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Critical temperature for the two-dimensional attractive Hubbard model
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The critical temperature for the attractive Hubbard model on a square lattice is determined from the analysis
of two independent quantities, the helicity modufysand the pairing correlation functid? . These quantities
have been calculated through quantum Monte Carlo simulations for lattices upxtd8l8&nd for several
densities, in the intermediate-coupling regime. Imposing the universal-jump condition for an accurately calcu-
lated p, together with thorough finite-size scaling analy§esthe spirit of the phenomenological renormal-
ization group of Py, suggests that is considerably higher than hitherto assumed.
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The attractive Hubbard modél has been successfully wherec;, (ciTU) destroyg(creates an electron with spirr on
used to elucidate a number of important and fundamentalitei of a square lattice(i,j) denotes nearest-neighbor sites,
issues in both conventional and high-temperatigprat¢  n, =cf ¢, , |U| is the strength of the attractive interaction,
superconductivity. The nature of the crossover between Bcgndﬂ is the chemical potential. From now on, all energies

s_uperconductivit){at w_eak coupling,. or small on-site attrac- 4o expressed in units of the hopping amplituded we also
tion) and Bose-Einstein condensation of tightly bound pairs

(strong coupling has been shown to be smodthThe ap- SethBTl;If filling (which corresponds to the particle-hole
pearance of preformed pairs within a certain range of param-

eters in the normal phase, especially below a characteristiy ™Mmetric point,.=0), the degeneracy of charge-density

temperature, has been related to pseudogap behavior of highfave (€DW) and singlet superconductin@s correlations

temperature superconduct8rfsFurther, this model allows €ads to a three-component order paramet¢he transition
one to introduce disorder on the fermionic degrees ofémperature is therefore suppressed to zero. Away from half

freedonf® and investigate the behavior near the quantunfilling, CDW correlations are suppressed and a finite-

critical point of the two-dimensional insulator- temperature KOSterlitZ'ThOU|e$KT) tranSitiOH'G into a SS

superconductor transition: this provides an alternative to th@hase takes placé;™’ this phase has only algebraically de-

dirty-boson picturg to discuss the universal conductivify. caying correlations for @ T<T.. Further, close to half fill-

The attractive Hubbard model with a periodic modulation ofing an exact mapping onto the two-dimensional Heisenberg

U has been used to interpret superconductivity in layere@ntiferromagnetic model in a magnetic field lead$t3 T,

structures? = —27J/In|1—(n)|, so thatT, rises sharply from zero as one
A basic concern has run through many of these calculadopes away fron{n)=1.

tions, in particular, those based on quantum Monte Carlo We start by employing the analysis of Ref. 13 to new data

(QMC) simulations. In two dimensions, there is a consensusgor the SS pairing correlation function,

that the early QMC phase diagr&nt®—in the space of criti-

cal temperaturd ., electronic densityn), and magnitude of Ps=<ATA+AAT> 2

the on-site attractiopU|—is qualitatively correct. However,

some serious quantitative discrepancies have emerged owsith

the years, pointing towards higher critical temperatures; see,

e.g., the Bogoliubov-Hartree-FodBHF) approach of Ref. 1

14. Our purpose here is to examine the dependenck, of AT=— 2 c:}cil. 3

with (n), for fixed U, by resorting to a much widénamely, VN

larger system sizes and several electronic dengities of

QMC data, together with alternative procedures to locate thEOF 0<T=Tc, one expects

critical temperature. Establishing an accurate value for this

most fundamental property of the model is important, espe- I(r)=(cf ¢l ¢ cjp +H.cy~r= 7D, 4

cially as the physics of variants of the attractive Hubbard

Hamiltonian is explored, and comparisons are made to thwherer=|i—j|, and »(T) increases monotonically between

original system. 7(0)=0 and7(T.) = 1/41618
The model is defined by the Hamiltonian The finite-size scaling behavior d®g is therefore ob-

tained upon integration df (r) over a two-dimensional sys-

tem of linear dimensionL. One then hds
H= —th) (clcjpt H.(:.)—,/Ei (N +n;)—|U|
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P=L2 7TJf(L/¢), L>1T-T; (5)
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. . FIG. 2. (Color online RescaledP; as a function ofw
FIG. 1. (Color onling Ps as a function of =1/T for (n)  —| exy—A(T—T)!2 for (n)=0.5 and different lattice sizek.
=0.5 and different lattice sizeis The values forA and T, are the ones determined in Ref. 13.

