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Charge density wave order on a π-flux square lattice
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The effect of electron-phonon coupling on Dirac fermions was recently explored numerically on a honeycomb
lattice, leading to precise quantitative values for the finite temperature and quantum critical points. In this paper,
we use the unbiased determinant quantum Monte Carlo method to study the Holstein model on a half-filled
staggered-flux square lattice and compare the results with the honeycomb lattice geometry, presenting results
for a range of phonon frequencies 0.1 � ω � 2.0. We find that the interactions give rise to charge density wave
order, but only above a finite coupling strength λcrit . The transition temperature is evaluated and presented in a
Tc-λ phase diagram. An accompanying mean-field theory calculation also predicts the existence of a quantum
phase transition, but at a substantially smaller coupling strength.
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I. INTRODUCTION

The physics of massless Dirac points, as exhibited in the
band structure of the honeycomb lattice of graphene, has
driven intense study [1–4]. The square lattice with π flux
per plaquette is an alternate tight-binding Hamiltonian which
also contains Dirac points in its band structure. Initial inves-
tigations of the π -flux model focused on the noninteracting
limit [5], but as with the honeycomb lattice, considerable
subsequent effort has gone into extending this understanding
to incorporate the effect of electron-electron interactions.
Numerical simulations of the Hubbard Hamiltonian with an
on-site repulsion U between spin-up and spin-down fermions,
including exact diagonalization [6] and quantum Monte Carlo
(QMC) [7–14], revealed a quantum phase transition at Uc ∼
5.55t into a Mott antiferromagnetic (AF) phase in the chiral
Heisenberg Gross-Neveu universality class. For a spinless
fermion system with near-neighbor interactions a chiral Ising
Gross-Neveu universality class is suggested [15]. These re-
sults have been contrasted with those on a honeycomb lattice,
which has a similar Dirac point structure, although at a smaller
critical interaction Uc ∼ 3.85t [11].

In the case of the repulsive Hubbard Hamiltonian, there
were two motivations for studying both the honeycomb and
the π -flux geometries. The first was to verify that the quantum
critical transitions to AF order as the on-site repulsion U
increases share the same universality class, that of the Gross-
Neveu model. The second was to confirm that an intermediate
spin-liquid phase between the semimetal and AF phases [16],
which had been shown not to be present on a honeycomb
lattice [17], was also absent on the π -flux geometry.

Studies of the SU(2) π -flux Hubbard model have also
been extended to SU(4), using projector QMC [18], and to
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staggered flux where ±π hopping phases alternate on the
lattice [19]. In the former case, the semimetal to AF order
transition was shown to be replaced by a semimetal to va-
lence bond solid transition characterized by breaking of a
Z4 symmetry. In the latter work, an intermediate phase with
power-law decaying spin-spin correlations was suggested to
exist between the semimetal and AF.

A largely open question is how this physics is affected in
the presence of electron-phonon rather than electron-electron
interactions. A fundamental Hamiltonian, proposed by
Holstein [20], includes an on-site coupling of electron density
to the linear displacement of the phonon field. In the low-
density limit, extensive numerical work has quantified polaron
and bipolaron formation, in which electrons are “dressed” by
an accompanying lattice distortion [21–28]. At sufficiently
large coupling, electrons or pairs of electrons can become
“self-trapped” (localized). One of the most essential features
of the Holstein model is that the lattice distortion of one
electron creates an energetically favorable landscape for other
electrons, so that there is an effective attraction mediated by
the phonons. At higher densities, collective phenomena such
as charge density wave (CDW) phases and superconductivity
(SC) have been widely studied [24,29–36]. The CDW is
especially favored on bipartite lattices and at fillings which
correspond to double occupation of one of the two sublattices.
SC tends to occur when one dopes away from these commen-
surate fillings.

