
razil

PHYSICAL REVIEW B 69, 184501 ~2004!
Critical temperature for the two-dimensional attractive Hubbard model
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The critical temperature for the attractive Hubbard model on a square lattice is determined from the analysis
of two independent quantities, the helicity modulusrs and the pairing correlation functionPs . These quantities
have been calculated through quantum Monte Carlo simulations for lattices up to 18318, and for several
densities, in the intermediate-coupling regime. Imposing the universal-jump condition for an accurately calcu-
latedrs , together with thorough finite-size scaling analyses~in the spirit of the phenomenological renormal-
ization group! of Ps , suggests thatTc is considerably higher than hitherto assumed.
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The attractive Hubbard model1,2 has been successfull
used to elucidate a number of important and fundame
issues in both conventional and high-temperature~cuprate!
superconductivity. The nature of the crossover between B
superconductivity~at weak coupling, or small on-site attra
tion! and Bose-Einstein condensation of tightly bound pa
~strong coupling! has been shown to be smooth.3,4 The ap-
pearance of preformed pairs within a certain range of par
eters in the normal phase, especially below a character
temperature, has been related to pseudogap behavior of
temperature superconductors.5,6 Further, this model allows
one to introduce disorder on the fermionic degrees
freedom7,8 and investigate the behavior near the quant
critical point of the two-dimensional insulator
superconductor transition; this provides an alternative to
dirty-boson picture9 to discuss the universal conductivity.10

The attractive Hubbard model with a periodic modulation
U has been used to interpret superconductivity in laye
structures.11

A basic concern has run through many of these calc
tions, in particular, those based on quantum Monte Ca
~QMC! simulations. In two dimensions, there is a consen
that the early QMC phase diagram12,13—in the space of criti-
cal temperatureTc , electronic densitŷn&, and magnitude of
the on-site attractionuUu—is qualitatively correct. However
some serious quantitative discrepancies have emerged
the years, pointing towards higher critical temperatures;
e.g., the Bogoliubov-Hartree-Fock~BHF! approach of Ref.
14. Our purpose here is to examine the dependence oTc
with ^n&, for fixed U, by resorting to a much wider~namely,
larger system sizes and several electronic densities! set of
QMC data, together with alternative procedures to locate
critical temperature. Establishing an accurate value for
most fundamental property of the model is important, es
cially as the physics of variants of the attractive Hubba
Hamiltonian is explored, and comparisons are made to
original system.

The model is defined by the Hamiltonian

H52t (
^ i,j &,s

~cis
† cjs1H.c.!2m(
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wherecis (cis
† ) destroys~creates! an electron with spins on

site i of a square lattice,̂i,j & denotes nearest-neighbor site
nis[cis

† cis , uUu is the strength of the attractive interactio
and m is the chemical potential. From now on, all energi
are expressed in units of the hopping amplitudet and we also
setkB51.

At half filling ~which corresponds to the particle-ho
symmetric point,m50), the degeneracy of charge-dens
wave ~CDW! and singlet superconducting~SS! correlations
leads to a three-component order parameter;15 the transition
temperature is therefore suppressed to zero. Away from
filling, CDW correlations are suppressed and a fini
temperature Kosterlitz-Thouless~KT! transition16 into a SS
phase takes place;13,17 this phase has only algebraically d
caying correlations for 0,T<Tc . Further, close to half fill-
ing an exact mapping onto the two-dimensional Heisenb
antiferromagnetic model in a magnetic field leads to12,13 Tc
.22pJ/ lnu12^n&u, so thatTc rises sharply from zero as on
dopes away from̂n&51.

We start by employing the analysis of Ref. 13 to new d
for the SS pairing correlation function,

Ps5^D†D1DD†& ~2!

with

D†5
1

AN
(

i
ci↑

†
ci↓

†
. ~3!

For 0,T<Tc , one expects

G~r ![^ci↑
† ci↓

† cj↓cj↑1H.c.&;r 2h(T), ~4!

wherer[u i2 j u, andh(T) increases monotonically betwee
h(0)50 andh(Tc)51/4.16,18

The finite-size scaling behavior ofPs is therefore ob-
tained upon integration ofG(r ) over a two-dimensional sys
tem of linear dimensionL. One then has13

Ps5L22h(Tc) f ~L/j!, L@1,T→Tc
1 ~5!

with
©2004 The American Physical Society01-1



th

m

C
n
0
im
r
an

si

ti

es
lik
t
ize

w
-

le
sult-

ed
pse

Eq.

