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The advent of ultracold alkaline-earth atoms in optical lattices has established a platform for investigating cor-
related quantum matter with SU(N) symmetry, offering highly tunable model parameters that allow experiments
to access phenomena that are unavailable in conventional materials. Understanding the ground-state physics
of SU(N) Fermi-Hubbard models away from the Heisenberg limit and from the spin-flavor balanced setting
is important, as examining the flavor imbalance reveals new physics in Fermi-Hubbard models and shows
how SU(N) phases react to practical experimental imperfections in optical lattices. In this study, mean-field
phase diagrams are presented for the unit-density SU(3) Fermi-Hubbard model at two sets of flavor densities,
(% — 4, % + 4, %) and (% — 4, % + 4, %), with the flavor imbalance introduced as 8. Novel phases are identified
at moderate interaction strengths for both densities, and their robustness is investigated in the presence of flavor
imbalance. Furthermore, we provide microscopic explanations of the phases found and their stability. Analysis
of thermal ensembles of random mean-field solutions indicate that, at temperatures accessible in state-of-the-art
cold atom experiments, some spin orders are hard for conventional scattering or local observable measurements
to detect, but can be more accessible with quantum gas microscopy in optical lattice experiments. This work
also shows that nesting and Mottness, intertwined in the usual SU(2) Hubbard model in stark contrast to generic
materials, can be tuned in the SU(3) model and play distinct roles. The resulting phase diagrams not only deepen
our understanding of SU(N) Fermi-Hubbard models but also inform future experimental search for new phases.
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I. INTRODUCTION

The SU(N) Fermi-Hubbard model up to densities around
unit filling has been realized in alkaline-earth-atom (AEA)
optical lattices [1-5]. Various Mott insulators and magnetic
correlations have been observed [1-7]. Ongoing advances in
quantum gas microscopy [7—13] (QGM) are bringing us closer
to unraveling the physics of these models, but most of the
phase diagrams of these models remain unexplored. One key
goal is to elucidate ground-state properties in SU(N) systems,
particularly with the strong quantum fluctuations associated
with their enhanced symmetry. The extra spin degree of free-
dom in SU(N) systems also provides us opportunity to address
Hubbard physics in a more flexible way than standard SU(2)
Fermi-Hubbard models.

At unit density, the SU(N) Fermi-Hubbard model exhibits
richer physics than the SU(2) version [14-27]. In the spin-
balanced SU(2) model at unit density, the system is always
in the Néel antiferromagnetic state, even at arbitrarily small
U, due to the Fermi surface nesting. In contrast, SU(N)
models near unit density generally lack nesting unless one
flavor population is specifically brought to half-filling, and
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consequently a metallic phase survives at finite interaction
strength and one or more magnetic phases are expected. Fo-
cusing on the simplest case, N =3 in a two-dimensional
(2D) square lattice, studies (via exact diagonalization [28],
DMEFT [29,30], DMRG [31,32], and Monte Carlo simu-
lations [33-35]) have identified a metallic phase in the
weak-interaction regime and a three-sublattice magnetically
ordered state in the Heisenberg limit. Research [30,34—36] has
also suggested at least one intermediate phase between these
two limits.

Flavor imbalance gives an extra dimension to elucidate
the properties of SU(3) phases, including understanding
the competition among them and justifying their robust-
ness against the limitation in ongoing cold-atom experiments
[37-39]—not only in AEA optical lattices but also in potential
multi-component alkali atom [37,40] and ultracold molecule
[41,42] experiments. Flavor imbalance has been widely ex-
plored in the context of cold atoms, such as in Fermi gas
[43—46] or in Hubbard models slightly away from half-filling
[47]. In the attractive SU(2) Fermi gas, the FFLO phase in-
duced by spin imbalance is reported in theory [45,48-51] and
experiments [43]. In SU(2) Hubbard models, earlier inves-
tigations demonstrated that imbalanced hopping amplitudes
(or effective masses) [52,53] and spin polarization [54] can
produce diverse phase diagrams. Also, in SU(N) Hubbard
models, previous works indicate interesting physics when the
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Hamiltonian’s SU(N) symmetry is explicitly broken, such
as flavor-selective phases induced by spin-dependent on-site
interactions [4] and anomalous decay induced by component-
dependent loss rates [55]. By tuning flavor imbalance to break
the SU(N) symmetry in Fermi-Hubbard systems with N > 3,
we can gain valuable insights into these models and chart
new directions for cold atom experiments. On the other hand,
practical issues, such as imperfect pumping in optical lattice
experiments, can inadvertently introduce flavor imbalance of
up to a few percent [3,6], making it critical to assess how these
imbalances affect SU(N) experiment results.

