend over a finite range of μ, which
is consistent with the DQMC results below. A similar phe-
nomenon is also observed in the “t-V model” of spinless
fermions interacting with a nearest-neighbor repulsion on a
Lieb lattice [66].

B. Determinant quantum Monte Carlo

We now turn to DQMC results. We begin with the spectral
function in Fig. 7. At high temperatures (small β) A(ω = 0)
is nonzero. A gap is fully formed at βc t ∼ 6, suggesting a
transition to an insulating CDW phase.

A more accurate determination of the location of the CDW
transition is obtained by a finite-size scaling analysis of Scdw.
Because the low-temperature phase involves occupying one of
two spatial sublattices, it breaks Z2 symmetry, and therefore,
the transition should be in the Ising universality class. Using
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FIG. 6. Density per spin ρ as a function of chemical potential
μ within MFT. Temperature T = 2t > Tc, and ρ(μ) is smooth. For
temperature T = t < Tc the density ρ(μ) (per spin) has plateaus at
ρ = 1/3, 2/3 corresponding to a nonzero CDW gap. The sublattice
spin occupations are shown in Fig. 5. When �∗ > 0, there are a
smaller number of A sites with ρ > 1/2 and a larger number of B/C
sites with ρ < 1/2, and the total density ρ ∼ 1/3 (see text) and vice
versa for �∗ < 0.

the known 2D Ising critical exponents ν = 1 and γ /ν = 7/4
yields the finite-size scaling plots of Fig. 8. We find βc t =
6.4 ± 0.1. If we eschew this knowledge and instead vary the
critical exponents and minimize the scatter of the data collapse
plot, the resulting γ /ν is within 5% of the 2D Ising value. An
example of such an analysis (for the honeycomb lattice) is
given in [53].

The real-space density correlations c(r) provide additional
insight into the nature of the CDW order. Figures 9 and 10
give color intensity plots of c(r) for different temperatures
and initializations of the phonon displacement x(i, τ ). More
specifically, if we start the phonon displacement at x0 − �

(with � > 0), the fermion density on that site tends to be high,
while a displacement x0 + � is associated with a low density.
At high temperatures, the correlations are independent of the
starting configuration, and c(r) = 〈ni+rni〉 = 〈ni+r〉〈ni〉 ∼ 1.

FIG. 7. The spectral function A(ω) = 1
N

∑
k A(k, ω) determined

in DQMC calculations. A gap opens at the Fermi surface ω = 0
as the temperature is lowered (β increases). This provides a rough
estimate of Tc.

FIG. 8. Left: The scaled structure factor is plotted versus β for
three lattice sizes. The crossing gives the position of the CDW
transition. Right: If the horizontal (inverse temperature) axis is also
scaled, a full data collapse is obtained.

Short-range correlations begin to develop at β t ∼ 6, and a
strong alternation between c(r) ∼ 4, where r connects a pair
of doubly occupied sites, and c(r) ∼ 0, where one of the sites
is empty, becomes apparent. In the case of the initialization
in the ρ = 1/3 state (Fig. 9) with only sublattice A sites
occupied, density correlations referenced to an A site (top
panel) show the alternation, whereas if they are referenced to
an unoccupied B site (bottom panel) all c(r) become small.
Conversely, for initialization in the ρ = 2/3 state (Fig. 10)
with sublattice B/C sites occupied, density correlations refer-
enced to a B site (bottom panel) show the alternation, whereas
if they are referenced to an unoccupied A site (top panel) all
c(r) become small.

