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Charge density waves on a half-filled decorated honeycomb lattice
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Tight binding models like the Hubbard Hamiltonian are most often explored in the context of uniform intersite
hopping t . The electron-electron interactions, if sufficiently large compared to this translationally invariant t , can
give rise to ordered magnetic phases and Mott insulator transitions, especially at commensurate filling. The more
complex situation of nonuniform t has been studied within a number of situations, perhaps most prominently
in multiband geometries where there is a natural distinction of hopping between orbitals of different degree of
overlap. In this paper we explore related questions arising from the interplay of multiple kinetic energy scales
and electron-phonon interactions. Specifically, we use determinant quantum Monte Carlo (DQMC) to solve
the half-filled Holstein Hamiltonian on a “decorated honeycomb lattice,” consisting of hexagons with internal
hopping t coupled together by t ′. This modulation of the hopping introduces a gap in the Dirac spectrum and
affects the nature of the topological phases. We determine the range of t/t ′ values which support a charge density
wave phase about the Dirac point of uniform hopping t = t ′, as well as the critical transition temperature Tc. The
QMC simulations are compared with the results of mean field theory.
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I. INTRODUCTION

Itinerant electrons on a honeycomb lattice host a Dirac
spectrum in the absence of interactions which has attracted
considerable attention [1–6]. The linearly vanishing density
of states (DOS) at E = 0 forms an interesting counterpoint to
that of the square lattice (of interest to cuprate superconduc-
tivity) whose DOS diverges (logarithmically) at E = 0. An
immediate consequence is that whereas in the square lattice,
long-range antiferromagnetic (AF) correlations onset in the
ground state for any finite repulsive interaction U , a nonzero
critical Uc is required for AF order on the honeycomb lattice
[7,8].

Recently, the effects of electron-phonon interactions on
Dirac fermions have been explored [9,10]. Similar to the case
of electron-electron interactions, the semimetallic band struc-
ture requires a critical electron-phonon interaction strength
for charge density wave (CDW) formation at half filling. A
crucial difference is that unlike Neél order which occurs only
at T = 0 in the two-dimensional Hubbard model [11], owing
to the continuous nature of the spin symmetry being broken,
the CDW transition occurs at finite temperature.

In this paper we extend these investigations of the
Holstein model on a honeycomb lattice by examining the ef-
fect of a regular pattern of nonuniform hopping. The particular
“Kekulé hopping texture” we investigate has been proposed
[12] to give rise to nontrivial topological properties associated
with an opening of a gap at the Dirac point, and linked to
the “pseudo-angular-momentum” of electrons residing on sets
of strongly hybridized hexagons. Similar “decorated lattices”
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have been studied previously in the context of the depleted
square lattice Heisenberg [13] and Hubbard [14] Hamiltonians
as possible theoretical descriptions of spin-liquid phases in
CaV4O9 [15–19]. It was shown that while long-range anti-
ferromagnetic correlations exist in the ground state when the
hoppings t and t ′ are roughly balanced, spin-liquid phases
consisting of independent spin dimers or spin plaquettes are
present when the hoppings are sufficiently unequal. Within
mean field theory, a rich variety of spin-ordered phases,
characterized by different patterns of spin inside and between
the plaquettes, can arise as a function of doping and U in such
decorated Hubbard models [14].

Strongly correlated physics in the presence of several ki-
netic energy scales gives rise to a further variety of phenomena
in other important realizations, including orbitally selective
Mott transitions [20–26]. In the case of the periodic Anderson
model, which includes both conduction c and local d orbitals,
a dominant interorbital hopping tcd � tcc can lead to singlet
formation and a spin-liquid ground state [27,28], as seen
in quantum Monte Carlo studies in d = 1, 2, 3 and d = ∞
[29–32]. As in the less widely studied case of decoration, the
existence of several hopping energy scales whose difference
is large disrupts magnetic order. Most of these investigations
have focused on electron-electron interactions.

We will discuss some interesting analogies between the
spin-singlet formation in such situations and charge singlets
in the electron-phonon case. However, it is important to
emphasize that the Holstein model breaks the spin symmetry
present in the Hubbard model, with charge order (the analog
of ordering in the Sz channel) dominating over superconduct-
ing order (which maps onto Sx, Sy). As a result, the CDW
transition in the half-filled 2D Holstein model occurs at finite
temperature [33], whereas long-range magnetic order in the
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FIG. 1. The structure of the “decorated honeycomb lattice.” Two
different hopping strengths are present. Hybridization t (thin black
lines) links the sites of a collection of independent hexagons. These
hexagons are then connected by t ′ (thick blue lines). In the t ′ � t
limit, an alternate description in terms of elemental dimers linked by
t is a more appropriate starting point.