Finally, adding flavor imbalance to the SU(N) Hubbard
models allows one to separate the effects of nesting and Mot-
tness (insulation driven by interactions at integer filling). In
1D, it is known that for N = 2 the Umklapp process induces
a transition at U = 0 to a Mott insulator, while for U > 0 the
(lowest order) Umklapp terms are irrelevant [S6-58], suggest-
ing a finite-U Mott transition in unit-density SU(N) Hubbard
models. In 2D, for the half-filled SU(2) Hubbard model on a
square lattice, the nesting enhances Fermi surface instabilities
and favors spin-density wave (SDW) order at the nesting
vector (7, ), while strong interactions suppress double oc-
cupancy, further solidifying the insulating behavior. For this
SU(2) system, nesting and Mottness necessarily coincide (a
rare coincidence not shared by generic materials or models)
for both spin flavors, but these are separate for SU(N) sys-
tems. While the effects of nesting and Mottness are separated
in certain SU(N) systems [59,60], adding spin imbalance to
these systems imparts further freedom in studying Mottness
versus nesting, as individual components can be nested sep-
arately, while retaining the Mott condition. Understanding
these systems could further illuminate the interplay of these
mechanisms in general Fermi-Hubbard models.

In this paper we calculate the flavor-imbalanced phase di-
agram of the SU(3) Fermi Hubbard model at the unit-density
regime based on the Hartree mean-field approximation. We
concentrate on two families of flavor densities: (; 8, 1

33 Lyand (1 796, 1 1+, 2) with § the portion of 1mbalance In
the former, for § not too large, none of the flavors are nested,
while in the latter, for any §, one flavor remains nested.

At moderate interaction strengths and for the flavor den-
sities (3 5,1 316, ) we identify three ordered phases for
5 =0 with qulte dlfferent robustness against flavor imbal-
ance, and show that this can be understood within a local
perturbative framework. When both the interaction strength
U and imbalance ratio § are sufficiently large, we additionally
find (;r, m) structure factor peaks, signifying the same Néel
ordering pattern as seen in the standard SU(2) model, despite
the absence of nesting in any spin flavor.

Two ground states are found for the (}1 — 6, 41'1 + 4, %) flavor
densities. The phase diagram with flavor imbalance reveals
how the SU(3) model transitions toward the SU(2) limit as two
of the flavors move closer to nesting: the calculations uncover
regions with phase separation that bridge the SU(3) and SU(2)
phases.

We also examine the thermal ensemble of mean-field states
at temperature currently achievable in leading AEA optical
lattice experiments. With the survey of random states thermal-
averaged according to their energies, we observe that certain

ordered phases are more readily detected at such temperatures
via scattering or measurements of local observables, whereas
others require more advanced techniques. Achieving lower
temperatures or employing QGM may be necessary to observe
these more elusive phases.

Although the mean-field calculations are an uncontrolled
approximation, they are expected to broadly offer a good
guide to the potential structures that can occur in the model,
and moreover they offer valuable guiding wave functions for
some quantum Monte Carlo methods that are free from the
sign problem, such as the constrained path quantum Monte
Carlo algorithm (CP-QMC), which can offer high-accuracy
calculations [61,62], extending the recent application on the
SU(3) flavor-balanced case [35].

Our paper is structured as follows. Section II introduces
the SU(N) Fermi-Hubbard models and the Hartree approxi-
mation we implement. Section III discusses phase diagrams
of the flavor-imbalanced SU(3) Hubbard model, both at zero
temperature and finite temperature. Section IV concludes.

II. MODEL AND METHOD

The SU(N) Fermi-Hubbard model on a 2D square lattice
is

H=—t Z Clo' ]o'+_ Z Ni o Ni,oy s (])

(i,)),0 i,01#0,

where ¢; , is the fermionic annihilation operator of spin flavor
o atsite i, n;, = cfgcl . 1s the corresponding number oper-
ator, (i, j) indicates pairs of nearest-neighbor sites, 7 is the
tunneling rate, and U is the interaction strength. In AEA opti-
cal lattice experiments, the spin-independent U arises because
the nuclear spin is decoupled from the electronic structure in
the ground state [63—65]. This Hamiltonian conserves individ-
ual spin flavor populations.

The Hartree approximation expands the particle number
operator around a mean-field value, i.e., 1, = (n;5) + 61 ¢,
and keeps fluctuations to the first order, giving

B U
H=—t Z i sCjo + 5 Z (Mo, (Miy) + (i) )i o)
(i.j).o i

i,
01702

- 5 Z ntm nzaz (2)

01?5(72

Therefore, the problem maps to an effective non-interacting
model in the presence of an external field, which can be
solved self-consistently, and the ground state is numerically
found. Periodic boundary conditions are utilized. Details of
calculations are presented in Appendix A.

III. RESULTS

In this section we present the Hartree mean-field results of
unit-density flavor-imbalanced SU(3) Fermi-Hubbard models.
We investigate flavor density deviations § from two config-
urations: a spin balanced case, so the imbalanced system is
characterized by flavor densities (% — 4, % + 4, %), and a case

033313-2



UNIT-DENSITY SU(3) FERMI-HUBBARD MODEL WITH ...