f~ex A =Lexd —A(T-T)¥?], at a givenU, for different system
(T—T)Y? sizes, withT; and A being adjusted to give the best possible
data collapse, as done in Ref. 13. Figure 2 shows the result-
in the thermodynamic limit, one recovePs~ ¢”. For com-  ing scaling plot, in which the value&=0.4 andT.=0.045
pleteness, one should mention that since 0 asT—0, the  were determined in Ref. 13. With our substantially increased
system displays long-range order in the ground state, so thaimount of data points it becomes clear that the data collapse
a “spin-wave scaling” is expected to hofd, onto a single curve with the parametéysind T, of Ref. 13
becomes rather unsatisfactory. We furthermore note that Eq.
(6) is expected to hold only for<10 2 [t=(T—T.)/T,],
see, e.g., Ref. 22. For the valueTofused in Fig. 2, only few
data obtained foL = 4,6,8,10 in Ref. 13 satisfy this criterion.
where Ay is the superconducting gap function at zero tem- We therefore obtain new values &f and T, from our
perature, andC is a|U|-dependent constant. expanded data set. We disregard the data from the smallest
Similarly to Ref. 13, here we use the determinant QMCsystem sized, =4 (which, additionally, has a special topol-
algorithn?® to calculatePg. Typically our data have been ogy, being equivalent to a22x 2x 2 four-dimensional lat-
obtained after 500 warming-up steps followed by 50000tice), L=6, L=8, and alsd_=10; as we will see below, the
sweeps through the lattice. The discretized imaginary-timeSS pairing correlation function presents large finite size ef-
intervaf® was set toA 7=0.125, which is small enough for fects for these lattice sizes. Furthermore, we only include
the results not to depend on this choice in any significantlata points for temperaturdsfor which Eq.(6) is expected
way. to hold (see above Figure 3 clearly shows that, for the
In Fig. 1 we show raw data fdP as a function of (I¥), larger latices, our newly determined paramet&rs0.1 and
for fixed density,(n)=0.5 andU=—4, and for different critical temperaturd.=0.13 render a much better data col-
lattice sizes. The crossover between temperature- and sizkxpse than the old parameters.
limited regimes is described by finite-size scalifigSS The present analysis shows that the estimate$.obb-
theory’! and appears as a leveling off Bf, below a certain  tained in Ref. 13 can be quantitatively quite unreliable. In
temperature for each system size. Before a more quantitativeur opinion, this is due to the fact that the finite-size behav-
scaling analysis, we can already see a suggestionTth&  ior of P, Egs.(5) and(6), follows from an analysis which is
around 1/6 from the ra#4 data. In general, at temperatures valid only for large enough lattice sizes, since it involves the
for which correlations are short ranged, a structure factor likébinding-unbinding of rather large structuresrtices in the
P, is independent of lattice size. Asis decreased, the point KT transition'® Moreover, the parametefsand T, that have
at which the structure factor begins growing with lattice sizeto be found via data fitting both reside in an exponent, re-
signals the temperature at which the correlation lerggth  sulting in large uncertainties for the individual fitted param-
becoming largécomparable to the lattice sizg), thus pro- eters. Although the lattice sizes used in the present study may
viding a crude estimate df.. The subsequent plateau at low not be large enough to determifig with high accuracy, our
temperatures occurs whef®L. This crossover is contem- result is bound to be an improvement and in any case indi-
plated by the FSS form, Ed5), which can be invoked to cates that the actudl. may be much largeiby even a factor
determineT, by plotting L~ "“P, as a function of ofw  of 3) than believed so far.
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FIG. 3. (Color onling Same as Fig. 2, but witA and T, deter- FIG. 4. (Color onling Helicity modulus as a function of tem-
mined from the present data. Inset shows same system sizeg withperature fon)=0.5 and different lattice sizels The straight line
and T, from Ref. 13. corresponds to P/ .