2D Hubbard model occurs only at T = 0. This breaking of
symmetry introduces a fundamental difference between the
physics of the repulsive Hubbard and Holstein models with
multiple hopping energy scales, which is especially marked
as the phonon frequency ω0 decreases.

This paper is organized as follows: Section II introduces
the precise model we will investigate, along with our com-
putational methodology. Section III discusses the results of
mean field theory (MFT) calculations, which we show capture
some of the tendency to reduced CDW order with nonuni-
form hoppings. Section IV contains the detailed determinant
quantum Monte Carlo (DQMC) results and analysis, and is
followed by some further discussion and interpretation in
Sec. V.

II. MODEL AND METHODS

We investigate the Holstein Hamiltonian,

Ĥ = −
∑
〈ij〉σ

tij
(
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

) − μ
∑
i σ

ni σ

+ 1

2

∑
i

p̂2
i + 1

2
Mω2

0

∑
i

x̂2
i + λ

∑
i

x̂i(n̂i↑ + n̂i↓). (1)

Here the kinetic energy sum is over sites on a hexagonal lat-
tice, with tij = t for pairs of sites internal to a set of hexagons,
and tij = t ′ for pairs of sites bridging distinct hexagons. See
Fig. 1. We will report lattice sizes N in terms of the number
of hexagons, i.e., the unit cell count. Figure 1 corresponds
to N = (3 × 3) × 6 = 54 sites. The remaining terms in Ĥ
consist of a collection of local quantum oscillators of fre-
quency ω0 (ω0 = 1 is used in all the simulations in this paper)
and an electron-phonon coupling λ of the fermionic charge
density n̂i↑ + n̂i↓ to the displacement x̂i. We will measure the
strength of the coupling via the dimensionless combination
λD ≡ λ2/(Mω2

0 W ). In the antiadiabatic limit ω0 → ∞, the
coupling λD can be thought of as the ratio of an effective
attraction between electrons mediated by the phonons, Ueff =
−λ2/(Mω2

0 ), to the kinetic energy scale W . The choice t =
1 + � and t ′ = 1 − 2� keeps the bandwidth W = 6 fixed as

� is varied, allowing us to study the effects of modulated
hopping while keeping λD constant. We set the phonon mass
M = 1 and tune the chemical potential μ = −λ2/ω2

0 to the
particle-hole symmetry point so that the filling is always
〈 ni σ 〉 = 1

2 .
We solve for the properties of Eq. (1) using two meth-

ods. The first is a mean field approach in which we make
an ansatz for the phonon coordinates. (See Sec. III.) The
resulting Hamiltonian is quadratic in the remaining fermion
degrees of freedom and can be solved analytically. The free
energy is minimized within the parameter space allowed in the
ansatz. The second approach is DQMC [34,35]. Unlike MFT,
it solves the many-body problem exactly, on finite lattices.
DQMC has statistical errors associated with the sampling,
which are on the order of 0.1% for local quantities like the
double occupancy and energy, but can be several percent
for global quantities like structure factors in the vicinity of
phase transitions. DQMC also has “Trotter errors” [36–39]
arising from the discretization of imaginary time. Because
these Trotter errors are of the same order as, or smaller than,
the statistical ones for the quantities we use in determining the
phase boundary, we do not perform any extrapolation in the
imaginary-time discretization. For all the work in this paper
we use �τ = 0.1.

Regardless of the value of �, the decorated honeycomb
lattice is bipartite, and hence the local fermionic pairs which
form due to the effective attractive interaction Ueff mediated
by the phonons tend to form a charge density wave phase at
half filling. Previous investigations have determined the phase
diagram in the λD-T plane for t = t ′ [9,10]. For ω0/t = 1,
there is a quantum critical point at (λD)c = 0.27 above which
CDW order forms in the ground state. Tc rises rapidly at (λD)c,
reaching a maximum value Tc/t ∼ 0.2 at λD ∼ 0.5. We are
interested here in the effect of the nonuniform hoppings �

on Tc and on (λD)c. In the limits � = 0.5 and � = −1 the
system separates into collections of independent hexagons
and dimers, making long-range order impossible and Tc = 0
trivially.