PHYSICAL REVIEW A 112, 033313 (2025)

FIG. 1. Ground states of the spin flavor balanced SU(3) Hubbard
model, where the three colors indicate the flavor that dominates at
each site. The three phases are the ground states at (a) tooth, U €
(3.5t,4.75t); (b) zig-zag, U € (4.75t,5.65t); (¢) stripe, U > 5.65¢.
The unit cells of lattice structure are enclosed with dashed lines. The
zig-zag phase holds an anisotropic charge density wave, as shown
in Appendix B 1. The Hartree calculation is performed on 12 x 12
systems.

with one component nested, so the flavors are (% — 4, }‘ +
5, h
b 2 .

A (3-831+351
1. Ground state

Three ordered phases at unit density are identified at the
spin flavor densities of (%, %, %), as shown in Fig. 1 and the
same as those found in Ref. [35], in addition to an unordered
metallic phase. Transitions among these three phases, named
tooth, zig-zag, and stripe in Fig. 1, are observed as U varies.
While the Heisenberg-limit solution stripe is seen in vari-
ous calculations [28,30-32], two other phases at moderate U
(tooth and zig-zag) were also discovered in Ref. [35], which
are described by 2 x 3 and 3 x 4 unit cells, respectively. We
characterize these phases by the spin flavor structure factor,
defined as
- 1 ek (Ri=R)

Sk.0) = 375 ?n,,an,,g)e : (3)
where k is a wave vector, N (o) is the total particle number of
flavor o, and R; is the lattice position of site i. The summation
of sites i and j is over the cell of calculation. Both footh and
zig-zag phases contribute to a (ZT”, ) peak, and the zig-zag
phase uniquely contributes to a (27”, ) peak. The stripe phase

contributes to a (%”, 2_7”) peak. As § is increased towards é, the
second spin flavor with population (% + &) becomes close to
half-filling and gives rise to a phase with a checkerboard pat-
tern in this spin flavor [hereafter named SU(2)-Néel], which
gives a (r, ) peak in the structure factor.

Monitoring these structure factors provides qualitative in-
sights into how the ground states are affected by the imbalance
parameter §. The magnitudes of structure factors for the
ground states as a function of U and § are plotted in Fig. 2.
At small interaction U < 3.50¢, a metallic phase is identified.
Although other peaks are not shown in Fig. 2, we have verified
that the region of small U gives no significant structure factor
peaks and thus remains paramagnetic.

All three ordered phases survive at small flavor imbal-
ances: the footh and zig-zag phases with (7, 2*) peaks are
more stable than the stripe phase in the presence of flavor

0.04
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FIG. 2. (4 — 4,1+ 8, ). RGB color gives the value of the struc-

ture factor per atom for flavor 3 in the ground state at F=(Z, ),
(%.,2),and (3, &), respectively, normalized by the highest peak
(which is the (2, %) peak) found among all k values and (U, §)
combinations. Similar plots with the other two flavors give the same
phase diagram. To make the small peaks more visible, the brightness
reflects the square root of the peak heights. The zig-zag region has
both blue and green peaks. The second and third flavors in the region
enclosed by white dashed line have significant (7, 7) peaks, which
are not shown because of the limit of RGB coloring. Details of the
(7w, ) peaks can be found in Appendix B 2. The size of this Hartree
calculation is 12 x 12, and the imbalance grid is set to a resolution

of 1/144.

imbalance, as they survive utill § goes to approximately 0.022
and beyond. The stripe phase with (27”, 27”) peak may be
observed at U > 7.0t for § < 0.01, but for § € (0.01, 0.022),
the system prefers the zig-zag phase to the stripe phase. A cut
at U = 7.0¢ is shown in Appendix B 2 to demonstrate how the
system transitions from the stripe phase to the zig-zag phase
and then builds up (7, ) peaks. The metallic region around
U = 4.5t and § = 0.04 exhibits no significant signal at the
four tested wave vectors due to finite-size effects. Calcula-
tions on a larger 24 x 24 system reveal small visible peaks
at (2, ), suggesting that in the thermodynamic limit, this
small metallic region may disappear, giving a direct transition
of the tooth-to-SU(2) Néel phase. To maintain consistency, we
present only the 12 x 12 results in Fig. 2.