.

llest
l-

ef-
de

e

l-

In
av-

he

re-
-

may

di-

PAIVA, DOS SANTOS, SCALETTAR, AND DENTENEER PHYSICAL REVIEW B69, 184501 ~2004!
j;expF A

~T2Tc!
1/2G ; ~6!

in the thermodynamic limit, one recoversPs;j7/4. For com-
pleteness, one should mention that sinceh→0 asT→0, the
system displays long-range order in the ground state, so
a ‘‘spin-wave scaling’’ is expected to hold,19

Ps

L2
5uD0u21

C

L
, ~7!

whereD0 is the superconducting gap function at zero te
perature, andC is a uUu-dependent constant.

Similarly to Ref. 13, here we use the determinant QM
algorithm20 to calculatePs . Typically our data have bee
obtained after 500 warming-up steps followed by 50 0
sweeps through the lattice. The discretized imaginary-t
interval20 was set toDt50.125, which is small enough fo
the results not to depend on this choice in any signific
way.

In Fig. 1 we show raw data forPs as a function of (1/T),
for fixed density,^n&50.5 andU524, and for different
lattice sizes. The crossover between temperature- and
limited regimes is described by finite-size scaling~FSS!
theory21 and appears as a leveling off ofPs below a certain
temperature for each system size. Before a more quantita
scaling analysis, we can already see a suggestion thatTc is
around 1/6 from the rawPs data. In general, at temperatur
for which correlations are short ranged, a structure factor
Ps is independent of lattice size. AsT is decreased, the poin
at which the structure factor begins growing with lattice s
signals the temperature at which the correlation lengthj is
becoming large~comparable to the lattice sizeL), thus pro-
viding a crude estimate ofTc . The subsequent plateau at lo
temperatures occurs whenj@L. This crossover is contem
plated by the FSS form, Eq.~5!, which can be invoked to
determineTc by plotting L27/4Ps as a function of ofw

FIG. 1. ~Color online! Ps as a function ofb[1/T for ^n&
50.5 and different lattice sizesL.
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[L exp@2A/(T2Tc)
1/2#, at a givenU, for different system

sizes, withTc andA being adjusted to give the best possib
data collapse, as done in Ref. 13. Figure 2 shows the re
ing scaling plot, in which the valuesA50.4 andTc50.045
were determined in Ref. 13. With our substantially increas
amount of data points it becomes clear that the data colla
onto a single curve with the parametersA andTc of Ref. 13
becomes rather unsatisfactory. We furthermore note that
~6! is expected to hold only fort&1022 @ t[(T2Tc)/Tc#,
see, e.g., Ref. 22. For the value ofTc used in Fig. 2, only few
data obtained forL54,6,8,10 in Ref. 13 satisfy this criterion

We therefore obtain new values ofA and Tc from our
expanded data set. We disregard the data from the sma
system sizes,L54 ~which, additionally, has a special topo
ogy, being equivalent to a 2323232 four-dimensional lat-
tice!, L56, L58, and alsoL510; as we will see below, the
SS pairing correlation function presents large finite size
fects for these lattice sizes. Furthermore, we only inclu
data points for temperaturesT for which Eq.~6! is expected
to hold ~see above!. Figure 3 clearly shows that, for th
larger latices, our newly determined parametersA50.1 and
critical temperatureTc50.13 render a much better data co
lapse than the old parameters.

The present analysis shows that the estimates ofTc ob-
tained in Ref. 13 can be quantitatively quite unreliable.
our opinion, this is due to the fact that the finite-size beh
ior of Ps , Eqs.~5! and~6!, follows from an analysis which is
valid only for large enough lattice sizes, since it involves t
binding-unbinding of rather large structures~vortices! in the
KT transition.16 Moreover, the parametersA andTc that have
to be found via data fitting both reside in an exponent,
sulting in large uncertainties for the individual fitted param
eters. Although the lattice sizes used in the present study
not be large enough to determineTc with high accuracy, our
result is bound to be an improvement and in any case in
cates that the actualTc may be much larger~by even a factor
of 3! than believed so far.