The two-site unit cell of the honeycomb lattice is ex-
panded by the decoration, so that now there are six bands.
Figure 2 shows E (�k) for the undecorated honeycomb lattice
t = t ′ (central panel), the dimer limit t < t ′ (top panel), and
the hexagon limit t ′ < t (bottom panel). In either case, the
touching of the two bands at the Dirac cones which occurs
at half filling and t = t ′ is replaced by a gap.

The associated densities of states (DOSs) for the three
cases are shown in Fig. 2 (right). Consistent with the dis-
persion relations of Fig. 2 (left), when � 
= 0, the linearly
vanishing DOS at E = 0 of the isotropic honeycomb lattice
is replaced with a gap.

The decorated lattice geometry of Fig. 1 has been proposed
as a generalization of the isotropic honeycomb lattice with a
topological gap opened by the difference between the inter-
and intra-plaquette hoppings [12]. The six resulting bands
can be viewed as arising from the six single-electron states
(“orbitals”) which exist on each independent (t ′ = 0) hexagon
and whose degenerate levels are broadened when t ′ 
= 0.
The topological nature is not like that induced by spin-orbit
coupling. Instead, it is similar to the 1D Su-Schrieffer-Heeger
model, which also contains weak and strong bonds. Domain
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FIG. 2. Left: Energy dispersion E (�k) in the noninteracting
(λ = 0) limit. The Dirac points of the two bands of the honeycomb
lattice, t = t ′ (middle panel), are split by the decoration t 
= t ′. In
both cases, t > t ′ and t < t ′, a gap is opened at half filling. See
text for a discussion of differences at other fillings. Right: Density
of states for the same three cases as left panel. A gap at half filling is
evident when t 
= t ′.

walls which arise from t 
= t ′ are associated with a gapless
boundary state.

Other versions of decoration exist. For example, Rüegg
et al. [40] have explored topological insulators of a tight-
binding Hamiltonian with spin-orbit and Rashba interactions
on a “star” lattice which interpolates between honeycomb and
kagome geometries. Similarly, when honeycomb rhodates like
Li2RhO3 are pressurized various bond dimerization patterns
emerge on the Rh hexagons, and are associated with different
magnetic patterns [41]. A final example is strained graphene,
in which the hoppings t1, t2, t3 along the three primitive lattice
vectors are allowed to be unequal [42–45].

As noted in the introduction, in quantum spin-1/2 and
itinerant electron Hamiltonians with repulsive interactions,
unequal hoppings tend to degrade long-range magnetic order.
It is worth discussing the relation between those (spin) singlet
phases and the disordered phases in the attractive Hubbard
model, since that has a close connection to the Holstein model
studied here; both exhibit CDW and superconducting phases
and a quantitative link is provided by Ueff = −λ2/ω2

0.
In particular, consider the well-known particle-hole trans-

formation (PHT) c†i↓ → (−1)ici↓ on the down-spin fermions.
On a bipartite lattice, and at μ = 0, this PHT leaves the kinetic
energy unchanged, but reverses the sign of the interaction

FIG. 3. Exact diagonalization results for the ground state charge,
〈 Sz

1Sz
2 〉, and superconducting, 〈 Sx

1Sx
2 〉, correlators (in magnetic lan-

guage) on a two-site Holstein dimer, as a function of ω0 at fixed
Ueff = −2.89. The vertical line at ω0 = 1 shows the phonon fre-
quency used in the phase diagram obtained in this paper. The dashed
horizontal line is the Hubbard model result at U = 2.89. It is notable
that values ω0/t � 1 are quite far from the limit where the spin
correlations (CDW-pairing correlations) are symmetric.

term. The different components of the spin operator map into
charge and pairing correlations,

Sz
i ≡ ni↑ − ni↓ → ni ≡ ni↑ + ni↓,

S+
i ≡ c†i↑ci↓ → �

†
i ≡ (−1)i c†i↑c†i↓,

S−
i ≡ c†i↓ci↑ → �i ≡ (−1)i ci↓ci↑. (2)

This PHT yields insight into some of the expected physics
in the presence of attractive interactions. In analogy with
the formation of spin singlets in the repulsive case, for the
attractive Hubbard and Holstein models we expect the devel-
opment of “charge singlets” in which the three components of
charge/pairing operators on the right side of Eq. (2) form local
objects on either dimers or hexagons. These charge singlets
might then compete with long-range CDW order when t and
t ′ differ too greatly.