The qualitative structure of the phase diagram can be un-
derstood by considering how imbalance affects the ability of
each flavor to delocalize and thereby lower the energy, as
illustrated in Fig. 3. At large U and small §, imbalance can be
viewed as introducing a dilute gas of particles with a differing
spin (i.e., a particle-hole pair, where a hole is created in the
original spin flavor and a particle is created in a new one),
and these particles can be treated as independent. When a
site’s particle is replaced by another particle with a different
spin flavor, the added particle in the footh and zig-zag phases
can engage in superexchange with three neighboring sites, as
restricted by the Pauli exclusion principle, thereby reducing
its local energy relative to a localized particle. The mobility is
further restricted in the stripe phase, where the added particle
can hop to only two neighboring sites, leading to a higher
local energy than that in the zig-zag phase. This explains
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FIG. 3. Phase stability against imbalance. (a) tooth; (b) zig-zag;
(c) stripe. The diagrams illustrate the replacement of a red-flavor
atom with a blue-flavor atom. At relatively large U, where the energy
is mainly determined by the nearest-neighbor spin correlation, the
system can lower its energy through spin-flavor superexchange (on
the bold bonds). In both footh and zig-zag phases, after introducing
the flavor imbalance, the newly added blue atom is surrounded by
three neighboring sites occupied by a different (yellow) flavor. In
contrast, in the stripe phase, the new blue atom has only two distinct
neighbors with differing flavors, with which it can undergo superex-
change. This demonstrates that the stripe phase is more energetically
penalized by imbalance than the footh or zig-zag phases.

why increasing 6 will eventually cause the stripe phase to
be unstable to the zig-zag phase. This reasoning also explains
the nearly vertical phase boundary between footh and zig-zag:
both phases respond identically at the local level to small
flavor imbalance. Similar superexchange counting arguments
determine domain wall structures in bosonic systems [66].

Néel ordering with (7, ) peaks, similar to the SU(2) case,
is built without exact nesting at U > 5.0t and § = 0.022.
When 4§ is sufficiently large, the second flavor with popula-
tion density (% + &) approaches half-filling (§ = %), where
the nesting leads a clear transition to a phase with (, 7)
peaks. This shows the breakdown of the local perturbative
description of flavor imbalance in Fig. 3 when § is not small.

In addition to the spin order, we observe that two of the
phases—the zig-zag and SU(2) Néel phases—have accompa-
nying charge order. The zig-zag charge order is an anisotropic
two-sublattice order characterized by a k=(r,0) ordering
wave vector, while the Néel charge order is in a checker-
board pattern characterized by k= (m, ). We present and
explain the observed behavior in Appendix B 1 by showing
symmetry arguments that the (7, 0) charge order is disallowed
in the footh and stripe phases, while allowed in the zig-zag
phase. The (7, ) charge order gets allowed when the spin
Néel order develops with a single flavor near half-filling, and
smoothly connects to the order observed in Sec. [II B when
one of the spin flavors is exactly half-filled.

2. Thermal states

The mean-field results may provide insight into the prop-
erties of low-energy states in both numerical methods and
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FIG. 4. (% — 4, % + 4, %)‘ Thermal-averaged values of the struc-
ture factor peaks per atom at 7 = 0.1¢, normalized by the highest
peaks found among all K values and (U, §) combinations. The plotted
structure factor peak height is for the third flavor, but the other two
flavors give the same phase diagram. There is a high peak of (%”, )
dominating in the U € (3.5¢, 4.5¢) and small §. The brightness of the
green and red peaks are magnified by a factor of 5 for visibility. The
(m, ) peaks (not shown) are small compared to the (%, ) peak
shown.

experiments. For systems with multiple competing low-
energy states at similar energy scales, locating a ground
state can be challenging in some variational methods and
in state-preparation experiments. These methods may even-
tually get stuck in solutions with distinct local orders in
different regions. As such, sampling low-energy states in
our calculation gives some indication of possible outcomes.
Therefore, a thermal-averaged analysis over multiple ran-
domly generated Hartree solutions can indicate what is likely
to be observed experimentally. We generate at least 100 self-
consistent zero-temperature Hartree solutions at each (U, §)
data point, drawing initial conditions randomly,' and then per-
form a thermal average of these zero-temperature solutions at
T = 0.1z, which corresponds to the lowest temperature where
state-of-the-art optical lattice experiments are able to achieve
[6]. The results are plotted in Fig. 4.

The thermal phase diagram shows that, in the moderate in-
teraction strength region (3.5t < U < 4.5¢), the (£, 1) peak
is obvious at the temperature of 7' = 0.1¢. This is evidence of
the remnant of the footh phase, and the lack of other peaks
suggests the difficulty of observing the other two ordered
phases. Similar to the ground-state results, when U < 3.5¢, no
spin order is observed, and the system is in a metallic phase.
When U 2 5.0¢, the other two peaks (27”, ZT”) and (27”, 7)can
barely be observed, with the highest peaks in both signals are
less than 10% percent of the highest (%, 7) peak. Thus, if
ground states are sampled in a way similar to this numerical

"For initial conditions of the Hartree calculation, we assign a
uniformly-picked random number for each flavor to each site of a
12 x 24 unit cell. See Appendix A for details.
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FIG. 5. (i — 4, % + 6, %). (a) Ordered phases SF and SA. (b) Flavor density distributions of example mixtures M1 and M2. The results are
shown for flavor 2, with typical domains highlighted. (c) Structure-factor peaks per atom of the ground states of flavor 1, 2, and 3, respectively,
normalized by the highest peak found among all k values and (U, §) combinations. The orange regions have both peaks. The system size is
24 x 24. To make the small peaks more visible, the brightness reflects the square root of the peak heights. The mixture region in the middle

has three parts, as specified in the main text.

ensemble, only the footh phase robustly reveals itself in the
structure factor at these temperatures, and only in a window
of U values. To observe the other two ordered phases, lower
temperature is needed.