Recent work on the Holstein model on the honeycomb
lattice suggested a quantum phase transition from semimetal
to gapped CDW order [37,38], similar to the results for the
Hubbard Hamiltonian. However, a key difference between the
Hubbard and Holstein models is the absence of the SU(2)
symmetry of the order parameter in the latter case. Thus, while
long-range AF order arising from electron-electron interaction
occurs only at zero temperature in two dimensions, the CDW
phase transition induced by electron-phonon coupling can
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occur at finite temperature: the symmetry being broken is that
associated with two discrete sublattices. For classical phonons
(ω0 = 0), the electron-phonon coupling becomes an on-site
energy in the mean-field approximation. In the antiadiabatic
limit where phonon frequencies are set to infinity, the Holstein
model maps to the attractive Hubbard model.

Here we extend the existing work on the effect of electron-
phonon coupling (EPC) on Dirac fermions from the hon-
eycomb geometry to the π -flux lattice. The π -flux state is
realized by threading half of a magnetic flux quantum through
each plaquette of a square lattice [39]. Recently, it was ex-
perimentally realized in optical lattices using Raman-assisted
hopping [40]. There are also theoretical suggestions that the
π -flux lattice might be engineered by the proximity of an
Abrikosov lattice of vortices of a type-II superconductor or
via spontaneously generating a π flux by coupling fermions
to a Z2 gauge theory in (2 + 1) dimensions [41]. The π -flux
hopping configuration has an additional interesting feature
motivating our current work: it is the unique magnetic field
value which minimizes the ground-state energy for noninter-
acting fermions at half-filling on a bipartite lattice. Indeed,
Lieb showed that this theorem is also true at finite temperature
and furthermore holds in the presence of Hubbard interactions
[42]. Here we consider the thermodynamics of the π -flux
lattice with EPC.

This paper is organized as follows: in the next section,
we describe the Holstein model and the π -flux square lattice.
Section III presents, briefly, a mean-field theory (MFT) for the
model. Section IV reviews our primary method, determinant
quantum Monte Carlo (DQMC). Section V contains results
from the DQMC simulations, detailing the nature of the CDW
phase transition, both the finite-temperature transition at fixed
EPC and the quantum phase transition, which occurs at T = 0
with varying EPC. Section VI contains our conclusions.

II. MODEL

The Holstein model [20] describes conduction electrons
locally coupled to phonon degrees of freedom,

Ĥ = −
∑
〈i,j〉,σ

(ti,j d̂†
iσ d̂jσ + H.c.) − μ

∑
i,σ

n̂i,σ

+ 1

2M

∑
i

P̂2
i + ω2

0

2

∑
i

X̂ 2
i + λ

∑
i,σ

n̂i,σ X̂i. (1)

The sums on i and σ run over all lattice sites and spins
σ =↑,↓. 〈i, j〉 denotes nearest neighbors. d̂†

iσ and d̂iσ are
creation and annihilation operators of electrons with spin σ on
a given site i; n̂i,σ = d̂†

iσ d̂iσ is the number operator. The first
term of Eq. (1) corresponds to the hopping of electrons Kel,
with chemical potential μ. The next line of the Hamiltonian
describes optical phonons, local quantum harmonic oscillators
of frequency ω0, and phonon position and momentum opera-
tors, X̂i and P̂i, respectively. The phonons are dispersionless
since there are no terms connecting X̂i on different sites of
the lattice. The phonon mass M is set to unity. The electron-
phonon coupling is included in the last term. We set hopping
|ti,j| = t = 1 as the energy scale and focus on half-filling
(〈n̂〉 = 1), which can be achieved by setting μ = −λ2/ω2

0.
It is useful to present results in terms of the dimensionless

A

B

FIG. 1. π -flux phase on a 6 × 6 square lattice. Sublattices A and
B are shown by solid and open circles. Bonds in red correspond to
hopping t ′ = −t , the opposite of black lines with hopping t . Arrows
represent the basis vectors.

coupling λD = λ2/(ω2
0W ), which represents the ratio of the

effective electron-electron interaction obtained after integrat-
ing out the phonon degrees of freedom, and W is the kinetic
energy bandwidth.