With this said, it is worth emphasizing that the Holstein
↔ Hubbard mapping is exact only in the antiadiabatic limit
ω0 → ∞. Figure 3 shows the effect of finite phonon fre-
quency ω0 on the different components of Eq. (2). Symmetry
is restored as ω0 → ∞, but for the value ω0 = 1 used in
this paper, |〈 Sz

1Sz
2 〉| � |〈 Sx

1Sx
2 〉|. Thus, while the analogy to

magnetic physics is useful, it is far from clear how it will
manifest itself quantitatively. (The fact that these correlators
are less in magnitude than the singlet value −1/4 is due to
charge fluctuations. As U also becomes large, they approach
the Heisenberg limit − 1

4 so that �S1 · �S2 = − 3
4 .)

III. MEAN FIELD RESULTS

We first examine the physics of the Hamiltonian of Eq. (1)
within mean field theory. In this approach, we ignore the
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FIG. 4. Top: Dependence of Tc on λD of the decorated Holstein
model Eq. (1) within mean field theory. The CDW transition temper-
ature is maximized for isotropic hopping (� = 0), and is suppressed
on the dimer side � < 0 and the hexagon side (� > 0). Bottom:
Comparison of Tc given by MFT and classical Monte Carlo for a
classical lattice gas. The difference between exact Tc and MFT Tc is
more significant when � approaches the limiting cases � = −1 and
� = 0.5.

phonon kinetic energy and assume a staggered pattern for the
phonon displacements, xi = x0 + (−1)i x1. Here (−1)i = ±1
on the two sublattices of the (bipartite) honeycomb geome-
try. The quadratic fermion Hamiltonian can be diagonalized,
resulting in a total free energy per site which combines both
electron and phonon contributions, f (x0, x1, T ) = N ω2

0 (x2
0 +

x2
1 )/2 − T

∑
α ln( 1 + e−εα (x0,x1 )/T ), where εα are the fermion

energy levels. A nonzero bond dimerization x1 implies an as-
sociated charge modulation, since λxi acts as a local chemical
potential on site i.

The resulting phase diagram is shown in the top panel
of Fig. 4. Tc is decreased by decoration, as might be ex-
pected from the Stoner criterion and the opening of a true
gap (vanishing of the Fermi surface density of states in a
finite chemical potential range). However, for λD = 2

3 , the
effect is relatively small: Even in the extreme independent
hexagon and dimer limits, Tc(� = 0.5)/Tc(� = 0) = 0.965
and Tc(� = −1)/Tc(� = 0) = 0.822, respectively. The MFT
Tc is nonzero even though there can be no symmetry breaking
on small finite clusters. On the other hand, for smaller λD,
MFT results indicate that a critical � is needed in order to
have a CDW phase, which is consistent with the DQMC

results in Fig. 8. We have verified that for λD > 0.24, the
MFT results shown for (50 × 50) × 6 lattices change by less
than the thickness of the lines if the lattice size is decreased
to (4 × 4) × 6, an observation which aids in interpreting the
DQMC results of the next section, which are necessarily on
smaller lattices. At λD < 0.24, where Tc becomes small and
the CDW region is minute, finite-size effects, unsurprisingly,
become more pronounced.

It is interesting to contrast this with the behavior of the
simplest model of CDW physics in this geometry, the classical
lattice gas E = ∑

〈i j〉 Vi jnin j . Here ni = 0, 1 and we choose
Vi j = V0(1 + �) or Vi j = V0(1 − 2�), with the same geom-
etry and bond convention as in Fig. 1. The total coupling∑

j Vi j at each site i is independent of �, in analogy to fixing
the bandwidth W . The transition temperature as a function of
� is given in the bottom panel of Fig. 4. Within MFT, Tc is
completely independent of � because Tc is only a function of
the total, and invariant,

∑
j Vi j . The bottom panel of Fig. 4 also

gives the exact Tc (obtained by Binder crossings of classical
Monte Carlo simulations). The exact Tc does depend on �,
and can be seen to vary by a factor of 3 from its � = 0
value when � = −0.8 or � = +0.4, values which approach
the decoupled hexagon and dimer limits. Unlike the MFT
calculation, the exact Tc must vanish at � = −1 and � =
+0.5, and the lattice consists of independent clusters.

As we shall see in the following section, the MFT values
for the critical temperature of Fig. 4 (top) are an order of
magnitude larger than those of QMC. This is perhaps not
too surprising given the low dimensionality being studied. We
note that a similar comparison of phase diagrams for the 2D
Hubbard model revealed MFT in considerable disagreement
with DQMC [46].