The missing signals of the ordered phases at large U
are caused by the fact that the mean-field solutions often
get stuck in metastable states with local ordering, which is
similar to obstacles existing in state-preparation experiments.
As evidenced by some examples in Appendix C, typical
excited Hartree solutions are different for moderate interac-
tion strength [roughly U € (3.5¢, 4.5¢)] and large interaction
strength. For the former, these excited solutions are mostly the
corresponding ground states with structural distortion, such
as defects or domain walls, thus keeps part of the structure
factor peaks; For the latter, when the tunneling is small, most
of the excited solutions are trapped in local SU(2) Néel order
domains with two of the three flavors forming checkerboard
patterns, thus lost all SU(3) signals.

The structural distortion in these excited solutions suggests
that QGM may offer more reliable detection of potential order
in SU(N) Fermi-Hubbard models than standard structure-
factor measurements [67]. When the temperature in AEA
optical lattice experiments is not sufficiently low, the struc-
ture factors may be weakened by the presence of defects or
domain walls. QGM, however, permits single-shot analyses

of individual configurations in the real space and thus helps to
identify the phases more directly.

B.(1-51+81)

In this section, we study another spin flavor densities
(i — 4, 41'1 + 4, %), where the third flavor is at half-filling and
therefore its Fermi surface is nested. In contrast to the fast
convergence to the thermodynamic limit for (% -4, % + 4, %)
flavor densities in Sec. III A, Hartree solutions for this set of
flavor densities suffer more significant finite-size effects at
moderate U, as detailed in Appendix D. We take the system
size of 24 x 24 for calculation, but some key points (e.g.,
points along phase boundaries) are also checked on 36 x 36
lattices.

1. Ground state

Because the third flavor is half-filled, it is nested and its
density always shows a checkerboard pattern. For the other
two flavors (hereafter named “minor flavors”), two distinct
structure-factor peaks [(7r, ) and (s, 0)] are noticeable. As
evidenced in Fig. 5, the ground states of all flavors manifest
finite (;r, ) peaks, although in some small U region these
peaks are too small to see. Separately, at U > 3.5¢, a (7, 0)
peak is evident in two minor flavors that exhibit a 2 x 2 order,
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but the region of this order shrinks in the phase diagram as the
flavor imbalance increases. The orange region in Fig. 5 shows
both green (7, ) and red (7, 0) peaks.

From these two peaks, two ordered phases, named super-
lattice ferromagnetic (SF) and superlattice antiferromagnetic
(SA), are identified at different U and & settings. As shown
in Fig. 5, in the SF phase, all three flavors show only the
(mr, ) peaks, i.e., the half-filled flavor dominantly occupies
one of the two sublattices and the other two evenly occupy
the other sublattice. In the SA phase, two minor flavors show
(r,0) peaks, i.e., the half-filled flavor occupies one of the
sublattices while the other two flavors alternately occupy the
other sublattice. The two ordered phases are illustrated in
Fig. 5(a). In literature studying SU(3) Heisenberg models, the
SF phase is sometimes referred as “minority-united canted-
Néel” (MUCA) [33], which specifies the ferromagnetic order
of two minor flavors. Similarly, the pattern in the SA phase
can be understood as antiferromagnetic order of the minor
flavors in a diagonal superlattice. The dependence on U of
these two ordered phases suggests that, at small U, the system
is primarily governed by minimizing the interaction energy
between the half-filled flavor and the two minor flavors. As U
grows, this repulsion between the two minor flavors shows
up and leads to a superlattice antiferromagnetic order. The
discontinuity in Fig. 14 in Appendix D gives the signal of
phase transition between SF and SA phases.

With increasing &, the height of the (;r, 7 ) peaks with small
U values increases for the second and third spin flavors. Al-
though we cannot calculate for § values very close to 0.25 due
to numerical obstacles, when § approaches 0.25, the system
goes to the unit-density SU(2) limit, consistently resulting in
an SU(2) Néel phase for any finite U values. The connection
to SU(2) limit is more clearly discussed with magnetization
defined in Sec. III B 2.

There is a region of mixture in the phase diagram, as
indicated in Fig. 5(c). In this region, three phases seem to
coexist, including both SF and SA, as well as the SU(2) Néel
phase. Examples of these phase mixtures have been shown
in Fig. 5(b). Qualitatively, this region can be divided into
three parts, each of which contains a mixture of two phases,
although the precise boundaries are difficult to pinpoint in
the phase diagram. For U near 3.5t and 0 < § < 0.03, a co-
existence of SF and SA phases is observed. As § increases
beyond 0.03, mixtures of SF or SA phases with the SU(2)
Néel phase appear. For approximately U < 3.5¢, increasing
8 leads to a mixture of SF and SU(2) Néel phases (M1). For
U > 3.5t, increasing § instead produces a mixture of SA and
SU(2) Néel phases (M2). The boundaries separating these
mixture regions in the phase diagram are determined from
real-space images of the ground states, i.e., when multiple
imbalance-induced defects cluster together to form an SU(2)
domain, the corresponding state is classified as a mixture of
the SU(3) and SU(2) phases.