Another way to examine the evolution into one of two
possible ground states, characterized by distinct densities, is to
begin several simulations with constant density ρ = 1/2 per
spin and examine the final densities achieved. Figure 11 shows
the result for four such simulations. At small β the lattice
remains half filled, but as β increases, the lattice falls into
either the ρ = 1/3 or ρ = 2/3 minimum. The tendency for
this splitting begins about β ∼ 5. For 5 � β � 9 the data tend
to fill the region between the upper and lower densities. This
happens because at finite temperatures and on finite lattices,
tunneling between the two minima can occur in the course of a
simulation. Depending on the relative amount of time spent at
ρ = 1/3 and ρ = 2/3, the average density can take different
values. For β � 9 very little tunneling occurs, and the data
instead lie on just one of the two bounding lines. Note that the
order parameter depends on β, so that the increasing width of
the ρ curves reflects the growth of the CDW order parameter
below βc.

It is important to emphasize a subtlety of the physics.
Although the simulations in Fig. 11 were done at the chemical
potential μ = −λ2/ω2

0, which should give ρ = 1/2 per spin
by particle-hole symmetry, the symmetry is broken, and there
are two low-temperature phases with ρ = 1/3 and ρ = 2/3.
This is precisely analogous to a simulation of a magnetic
(e.g., Ising) model at zero external field. Although symmetry
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FIG. 9. Density-density correlation for a 3 × (4 × 4) Lieb lattice at ω0 = 1, λ = 2(λD = √
2/2). The simulation was initialized with a

phonon displacement field appropriate to being in the ρ = 1/3 minimum with dominant A sublattice (“copper sites”) occupation. Top:
Correlations between each site and the Cu site in the bottom left unit cell. Bottom: Correlations between each site and the B/C sublattice
(“oxygen sites”) in the bottom left unit cell.

demands magnetization M = 0, below Tc there are two phases
with M = ±M∗.

Plots of the density ρ versus chemical potential μ (Fig. 12)
also reveal the CDW phase. At high temperatures ρ evolves
smoothly between the empty and fully packed limits, tran-
siting half filling at the particle-hole symmetry point μ =
−λ2/ω2

0. At temperatures below the CDW transition, a plateau
develops in which the compressibility κ = dρ/dμ vanishes.

However, unlike the situation on a bipartite lattice in which
each sublattice has equal numbers of particles, the plateau is
bifurcated by an abrupt jump as the system transitions from
occupation of the minority to majority sublattice.

Figure 13 is similar to Fig. 11, except showing the
double occupancy D. At low β (high T ), D = 〈ni↑ni↓〉 ∼
〈ni↑〉〈ni↓〉 ∼ 1/4. As T decreases below the pair binding scale
Ueff = λ2/ω2

0 ∼ 4, pairs begin to form on half the sites (D ∼

0

1

2

3

4

FIG. 10. Same as Fig. 9, except starting in the ρ = 2/3 minimum.
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FIG. 11. Density per spin ρ as a function of β at λD = √
2/2.

Data for four different random seeds are shown. A spontaneous
symmetry breaking begins to occur at β ∼ 5. See text for details.
The vertical dashed line is the value of βc determined from FSS of
Scdw.

0.5). At larger β a CDW pattern emerges in which D = 0 or
D = 1 depending on which sublattice is occupied.

Figure 14 is the phase diagram of the Holstein model on
a Lieb lattice in the plane of temperature-dimensionless cou-
pling constant. We also make a comparison to several other
geometries. A striking feature of the plot is that the honey-
comb and Lieb lattice values are so close. Naively, one might
have argued that the δ-function divergence of the Lieb lattice
flat-band density of states would lead to a large Tc, especially
when compared to the semimetallic case of the honeycomb
lattice. However, the explanation is clear: The Lieb lattice
CDW order really occurs for ρ = 1/3 and ρ = 2/3, where
it has Dirac cones much like the honeycomb lattice. Thus,
the only difference is that the honeycomb lattice coordination
number z = 3, whereas for the Lieb geometry the average co-
ordination number is slightly smaller, z̄ = 2/3(2) + 1/3(4) =
8/3. Obtaining the weak-coupling behavior of Tc is a nontriv-
ial analytic calculation. It has been done for the 2D square
lattice, yielding good agreement with DQMC simulations
similar to those reported here [67].