The two-dimensional π -flux phase on a square lattice is
schematically shown in Fig. 1. All hoppings in the x direction
are t , while half of the hoppings along the y direction are set to
t ′ = teiπ = −t , where the phase π in the hopping amplitude
arises from the Peierls prescription for the vector potential
of the magnetic field. As a consequence, an electron hopping
on a contour around each plaquette picks up a total phase π ,
corresponding to one half of a magnetic flux quantum �0 =
hc/e per plaquette. The lattice is bipartite, with two sublattices
A and B. Each unit cell consists of two sites. In reciprocal
space, with the reduced Brillouin zone (|kx| � π, |ky| � |kx|),
the noninteracting part of Hamiltonian (1) can be written as

Ĥ0 =
∑
kσ

ψ̂
†
kσ H0(k)ψ̂kσ

, (2)

where

ψ̂kσ = (d̂Aσ d̂Bσ )T (3)

and the noninteracting Hamiltonian matrix

H0(k) =
(

0 2tcoskx + 2itsinky

2tcoskx − 2itsinky 0

)
. (4)

The energy spectrum Ek = ±2t
√

cos2 kx + sin2 ky describes
a semimetal with two inequivalent Dirac points at K± =
(±π/2, 0), shown in Fig. 2. In the low-energy regime of the
dispersion, the density of states (DOS) vanishes linearly near
the Dirac point where Ek = 0, as shown in Fig. 3. The band-
width of the π -flux phase is W = 4

√
2 t . In Fig. 3 the DOS

of the honeycomb lattice is shown for comparison. The Dirac
Fermi velocity is vF = 2t (1.5t) for the π -flux (honeycomb)
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FIG. 2. The dispersion relation Ek for the π -flux phase on a
square lattice. There are two Dirac points at (kx, ky ) = (±π/2, 0).
The bandwidth for the π -flux model is W = 4

√
2t .

lattice. Near the Dirac point, the DOS ρ(ω) ∼ |ω|/vF, and the
π -flux model has a smaller slope.

III. MEAN-FIELD THEORY

In this section, we present a mean-field theory approach to
solve the Holstein model. Semimetal to superfluid transitions
were previously investigated with MFT in two and three
dimensions [43,44]. Here we focus on the semimetal to CDW
transition. In the mean-field approximation, the phonon dis-
placement at site i is replaced by its average value, modulated
by a term which has opposite signs on the two sublattices,

〈Xi〉 = X0 ± Xmf (−1)i. (5)

Here X0 = −λ/ω2
0 is the “equilibrium position” at half-filling,

and Xmf is the mean-field order parameter. When Xmf = 0,
phonons on all sites have the same average displacement, in-
dicating the system remains in the semimetal phase, whereas
when Xmf 	= 0, the last term in the Hamiltonian (1), i.e.,
λ

∑
i,σ n̂i,σ X̂i, becomes an on-site staggered potential, which

corresponds to the CDW phase. The phonon kinetic energy

FIG. 3. The density of states for the π -flux phase square lattice
and the honeycomb lattice. The bandwidths are nearly identical, but
the honeycomb lattice has a substantially larger slope of the linear
increase of the DOS.

FIG. 4. MFT Tc for the CDW phase transition as a function of
dimensionless coupling λD for the square lattice with no magnetic
flux, the π -flux phase square lattice, and the honeycomb lattice. For
the geometries with a Dirac spectrum MFT captures the existence
for a QCP, a critical value of λD below which there is no CDW order
even at T = 0, and the absence of a QCP for the conventional square
lattice.

term is zero as a result of the static field. The resulting static
mean-field Hamiltonian is quadratic in the fermion operators.
Diagonalizing gives energy eigenvalues εn(Xmf ). The free
energy F can then be directly obtained by

F (β, Xmf ) = − 1

β

∑
n

ln(1 + e−βεn ) + Nω2
0

2

(
X 2

0 + X 2
mf

)
. (6)

Minimizing the free energy with respect to Xmf (or, equiva-
lently, a self-consistent calculation) will determine the order
parameter. Xmf is found to be zero at high temperatures: the
energy cost of the second term in Eq. (6) exceeds the energy
decrease in the first term associated with opening of a gap
in the spectrum εn. Xmf becomes nonzero below a critical
temperature Tc.