2. Magnetism

Here we show how the spin correlation in this SU(3)
system evolves to the SU(2) limit through the mixture re-
gion. Two spin operators are defined as S3(i) = n; | — n;» and
Ss(i) = n;3 — (n;,1 + n;2) atsite i, which capture the order for
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FIG. 6. (i -4, % + 4, %). Nearest-neighbor magnetic correla-
tions (S,,(i)S,,(i + 1)) for m = 3, 8. The region of mixture is shaded
in red according to Fig. 5.

two minor flavors and all flavors, respectively. The subscripts
3 and 8 follow the Gell-Mann convention.

A connection to the SU(2) Néel order can be seen in
Fig. 5: as the system becomes closer to the half-filled SU(2)
setting, stronger (77, 7 ) peaks are built in the second and third
flavors. This trend is also clearly captured in the behavior
of S3 and Sg correlators, as shown in Fig. 6. The negative
values of Sg nearest-neighbor correlation indicate some SU(3)
“antiferromagnetic” tendency, which goes to the SU(2) anti-
ferromagnetic order as the § value gets to 0.25. On the same
set of curves, the jump at small § values verifies the transition
between SF and SA phases around U = 3.5¢, as discussed in
Sec. III B 1. The negative correlations on the S3 curves, an
indicator of SA phase, are only seen for U > 3.5t and 6 < 0.1.
In Fig. 6, the region of mixtures is shaded on the S5 curves
according to the observation in Fig. 5.

3. Thermal states

The (7, 0) peak is hard to observe when the system is not
cold enough. To see this, we randomly sample at least 100
consistent Hartree solutions at each (U, §) data point and take

0.16
0.14
=0.12
5 0.10
—
Yo.08
C
£ 0.06
©
Q
‘£ 0.04

0.02

it
4

i
%

0.00

4 5 6 2 3 4 5 6 2 3 4
U/t U/t U/t

5 6

FIG.7. (; =48, 5 +8.4). Thermal-averaged —structure-factor
peaks per atom at 7' = 0.1z, normalized by the highest peak found
among all k values and (U, §) combinations. (a) Flavor 1, (b) flavor
2, (c) flavor 3. The brightness of the red peaks are magnified by a
factor of 5 for clarity. Insets: Example of a random Hartree solution
with the circled U and §.
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the thermal average at the temperature of 7 = 0.1¢, in the
same sense as Sec. III A 2. As shown in Fig. 7, there is only
a narrow window for us to see the SA phase with a relatively
strong (7, 0) peak. On the contrary, the (v, ) peak is clear
in the whole moderate U region, and expands as § increases.

Although the (7, 0) peaks are small in the thermal states,
the corresponding SA phase remains in some domains, and is
directly observable with QGM. As the example in the insets
of Fig. 7 (also more examples in Appendix C), for U > 3.5¢,
these excited states consistently exhibit SA-phase domains
that can be readily detected in QGM experiments. Echoing
the discussion in Sec. III A 2, this finding highlights the value
of QGM in probing ground-state physics in systems such as
AEA optical lattices.

IV. CONCLUSION

We investigated the unit-density SU(3) Fermi-Hubbard
model for two distinct families of spin-flavor densities using
Hartree mean-field theory, focusing on how spin-flavor imbal-
ance impacts the system’s phases. We identified three ordered
phases when the flavor density is nearly equal (1/3 each) and
two ordered phases when one flavor is nested.

For the densities (% -4, % + 4, %), all three phases remain
stable at small flavor imbalance. Notably, the zig-zag phase
demonstrates greater stability to spin-flavor imbalance at large
U, while the tooth phase more effectively withstands ther-
mal fluctuations. These results highlight the robustness of
these newly identified phases, particularly the two moderate-
U phases, against flavor imbalances of a few percent arising
from experimental imperfections. Nevertheless, current exper-
iments [3,6] often have flavor imbalances on the order of 3%,
so improving this will be important to see any of the ordered
phases. The relevant stability of phases can be understood by
treating the imbalanced component as a local perturbation.
Checkerboard patterns similar to the SU(2) Néel phase are
also seen when flavor imbalance is large enough.

For the densities (; — 8, ; + 8, 3), the half-filled flavor
dominantly occupies one checkerboard sublattice in both SF
and SA phases, while the other two minor flavors form
different orders—one ferromagnetic and the other antifer-
romagnetic, on the interleaved sublattice. Both phases can
be observed when the imbalance is not too large. Also, the
phase diagram reveals multiple mixture regions connecting
the flavor-imbalanced SU(3) model to the conventional SU(2)
framework.