FIG. 12. Density per spin ρ vs chemical potential μ for sev-
eral different β obtained in DQMC simulations. Here λ = 2, (λD =√

2/2).

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

FIG. 13. Double occupancy D vs β at λ = 2(λD = √
2/2) for

a 3 × (4 × 4) lattice and μ = −λ2/ω2
0. Data for four different ran-

dom seeds are shown. The vertical dashed line is the value of βc

determined from FSS of Scdw. At high T (small β), electrons are
uncorrelated, and D ≈ 〈ni↑〉〈ni↓〉 ∼ 0.25 on every site i. As T de-
creases, pairs begin to form on half the sites, leaving the other half
empty, and the double occupancy increases to D ∼ 0.5. Finally, as T
is further lowered, below 1/βc, 1/3, and 2/3 filling CDW patterns are
revealed, with distinct values of D on the two sublattices, reflecting
spontaneous symmetry breaking.

V. CONCLUSIONS

We have studied the charge density wave transition for
the Holstein model on a Lieb lattice. Our interest was in
establishing results for the effect of compact localized states
(flat bands) on ordered phases driven by the electron-phonon
interaction, in analogy with the body of work which exists for
electron-electron interactions (primarily the Hubbard model).

The behaviors of the occupation, double occupation, spec-
tral function, and charge structure factor have been obtained
quantitatively and used to infer a phase diagram of critical
temperature versus coupling constant.

We emphasize as well that our results for electron-
phonon interactions on a Lieb lattice differ from those for
electron-electron interactions [15] in a fundamental way. The
degeneracy of the superconducting and CDW orders at half

FIG. 14. Critical temperatures for the Lieb lattice (this work) and
the honeycomb [53] and square lattices.
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filling in the half-filled attractive Hubbard model implies
the absence of long-range order except in the ground state
(Mermin-Wagner). This symmetry is broken in the Holstein
model. As a consequence there is a finite CDW Tc even on
two-dimensional geometries. This is already well known for
the square and honeycomb lattices.
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[50] M. Vekić and S. R. White, Gap formation in the density
of states for the Holstein model, Phys. Rev. B 48, 7643
(1993).

[51] M. Weber and M. Hohenadler, Two-dimensional Holstein-
Hubbard model: Critical temperature, Ising universality, and
bipolaron liquid, Phys. Rev. B 98, 085405 (2018).

[52] N. C. Costa, M. V. Araújo, J. P. Lima, T. Paiva, R. R. dos
Santos, and R. T. Scalettar, Compressible ferrimagnetism in the
depleted periodic Anderson model, Phys. Rev. B 97, 085123
(2018).

[53] Y. X. Zhang, W. T. Chiu, N. C. Costa, G. G. Batrouni, and R. T.
Scalettar, Charge Order in the Holstein Model on a Honeycomb
Lattice, Phys. Rev. Lett. 122, 077602 (2019).

[54] B. Cohen-Stead, N. C. Costa, E. Khatami, and R. T. Scalettar,
Effect of Strain on Charge Density Wave Order in the Holstein
Model, Phys. Rev. B 100, 045125 (2019).

[55] C. Chen, X. Y. Xu, Z. Y. Meng, and M. Hohenadler,
Charge-Density-Wave Transitions of Dirac Fermions Coupled
to Phonons, Phys. Rev. Lett. 122, 077601 (2019).

[56] B. Xiao, N. C. Costa, E. Khatami, G. G. Batrouni, and R. T.
Scalettar, Charge Density Wave and Superconductivity in the
Disordered Holstein Model, arXiv:1910.08703.

[57] C. Chen, X. Y. Xu, J. Liu, G. Batrouni, R. Scalettar, and Z. Y.
Meng, Symmetry-enforced self-learning Monte Carlo method
applied to the Holstein model, Phys. Rev. B 98, 041102(R)
(2018).