Tc for the π -flux lattice is shown in Fig. 4, along with
the result of analogous MFT calculations for the honeycomb
and (zero-flux) square geometries. The lattice size L = 180
is chosen for all three models. This is sufficiently large that
finite-size effects are smaller than the statistical sampling
error bars. At zero temperature, the CDW order exhibits a
critical EPC for the π -flux and honeycomb lattices. This
quantum critical point (QCP) arises from the Dirac fermion
dispersion, which has a vanishing DOS at the Fermi energy.
The honeycomb lattice QCP has a smaller critical value. How-
ever, when measured in units of the Fermi velocity, the ratios
λD,crit/vF = 0.13 and 0.14 are quite close for the honeycomb
and π -flux geometries, respectively. We will see this is also
the case for the exact DQMC calculations. For the square
lattice, on the other hand, the DOS has a Van Hove singularity
at the Fermi energy, and the CDW develops at arbitrarily small
coupling strength.

Another feature of the MFT phase diagram is that, as
the coupling increases, Tc increases monotonically. This is
in contrast to the exact DQMC results, where Tc decreases

205139-3



ZHANG, GUO, AND SCALETTAR PHYSICAL REVIEW B 101, 205139 (2020)

at large coupling strengths. A similar failure of MFT is well
known for the Hubbard Hamiltonian where the formation
of AF ordering is related to two factors: the local moment
m2

z = (n↑ − n↓)2 = 1 − 2〈n↑n↓〉 and the exchange coupling
J ∼ t2/U . The double occupancy 〈n↑n↓〉 is suppressed by the
interaction, resulting in the growth of the local moment. Thus,
upon cooling, the Hubbard model has two characteristic tem-
peratures: the temperature of local moment formation, which
increases monotonically with U , and the AF ordering scale,
which falls with J . Since the interaction is simply decoupled
locally and the exchange coupling is not addressed, within
MFT the formation of the local moments and their ordering
occur simultaneously. MFT thus predicts a monotonically
increasing Tc with U .

IV. DQMC METHODOLOGY

We next describe the DQMC method [45,46]. In evaluating
the partition function Z , the inverse temperature β is dis-
cretized as β = Lτ�τ , and complete sets of phonon position
eigenstates are introduced between each e−�τĤ. The phonon
coordinates acquire an “imaginary-time” index, converting the
two-dimensional quantum system to a (2 + 1)-dimensional
classical problem. After tracing out the fermion degrees of
freedom, which appear only quadratically in the Holstein
Hamiltonian, the partition function becomes

Z =
∫

Dxi,l e−Sph [det M(xi,l )]
2, (7)

where the “phonon action” is

Sph = �τ

[
1

2
ω2

0

∑
i

x2
i,l + 1

2M

∑
i

(
xi,l+1 − xi,l

�τ

)2
]
. (8)

Because the spin-up and spin-down fermions have cou-
pling identical to the phonon field, the fermion determinants
which result from the trace are the same, and the determinant
is squared in Eq. (7). Thus, there is no fermion sign problem
[47]. We use �τ = 0.1/t , small enough that Trotter errors
associated with the discretization of β are of the same order of
magnitude as the statistical uncertainty from the Monte Carlo
sampling.

V. DQMC RESULTS

A. Double occupancy and kinetic energy

We first show data for several local observables, the elec-
tron kinetic energy |Kel| = | ∑〈i,j〉,σ (ti,j d̂†

iσ d̂jσ + H.c.)| and
double occupancy D = 〈 ni↑ni↓ 〉. For a tight-binding model
on a bipartite lattice at half-filling, Lieb showed that the
energy-minimizing magnetic flux is π per plaquette, both for
noninteracting fermions and in the presence of a Hubbard U
[42]. Here we show |Kel| for the Holstein model, a case not
hitherto considered.