Our thermal ensemble calculations suggest that, at cur-
rently accessible temperatures in AEA optical lattice exper-
iments, while some ordered phases can still be observed
through scattering or other local observable measurements,
other phases may require QGM to assist detection. Looking
ahead, alongside ongoing efforts to lower experimental tem-
peratures in AEA optical lattice setups, advanced statistical
methods [68,69] applied to QGM data may offer a powerful
route to identify new phases.

Our findings offer a roadmap for future experimental ef-
forts aimed at probing these phases. With increasing control
and cooling available in AEA optical lattices [39,70,71],
the predicted SU(N) physics may be experimentally studied
in the future. Beyond these specific platforms, our results

could also inspire future investigations in other cold-atom
settings [37,40-42] and even inform studies in condensed
matter systems [72-74]. The results can also assist sign-
problem-free quantum Monte Carlo methods by providing
useful trial wave functions [35]. Moreover, the local pertur-
bative picture for flavor imbalance may give insight into the
structure of the spin-balanced phase diagram when including
longer-distance superexchange, and perhaps help to elucidate
the effect of doping in relevant systems [32,75,76], as re-
placing a hole in SU(2) systems with a third-flavor particle
helps to separate hopping and interaction terms. The results,
especially the robustness of phases, may also help to under-
stand the impact of flavor imbalance on the thermalization
of difference phases [77]. We may also consider extending
the calculation to other lattice geometries [31,78-81] fea-
turing flavor-imbalanced physics or typical larger N values
[59,80,82,83] and nontrivial gauge fields [18,84-88].
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APPENDIX A: CONVERGENCE CRITERIA
AND ACCELERATION

We run Hartree calculations at fixed particle numbers
for each flavor. The procedure is initialized using a chosen
site- and flavor-dependent density configuration n; , (iter =0),
which either contains repeating unit-cell patterns (see
Appendix A 2) for the ground-state calculation or is uniformly
randomized for the thermal phase diagram. Given a density
configuration (n; , (iter = p)) in the pth iteration, we compute
the wave functions of the Hartree Hamiltonian in Eq. (2), gen-
erate a new density configuration according to Fermi-Dirac
statistics [90], and then feed back the density configuration
into the Hartree calculation. This self-consistent iteration con-
tinues until convergence at the (p + d) round, defined by

D linio(iter = p)) — (i iter = p+d))l < A (Al)

For a 12 x 12 lattice, we typically choose A = 1077
andd = 5.

1. Anderson acceleration

To accelerate the rate of convergence, we apply the An-
derson acceleration technique [91] to the iterations. Instead
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FIG. 8. Charge correlation for (%, %, %). The inset gives a typical
charge distribution of a flavor-balanced zig-zag state at U = 5.0¢.

of using the density configuration (n?a(iter = p)), which is
derived from iteration p to calculate the effective potentials in
Eq. (2) in step (p + 1), we use a linear combination of two
sequential iterations as follows:

(i q (iter = p))
= (1 —a)(n), (iter = p)) + a(n;,(iter = p— 1)), (A2)

and use the result (n; ,(iter = p)) for the next iteration. Be-
sides accelerating convergence for small U, the Anderson
method helps to overcome a practical issue, which is often
seen at large U, that under naive iteration the mean-fields
oscillate between two configurations without settling into a
steady state. We empirically find that an efficient « for this
calculation is around 0.35.

2. Initial iteration seeds

To search for Hartree ground states with possible symme-
tries, we impose repeating blocks of [ x m size to the initial
density configuration (n; , (iter = 0)) with all reasonable com-
binations of integers [ and m. We do hundreds of trials for
small U (typically U < 4¢) and thousands of trials for large U
where, in each trial, the density in the repeating block is uni-
formly randomly generated. Also, to enable possible solutions
without perfect lattice structures, especially when the system
is flavor-imbalanced, small perturbations are added to initial
states after imposing repeating block structures: n;  (iter =
0) = n; ,(iter = 0) x (1 4 r; ), where r; , follows a uniform
distribution between +0.05. For each scenario, the lowest-
energy Hartree solution is picked as the mean-field ground
state.

APPENDIX B: GROUND STATES
1. (3, 1, 1) (balanced)

3
The zig-zag state shows anisotropic charge order, different
from other flavor-balanced states (metallic, tooth, and stripe).
The charge at each site i is summed from all three flavors:
0; =Y, (ni.). To investigate the charge order, we calculate
the on-site connected charge correlation

1
CQ=EZ|Q§—1|. (B1)

The results are shown in Fig. 8.

This (,0) CDW order is not allowed in the other two
ordered phases (without further spontaneous symmetry break-
ing) due to their symmetry in the spin orders. For both tooth

tooth

_’_

translation

ds *

P

U

SU(3) rotation
and reflection

zig-zag

(b) w— [1] translationl w
> p )
-6:: 50 ot ::6-

¢ *

FIG. 9. (a) After one-site translation in the horizontal direction,
a tooth state can be restored to its original structure with an SU(3)
rotation and a reflection operation along the horizontal direction.
(b) After one-site translation in the horizontal direction, a zig-zag
state cannot be restored to its original structure with any SU(3)
rotation and reflection along the horizontal direction.