IV. QUANTUM MONTE CARLO RESULTS

We now turn to the results of DQMC simulations which in-
clude fluctuations neglected in the preceding MFT treatment.
We begin by showing the charge structure factor,

Scdw = 1

N

∑
i, j

(−1)i+ j〈 nin j 〉, (3)

with (−1)i+ j = ±1 according to whether sites i, j are on the
same or different sublattices. In an ordered phase, T < Tc, we
expect Scdw to grow linearly with the lattice size since 〈nin j〉
is nonzero even for widely separated i, j pairs.

Figure 5 gives Scdw for several values of λD and lattice
sizes N at low temperature, β = 10. In a window about the
isotropic Holstein limit (� = 0), Scdw is large and increases
with lattice size, suggesting the presence of long-range charge
correlations for those values. Meanwhile, for large �, Scdw is
small and independent of size. Two quantum critical points
(QCPs) �c separate the CDW from charge singlet regions
at the two extremes of hopping difference � = −1.0 and
� = 0.5.

The difference

D ≡ Cnn − C′
nn ≡ 〈 nini+x̂〉t − 〈 nini+x̂〉t ′ (4)

between the near-neighbor density-density correlations Cnn on
the t and t ′ bonds provides a measure of the effect of hopping
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FIG. 5. Charge structure factor Scdw as a function of hopping
difference �. There is a window near the isotropic point � = 0 in
which Scdw is large and scales with system size, indicating long-range
charge order.

difference on the order. For � small, D is small. D rises
rapidly in the vicinity of the QCPs �c. See Fig. 6. Indeed,
dD/d� can be regarded as an “inhomogeneity susceptibility”
which diverges at T = 0 as � → �c.

Figures 5 and 6 focus on the low-temperature charge cor-
relations and identify the positions of the QCPs which bound
the CDW regions near the isotropic lattice limit. Within the
CDW, there is a finite-temperature phase transition as T is
decreased. Crossings of the scaled structure factor Scdw/Lγ /ν

are shown in Fig. 7 and identify Tc in the region of small �

where long-range order persists.
As discussed in the introduction, it seems natural to con-

nect the loss of charge order in this electron-phonon model
to analogous AF-singlet transitions in Hamiltonians describ-
ing quantum magnetism which have several exchange en-
ergy scales, e.g., the periodic Anderson and bilayer Hubbard
Hamiltonians, and the bilayer or random bond Heisenberg
Hamiltonians. We have used that language extensively in the
present paper, since it does constitute a useful touchstone.
However, the fact that a finite-temperature CDW transition
occurs in the Holstein model suggests care should be taken in

FIG. 6. Difference D between density correlation function on t
and t ′ bonds as a function of �. D rises steeply in the vicinity of the
CDW to charge singlet QCP.

5 6 7
0

1

2

3

4

5

6

7

S
cd

w
/L

7/
4

N=(3 3) 6
N=(4 4) 6
N=(5 5) 6

-10 -5 0 5
( -

c
)L

FIG. 7. Scaled structure factor Scdw/Lγ /ν as a function of β. The
scaling exponent γ /ν = 7/4 is taken to be the 2D Ising value, and
provides a good universal crossing. The crossing points identify
Tc = 1/βc.

emphasizing this connection, since the continuous symmetry
of the ordering direction forbids such a finite-T transition
in the 2D magnetic models. Indeed, Fig. 3 shows that the
parameters explored in Figs. 5–7 are in fact very far from the
regime where the analogy is precise.

Phase diagrams are obtained for fixed λD = 0.48, varying
t and t ′ (top panel), and fixed t = 0.9, t ′ = 1.2, varying λD

(bottom panel), in Fig. 8. It is numerically challenging to
attempt to extract Tc when it becomes too small. Nevertheless,
we can put reliable upper bounds on Tc by measuring Scdw

at large β and verifying that its value is consistent with
only short-range charge correlations. Doing simulations at β

up to β = 25 (temperature T = 0.04) strongly suggests that
similarly to the undecorated honeycomb case [9,10], there is a
nonzero critical coupling (λD)c ∼ 0.32, for t = 0.9, t ′ = 1.2,
as indicated along the T = 0 axis in the bottom panel of Fig. 8.
Correspondingly, for fixed λD = 0.48, large-β simulations
suggest there are critical hopping differences �c, as shown
in the top panel of Fig. 8. The presence of these QCPs is
further supported by their appearance in the MFT results
in Fig. 4.