Figure 5 shows |Kel| (left panel) and D (right panel) as
functions of the dimensionless EPC λD for β = 6/t, 8/t, 10/t .
There is little temperature dependence for these local quanti-
ties. The magnitude of the kinetic energy |Kel| decreases as
λD grows, reflecting the gradual localization of the dressed
electrons (“polarons”).

FIG. 5. Left: The magnitude of electron kinetic energy |Kel| as
a function of EPC strength λD. Simulations are performed on a L =
10 lattice at inverse temperatures β = 6/t, 8/t, 10/t and fixed ω0 =
1.0t . Right: Double occupancy D as a function of EPC strength λD.

At the same time, the double occupancy D evolves from
its noninteracting value D = 〈 ni↑ni↓ 〉 = 〈 ni↑ 〉 〈 ni↓ 〉 = 1/4
at half-filling to D = 1/2 at large λD. In the strong-coupling
regime, we expect robust pair formation, so that half of the
lattice sites will be empty and half will be doubly occupied.

The evolution of D and |Kel| has the largest slope at λD ∼
0.42, which, as will be seen, coincides with the location of the
QCP between the semimetal and CDW phases.

B. Existence of long-range CDW order

The structure factor S(Q) is the Fourier transform of the
real-space spin-spin correlation function c(r),

S(Q) =
∑

r

eiQ·rc(r),

c(r) = 〈(ni↑ + ni↓) (ni+r↑ + ni+r↓)〉, (9)

and characterizes the charge ordering. In a disordered phase
c(r) is short range, and S(Q) is independent of lattice size.
In an ordered phase, c(r) remains large out to long distances,
and the structure factor will be proportional to the number of
sites at the appropriate ordering wave vector Q. At half-filling
S(Q) is largest at Q = (π, π ). We define Scdw ≡ S(π, π ).
Figure 6 displays Scdw as a function of inverse temperature
β at different phonon frequencies ω0 and coupling strengths
λD. The linear lattice size L = 6. At fixed ω0 and strong
coupling, Scdw grows as temperature is lowered and saturates
to Scdw ∼ N , indicating the development of long-range order
(LRO), i.e., the phase transition into the CDW phase. Note
that β = 10/t is always in the plateau region, suggesting the
correlation length has become larger than the lattice size and
the ground state has been reached. In the following, we use
β = 10/t to represent the properties at T → 0.

However, as λD is decreased sufficiently, Scdw eventually
shows no signal of LRO even at large β, providing an
indication that there is a QCP, with CDW order occurring
only above a finite λD value. Figure 6 also suggests that the
critical temperature Tc is nonmonotonic with increasing λD.
The values of β at which Scdw grows first shift downward but
then become larger again. This nonmonotonicity agrees with
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FIG. 6. The CDW structure factor of the π -flux phase Holstein
model as a function of inverse temperature β. The phonon frequen-
cies ω0 are (a) 0.1t , (b) 0.5t , (c) 1.0t , and (d) 2.0t . The lattice size
L = 6.

previous studies of Dirac fermions on the honeycomb lattice
[37,38]. We can estimate the maximum Tc to occur at λD ≈
0.71, 0.71, 0.86, and 0.78 for ω0 = 0.1t, 0.5t, 1.0t, 2.0t , re-
spectively. In the antiadiabatic limit ω0 → ∞, the Holstein
model maps onto the attractive Hubbard model, and Tc = 0
owing to the degeneracy of CDW and superconducting corre-
lations [29]. (The order parameter has a continuous symme-
try.) A recent study [48] has shown that ω0 � 102 t is required
to achieve the −U Hubbard model limit, a surprisingly large
value.

Figure 7(a) shows Scdw as a function of λ at fixed ω0 =
1.0t . At the highest temperature shown, β = 4/t , Scdw reaches
a maximum at intermediate coupling λ ∼ 2.0, then decreases
as λ gets larger. The region for which Scdw is large is a
measure of the range of λ for which the CDW ordering
temperature Tc exceeds β−1. As β increases, this range is
enlarged. Figure 7(b) is an analogous plot of Scdw as a function
of ω0 at fixed λ = 3.0. The two plots appear as mirror images
of each other since the dimensionless EPC λD = λ2/(ω2

0W )
increases with λ but decreases with ω0.