U(3) rotation
and reflection

and stripe phases, after a translation of one lattice site in
either x or y directions, the states can be restored to their
original structures by SU(3) rotations and spatial reflection
operations along the direction of the translation. This sym-
metry rules out the existence of any (7, 0) charge order, in the
absence of any further spontaneous symmetry breaking. But
the zig-zag state does not have such symmetry in one direction
and, therefore, allows anisotropic charge order without any
additional spontaneous symmetry breaking; put another way,
once the zig-zag order forms, there is no symmetry reason
the anisotropic charge order should vanish, and conversely if
charge order formed, it would necessarily perturb the struc-
ture of the magnetic order. Two examples are shown in
Fig. 9, while the results extend to other states and translation
directions.

1.0 1

o o o
EN o ©
-

I

I

.

normalized structure factor

o
N

I
0.0 1

0.00 0.01 0.02 0.03 0.64
imbalance ratio (6)

FIG. 10. (3 —8.5+48.3) at U =7.0t. A (¥, %) peak indi-
cates the stripe phase, the coexistence of (27”, 7) and (%”, 1) peaks
marks the zig-zag phase, and the (;r, 7 ) peak gives the checkerboard

pattern in density distribution.
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FIG. 11. (% -4, % + 4, %). Density profiles of ground states
when § = 1:174’ i.e., one-particle imbalance in 12 x 12 systems. From
top to bottom: U = 2t (metallic), 4t (tooth), 6t (zig-zag), and 8t

(stripe). Left three: flavor 1-3; right: charge.

2.3-831+4480)

Here we show a cut at U = 7.0¢ for the results in Fig. 2.
A peak of (;r, ), which is not specifically shown in the main
text due to the limit of RGB coloring, is seen in Fig. 10 when
8 goes beyond 0.022.

Examples of typical ground states with nonzero é found
through the Hartree calculation are shown in Fig. 11. Some
solutions are likely to be finite-size artifacts generated by
commensurability, as reported similarly in some Hartree-Fock
calculation of SU(2) Hubbard models [90]. The metallic phase
keeps its unordered structure at small flavor imbalance. In all
three ordered phases, the small flavor imbalance introduces lo-
cal disorders to the spin and charge structures, which supports
the perturbative picture of flavor imbalance, as discussed in
Sec. IITA.

1.0 . 1.050
0.8 1.025
0.6

1.000
0.4
02 0.975
0.0 : 0.950

it T Tl ] £ E

FIG. 12. (§ — 8, ; +4, ). Density profiles of ground states.
From top to bottom: (phase SF, U =3.0¢, § = 41—8), (phase SA,
U =451,8 = ), (mixture M1, U = 3.5, § = ), (mixture M2,
U=4.5t,6 = %). Left three: flavor 1-3; right: charge.

FIG. 13. Typical excited Hartree solutions for (a) (4, 1, 1) and
(b) (%, %, %). Results are derived from random seeds, as specified
in the main text. Three examples of the first flavor distribution are
shown for different U. Dashed lines help to locate typical domain
walls and ordered domains.

3.0-58,31+8D

Examples of typical ground states of different U and §
found through the Hartree calculation are summarized in
Fig. 12.

From Fig. 12, we notice that the SF and SA phases survive
in the presence of small flavor imbalances at small (U < 3.5¢)
and large (U > 3.5t) interactions, respectively. Increasing &
gives mixtures of M1 and M2 at small and large interactions,
respectively.

APPENDIX C: EXCITED STATES

Figure 13 presents examples of excited Hartree solutions
obtained from random initial seeds. At (%, %, %), tooth-phase
domains appear for U = 4¢ and U = 4.5¢, while the (}T’ 3—‘, %)
densities consistently display SA-phase domains in all three
cases. The domain walls and disordered regions observed in
these solutions diminish the structure factors, but QGM can
still identify these domains on a shot-by-shot basis, facilitating
an effective extraction of the ground-state phases at finite
temperature or imperfect ground-state preparation.

APPENDIX D: CONVERGENCE

For the densities (}—P Alf, %), the SF and SA phases are sep-
arated by a phase transition. The on-site connected charge
correlation Cp, which in this setting reflects the contrast of
charge distribution, gives the sign of phase transition between

0.15 A1

0.05 H

0.00 A

FIG. 14. (4, 1, 3). The contrast Cg of the ground states.
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SF and SA phases. As shown in Fig. 14, there is a discontinu-
ity on the contrast curves at U = 3.5¢.

The results indicate that the numerics are well con-
verged at large U. For small U, typically below the phase

transition point, the Hartree calculation suffers from no-
ticeable finite-size effects. However, the results give no
qualitative differences between 24 x 24 and 36 x 36 unit
cells.
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