The fitting curves in Fig. 8 (top and bottom panels) are
based on a simple cubic spline through the data and hence
are best regarded as “guides to the eye.” Since this is based on
an ad hoc functional form, there is considerable uncertainty in
the positions of the QCPs which are seen in the MFT treatment
(Fig. 4).

We conclude by examining the single-particle spectral
function, A(ω), which is related to the fermion Green’s func-
tion G(τ ) obtained in DQMC via

G(τ ) =
∫

dω
e−ωτ

eβω + 1
A(ω). (5)

A(ω) is the many-body analog of the single-particle density of
states, and hence carries information concerning the opening
of energy gaps in the excitation spectrum. We invert Eq. (5)
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FIG. 8. Top: Phase diagram of Tc as a function of � when
λD = 0.48. Tc reaches its maximum for isotropic hopping (� = 0),
and drops sharply on the dimer side � < 0 and the hexagon side
(� > 0). Bottom: Phase diagram of Tc as a function of λD when
t = 0.9, t ′ = 1.2 with (λD )c ∼ 0.32. As λD grows, Tc increases first,
as the electron-phonon coupling induces the CDW phase, but then
decreases as large values of the electron-phonon coupling cause the
polarons to become increasingly heavy [9,10]. The symbol along
the horizontal axis of the bottom panel is obtained by extrapolating
the sharp descent of the DQMC data for Tc, combined with low-
temperature simulations which show that the charge correlations are
short ranged.

via the maximum-entropy method [47]. Figure 9 gives A(ω)
for two values of hopping difference on opposite sides of the
CDW–charge singlet QCP. Despite the difference in the nature
of the ground state, A(ω) vanishes at the Fermi surface ω = 0
in both cases, as T is lowered. In the case of larger �, this

FIG. 9. Spectral function for the two cases � = −0.6 in the
charge liquid phase and � = −0.2 in the CDW phase.

reflects the presence of a charge singlet gap. In the case of
smaller �, this is a CDW gap. Similar behavior occurs on
the two sides of the antiferromagnetic spin-singlet QCP in the
multiband Hubbard model [48].

V. CONCLUSIONS

In this paper we have presented determinant quantum
Monte Carlo results for the Holstein model with modulated
hopping on a “decorated honeycomb lattice” which consists
of a collection of weakly coupled hexagons or, in the opposite
limit of the relative hybridizations, weakly coupled dimers.
Our key result was the determination of the evolution of the
charge density wave order as one moves away from uniform
hopping toward either of these extremes. This work represents
an extension of investigations of the competition between
magnetically ordered and spin-liquid phases in decorated
Hubbard Hamiltonians, to CDW–to–charge singlet transitions
in electron-phonon models. The effect of tx,y = (1 ± �) on
Scdw has also been recently studied in the anisotropic square
lattice Holstein Hamiltonian [49]. However, in this case the
modulation end points � = −1,+1 are decoupled, but still
infinite, linear chains. In the present work the end points � =
−1,+0.5 result in small independent clusters. As a result
of infinite clusters still being present, long-range order is
somewhat more robust to modulation in the square lattice
case.

The geometry we investigated has been proposed as a pos-
sible realization of a Z2 topological state associated with the
“artificial orbitals” of the independent hexagons. As discussed
in [12], it might be possible to implement this geometry
via the placement of a triangular lattice of CO molecules
on a Cu(111) surface. Our work has shown that in addition
to topological properties, electron-phonon interactions can
show a diverse set of charge-ordering behaviors on such
lattices.

The strong breaking of the pairing-charge degeneracy dis-
tinguishes the present work from previous magnetic analogs.
Specifically, what we demonstrate here is that despite the lack
of “rotational” symmetry, local objects which have (imper-
fect) singlet character nevertheless still form on the strong
bonds, and these ultimately lead to a loss of CDW order.
This nontrivial result could not be anticipated by magnetic
analogs where rotational symmetry is always exact. Indeed,
we have provided a precise quantification of the Holstein-to-
Hubbard mapping in the antiadiabatic limit. The data of Fig. 3
emphasize that the spin symmetry characterizing the Hubbard
model is violated by more than a factor of 5 for the Holstein
model at ω0/t = 1, by almost a factor of 2 at ω0/t = 10, and
even at ω0/t = 102 a difference of 5% remains.
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