FIG. 7. Scdw (a) as a function of λ at fixed ω0 = 1.0t and (b) as
a function of ω0 at fixed λ = 3.0 at different inverse temperatures β.
Lattice size L = 6 is used.

FIG. 8. Comparison of the evolution of Scdw with coupling
strength by changing λ or changing ω0. Data are taken from
Figs. 7(a) and 7(b) for β = 5/t (left) and β = 8/t (right). The
difference is negligible at λD > 0.8 but not in the coupling regime
0.4 < λD < 0.8 near the QCP.

It is interesting to ascertain the extent to which the physics
of the Holstein Hamiltonian is determined by λ and ω0 sepa-
rately versus only the combination λD. Figure 8 addresses this
issue by replotting the data in Figs. 7(a) and 7(b) as a function
of λD for two values of the inverse temperature. For λD � 0.8,
the data collapse well, whereas at small λD, Scdw can vary
by as much as a factor of 2 even though λD is identical. It
is likely that this sensitivity to the individual value of λ and
ω0 is associated with proximity to the QCP.

We compare the semimetal to CDW transition with in-
creasing λD for the π -flux phase and honeycomb lattices in
Fig. 9. These data are at lower temperatures than those in
Fig. 8, so that the ground-state values of Scdw have been
reached for the system sizes shown.

FIG. 9. Scdw as a function of λD for (a) the π -flux phase square
lattice and (b) honeycomb model. The lattice size L = 6 is used
for both geometries. λD is varied by changing λ at fixed ω0 = 1.0t .
Scdw does not change for the lowest temperatures, indicating that the
ground state has been reached for this finite lattice size.
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FIG. 10. Heat map of the ground state values of Scdw in the
(λ, ω0) plane.

C. Ground state in the (λ,ω0) plane

Figure 10 provides another perspective on the dependence
of the CDW order on λ and ω0 individually by giving a heat
map of Scdw in the (λ, ω0) plane at low temperature. The bright
yellow in top left indicates a strong CDW phase, whereas the
dark purple region in the bottom right indicates the Dirac
semimetal phase. The phase boundary is roughly linear, as
would be expected if only the combination λD = λ2/(ω2

0W )
is relevant. We note, however, that this statement is only
qualitatively true. The more precise line graphs of Fig. 8
indicate that along the line λ = √

λD,critW ω0 ∼ 1.5ω0, the
separate values of λ and ω0 are relevant.

D. Finite-size scaling: Finite-T transition

A quantitative determination of the finite temperature and
quantum critical points can be done with finite-size scaling.
Figure 11 gives both raw and scaled data for Scdw for dif-
ferent lattice sizes L = 4, 6, 8, 10 at λ = 2.0, ω0 = 1.0t as a
function of β. Unscaled data are in Fig. 11(a): Scdw is small
and L independent at small β (high T ) where c(r) is short
range. On the other hand, Scdw is proportional to N = L2 at
large β (low T ), reflecting the long-range CDW order in c(r).
Figure 11(b) shows a data crossing for different L occurs
when Scdw/Lγ /ν is plotted versus β. A universal crossing is
seen at βt ∼ 3.80 ± 0.02, giving a precise determination of
critical temperature Tc. The two-dimensional Ising critical
exponents γ = 7/4 and ν = 1 were used in this analysis since
the CDW phase transition breaks a similar discrete symmetry.
Figure 11(c) shows a full data collapse when the β axis is
also appropriately scaled by L1/ν . The best collapse occurs at
βc = 3.80/t , consistent with the result from the data crossing.