This tendency towards higher critical temperatures ap-
pears as well in a completely independent analysis, based on Te==ps
the behavior of the helicity modulugiM). The latter is a c 2"sv
measure of the response of the system in the ordered phase to

a "twist” of the order parametef? and can be expressed in wherep, is the value of the helicity modulus just below the
terms of the current-current correlation functions as Ps y J

o

(14)

follows 24 critical temperature. Thus we can obtain by plotting
ps(T), and looking for the intercept with™ 7. This proce-
D 1 dure has been used before, withcalculated within a BHF
ps=—5=7[A*=AT], (8)  approximation:*%° since transverse current-current correla-
4me? 4 tions were neglecteg, is likely to have been overestimated,
whereDy is the superfluid weight, and and the ensuind .'s may have been too high. Here we cal-
s culate bothA" and AT by QMC simulations to obtaimpg
A= lim A, (dy,9y=0,0,=0) (9)  through Eq(8); a typical example op4(T), for (ny=0.5, is
ax—0 shown in Fig. 4. We see that finite-size effects are not too
and drastic, since all curves cross the straight line within a small
range of temperatures; that is, from Fig. 4 we can estimate
AT=lim Ay(0x=00y,@,=0) (100  T¢=0.14+0.02.
qy—0 In order to check the robustness of this method, we can

: P T extractT. from Pg through a “phenomenological renormal-
are, respecpvely, the limiting longitudinal and transverse reization group” (PRG (Refs. 27 and 2Banalysis, provided
sponses, with . ) 2 .
some subtleties peculiar to the KT transition are kept in
. B i . mind. Since¢—oe for all T<T., Eq.(5) implies that curves
A dy0n) = 2 fo dred e’ ™A (€,7),  (11)  for L~P(L,B), when plotted as functions ¢8, and for
¢

differentL, should allmergefor 8> .. Figure 5 shows that

wherew,=2n=T, this characteristic feature only sets in for the largest system
. . sizes, namelyL=12, from which we can infer3,=7.5
A€, 7)={jx(£,7)]«(0,0)), (12 +0.25; these error bars are somewhat arbitrary, and result

from visual inspection. It should be stressed that this esti-
mate for 8. agrees remarkably well with the one obtained
: . from the helicity modulus, indicating the robustness of both
it (Cg+;<,UCé,g—nggchgvg)}eHT procedures to extradt; . Interestingly, we should notice that
7 13) the curves fol. =6 and 8crosseach othefas in an ordinary
second-order transitiorat 8=7, which is very close t@.
is thex component of the current density operator; see Refestimated from the larger systems. Therefore, within the con-

where

(€, 7)=e""

24 for details. text of PRG, for the smallest sizes a KT transition appears as
At the KT transition, the following universal-jump rela- an ordinary transition, only crossing over to the merging fea-
tion involving the helicity modulus hold%: ture for the largest sizes.
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FIG. 5. (Color onling Logarithm-linear plot for the rescalel FIG. 6. (Color onling Critical temperature as a function of band

as a function ofg, for (n)=0.5 and for different lattice sizels,  fjjing, obtained by different methods. All lines through data points
symbols are the same as in Fig. 2. The inset shows a blowup of thg., guides to the eye.

region centered abo@=7. No parameters are adjusted.

Hubbard model. This is done by finding quantitative agree-

T.he critiqql temperature has been estimated for other eleGq,ant petween entirely different procedures to extraigt
tronic densities(n)=0.1 (HM and PRG, 0.3 (PRO, 0.7 fom two independent correlation functiofisoth computed
(PRG, and 0.875HM and PRG; all PRG plots display the by determinant QM As a result, the critical temperature is
crossing and merging tendency observed(foy=0.5. The  ¢q,nd to be substantially higher than the currently accepted
resulting phase diagram is shown in Fig. 6; for comparisony i es, also obtained using QMC, but with a different data
we also plot the early QMC resultS the parquet data from analysis; as expected, they are also substantially lower than

. 9 .
Luo and Blclieré,'and the estimates from the BHF ggimates obtained within a Hartree-Fock/mean-field ap-
approximationt* While close to half filling all resultgbut proximation.

BHF) are in fair agreement, for larger dopings agreement is
only found between the results from PRG and those from the The authors are grateful to S. de Queiroz and A. Moreo
helicity modulus. The inescapable conclusion is that the critifor discussions. T.P. and R.R.dS. acknowledge partial finan-
cal temperature for the superconducting transition in the ateial support by Brazilian Agencies FAPERJ, CNPq, Instituto
tractive Hubbard model is actually higher than previouslydo Milénio para Nanociecias/MCT, and Rede Nacional de
assumed. Nanociecias/CNPq; R.T.S. acknowledges support by NSF-
In summary, we have established very reliable estimateBMR-0312261. This research was further supported by a
for the critical temperature of the square-lattice attractivgoint CNPg-690006/02-0/NSF-INT-0203837 grant.
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