FIG. 2. ~Color online! Rescaled Ps as a function of w
[Lexp@2A/(T2Tc)

1/2# for ^n&50.5 and different lattice sizesL.
The values forA andTc are the ones determined in Ref. 13.
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This tendency towards higher critical temperatures
pears as well in a completely independent analysis, base
the behavior of the helicity modulus~HM!. The latter is a
measure of the response of the system in the ordered pha
a ‘‘twist’’ of the order parameter,23 and can be expressed
terms of the current-current correlation functions
follows.24

rs5
Ds

4pe2
5

1

4
@LL2LT#, ~8!

whereDs is the superfluid weight, and

LL[ lim
qx→0

Lxx~qx ,qy50,vn50! ~9!

and

LT[ lim
qy→0

Lxx~qx50,qy ,vn50! ~10!

are, respectively, the limiting longitudinal and transverse
sponses, with

Lxx~qW ,vn!5(
,W
E

0

b

dteiqW •,WeivntLxx~,W ,t!, ~11!

wherevn52npT,

Lxx~,W ,t!5^ j x~,W ,t! j x~0,0!&, ~12!

where

j x~,W ,t!5eHtF i t(
s

~c,W 1 x̂,s

†
c,W ,s2c,W ,s

†
c,W 1 x̂,s!Ge2Ht

~13!

is thex component of the current density operator; see R
24 for details.

At the KT transition, the following universal-jump rela
tion involving the helicity modulus holds:25

FIG. 3. ~Color online! Same as Fig. 2, but withA andTc deter-
mined from the present data. Inset shows same system sizes, wA
andTc from Ref. 13.
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Tc5
p

2
rs

2 , ~14!

wherers
2 is the value of the helicity modulus just below th

critical temperature. Thus we can obtainTc by plotting
rs(T), and looking for the intercept with 2T/p. This proce-
dure has been used before, withrs calculated within a BHF
approximation;14,26 since transverse current-current corre
tions were neglected,rs is likely to have been overestimated
and the ensuingTc’s may have been too high. Here we ca
culate bothLL and LT by QMC simulations to obtainrs
through Eq.~8!; a typical example ofrs(T), for ^n&50.5, is
shown in Fig. 4. We see that finite-size effects are not
drastic, since all curves cross the straight line within a sm
range of temperatures; that is, from Fig. 4 we can estim
Tc50.1460.02.

In order to check the robustness of this method, we
extractTc from Ps through a ‘‘phenomenological renorma
ization group’’ ~PRG! ~Refs. 27 and 28! analysis, provided
some subtleties peculiar to the KT transition are kept
mind. Sincej→` for all T,Tc , Eq. ~5! implies that curves
for L27/4Ps(L,b), when plotted as functions ofb, and for
differentL, should allmergefor b.bc . Figure 5 shows that
this characteristic feature only sets in for the largest sys
sizes, namely,L>12, from which we can inferbc57.5
60.25; these error bars are somewhat arbitrary, and re
from visual inspection. It should be stressed that this e
mate forbc agrees remarkably well with the one obtain
from the helicity modulus, indicating the robustness of bo
procedures to extractTc . Interestingly, we should notice tha
the curves forL56 and 8crosseach other~as in an ordinary
second-order transition! at b.7, which is very close tobc
estimated from the larger systems. Therefore, within the c
text of PRG, for the smallest sizes a KT transition appears
an ordinary transition, only crossing over to the merging fe
ture for the largest sizes.

h
FIG. 4. ~Color online! Helicity modulus as a function of tem

perature for̂ n&50.5 and different lattice sizesL. The straight line
corresponds to 2T/p.
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The critical temperature has been estimated for other e
tronic densities,̂ n&50.1 ~HM and PRG!, 0.3 ~PRG!, 0.7
~PRG!, and 0.875~HM and PRG!; all PRG plots display the
crossing and merging tendency observed for^n&50.5. The
resulting phase diagram is shown in Fig. 6; for comparis
we also plot the early QMC results,13 the parquet data from
Luo and Bickers,29 and the estimates from the BH
approximation.14 While close to half filling all results~but
BHF! are in fair agreement, for larger dopings agreemen
only found between the results from PRG and those from
helicity modulus. The inescapable conclusion is that the c
cal temperature for the superconducting transition in the
tractive Hubbard model is actually higher than previou
assumed.

In summary, we have established very reliable estima
for the critical temperature of the square-lattice attract

FIG. 5. ~Color online! Logarithm-linear plot for the rescaledPs

as a function ofb, for ^n&50.5 and for different lattice sizesL,
symbols are the same as in Fig. 2. The inset shows a blowup o
region centered aboutb57. No parameters are adjusted.
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Hubbard model. This is done by finding quantitative agre
ment between entirely different procedures to extractTc
from two independent correlation functions~both computed
by determinant QMC!. As a result, the critical temperature
found to be substantially higher than the currently accep
values, also obtained using QMC, but with a different d
analysis; as expected, they are also substantially lower
estimates obtained within a Hartree-Fock/mean-field
proximation.
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FIG. 6. ~Color online! Critical temperature as a function of ban
filling, obtained by different methods. All lines through data poin
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