[58] S. Beyl, F. Goth, and F. F. Assaad, Revisiting the hybrid quan-
tum Monte Carlo method for Hubbard and electron-phonon
models, Phys. Rev. B 97, 085144 (2018).

[59] G. G. Batrouni and R. T. Scalettar, Langevin Simulations of a
Long Range Electron Phonon Model, Phys. Rev. B 99, 035114
(2019).

[60] G. G. Batrouni and R. T. Scalettar, Quantum Monte Carlo
with the Langevin Equation: Coupled Bose-Fermi Systems,
Commun. Comput. Phys. 1290, 012004 (2019).

[61] Y. Zhang, C. Feng, G. G. Batrouni, and R. Scalettar (unpub-
lished).

[62] R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Monte Carlo
calculations of coupled boson-fermion systems. I, Phys. Rev. D
24, 2278 (1981).

[63] S. Sorella, S. Baroni, R. Car, and M. Parinello, A Novel
Technique for the Simulation of Interacting Fermion Systems,
Europhys. Lett. 8, 663 (1989).

[64] N. C. Costa, T. Mendes-Santos, T. Paiva, R. R. dos Santos, and
R. T. Scalettar, Ferromagnetism beyond Lieb’s theorem, Phys.
Rev. B 94, 155107 (2016).

[65] W. S. Oliveira, N. C. Costa, J. Pimentel de Lima, and R. R. dos
Santos, Classical and quantum percolation on the Lieb lattice
(unpublished).

[66] M. Bercx, J. S. Hofmann, F. F. Assaad, and T. C. Lang, Sponta-
neous particle-hole symmetry breaking of correlated fermions
on the Lieb lattice, Phys. Rev. B 95, 035108 (2017).

[67] J. K. Freericks and D. J. Scalapino, Weak-coupling expansions
for the attractive Holstein and Hubbard models, Phys. Rev. B
49, 6368 (1994).

235152-9

https://doi.org/10.1103/PhysRevB.101.205103
https://doi.org/10.1016/0003-4916(59)90002-8
https://doi.org/10.1103/PhysRevB.48.6302
https://doi.org/10.1103/PhysRevB.60.14080
https://doi.org/10.1103/PhysRevB.65.174306
https://doi.org/10.1103/PhysRevB.69.024301
https://doi.org/10.1103/PhysRevB.88.060301
https://doi.org/10.1103/PhysRevB.40.197
https://doi.org/10.1007/BF00118329
https://doi.org/10.1007/BF00752333
https://doi.org/10.1209/epl/i2001-00492-x
https://doi.org/10.1016/j.aop.2020.168190
https://doi.org/10.1038/s42005-020-00413-2
https://doi.org/10.1103/PhysRevLett.66.778
https://doi.org/10.1103/PhysRevB.46.271
http://arxiv.org/abs/arXiv:2011.11703
https://doi.org/10.1103/PhysRevB.39.4711
https://doi.org/10.1103/PhysRevB.48.7643
https://doi.org/10.1103/PhysRevB.98.085405
https://doi.org/10.1103/PhysRevB.97.085123
https://doi.org/10.1103/PhysRevLett.122.077602
https://doi.org/10.1103/PhysRevB.100.045125
https://doi.org/10.1103/PhysRevLett.122.077601
http://arxiv.org/abs/arXiv:1910.08703
https://doi.org/10.1103/PhysRevB.98.041102
https://doi.org/10.1103/PhysRevB.97.085144
https://doi.org/10.1103/PhysRevB.99.035114
https://doi.org/10.1088/1742-6596/1290/1/012004
https://doi.org/10.1103/PhysRevD.24.2278
https://doi.org/10.1209/0295-5075/8/7/014
https://doi.org/10.1103/PhysRevB.94.155107
https://doi.org/10.1103/PhysRevB.95.035108
https://doi.org/10.1103/PhysRevB.49.6368