In the region immediately above the QCP, the DQMC
values for Tc are roughly five times lower than those obtained
in MFT, and indeed, the MFT overestimation of Tc can be
made arbitrarily large at strong coupling. This reflects both the

FIG. 11. (a) The CDW structure factor Scdw as a function of β for
several lattice sizes. (b) The scaled CDW structure factor Scdw/Lγ /ν

as a function of β using Ising critical exponents γ = 7/4 and ν =
1, showing a crossing of different L at βc = 3.80/t . (c) SCDW/Lγ /ν

versus (β − βc )L, giving a best data collapse at βc = 3.80/t . Here
the parameters are λ = 2.0 and ω0 = 1.0 t .

relatively low dimensionality (d = 2) and the fact that MFT
fails to distinguish moment-forming and moment-ordering
temperature scales.

E. Quantum phase transition

Analysis of the renormalization group invariant Binder
cumulant [49],

B = 3

2

(
1 − 1

3

< S2
cdw >

< Scdw >2

)
, (10)

can be used to locate the quantum critical point precisely. Only
lattice sizes L = 4n, where n is an integer, can be used; for

FIG. 12. Binder cumulant as a function of EPC strength λD for
three lattice sizes. The inverse temperature is β = 2 L, and ω0 is fixed
at ω0 = 1.0t . Inset: Extrapolation of the crossings for pairs of sizes
as a function of 1/L to get the QCP in the thermodynamic limit.
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FIG. 13. Critical temperature Tc for the CDW phase transition,
obtained from DQMC for both the π -flux phase square lattice (blue
line) and the honeycomb lattice (red line), in a range of coupling
strength. λD is varied by changing λ at fixed ω0 = 1.0t for both
models. The quantum critical point is determined using Binder
cumulant analysis (discussed in the text). Data for the honeycomb
lattice are taken from [37]. Error bars are smaller than symbol size
for π -flux data.

other L the Dirac points are not any of the allowed k values,
and finite-size effects are much more significant. As exhibited
in Fig. 12, for L = 4, 8, and 12, B exhibits a set of crossings
in a range about λD ≈ 0.4. An extrapolation in 1/L, as shown
in the inset of Fig. 12, gives λD,crit = 0.371 ± 0.003.

F. Phase diagram

Location of the finite-temperature phase boundary
(Fig. 11) and the QCP (Fig. 12) can be combined into
the phase diagram of Fig. 13. Results for the π -flux geometry
(blue circles) are put in better context by comparison
with those of the honeycomb lattice (red triangles). Data
were obtained at fixed ω0 = 1.0t . In both geometries,
phase transitions into CDW order happen only above a

finite λD,crit . Beyond λD,crit , Tc rises rapidly to its maximal
value before decaying. For the π -flux model, Tc reaches
a maximum Tc,max/t ∼ 0.26 at λD ∼ 0.7, whereas for the
honeycomb lattice Tc reaches its maximum Tc,max/t ∼ 0.20 at
λD ∼ 0.5. Similarly, λD,crit for π flux is larger than that of the
honeycomb lattice, as λD,crit = 0.42 and 0.27, respectively.
When measured in terms of the relative Fermi velocities
vF = 2t, 1.5t for the π flux and honeycomb, respectively,
these values become very similar: λD,crit/vF = 0.21 and 0.18
for the π flux and honeycomb; Tc,max/vF = 0.13 and 0.13.

VI. CONCLUSIONS

This paper has determined the quantitative phase diagram
for Dirac fermions interacting with local phonon modes on
the π -flux lattice. A key feature, shared with the honeycomb
geometry, is the presence of a quantum critical point λD,crit

below which the system remains a semimetal down to T = 0.
The values of Tc and λD,crit for the two cases, when normalized
to the Fermi velocities, agree to within roughly 10%.

We have also considered the question of whether the prop-
erties of the model can be described in terms of the single
ratio λ2/ω2

0. We find that qualitatively, this is, indeed, the case
but that, quantitatively, the charge structure factor can depend
significantly on the individual values of EPC and phonon
frequency, especially in the vicinity of the QCP. However, this
more complex behavior is masked by the fact that Tc rises
so rapidly with λ in that region. In investigating this issue
we have studied substantially smaller values of ω0 than have
typically been investigated in QMC treatments of the Holstein
Hamiltonian.
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