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Dynamic properties of the three-dimensional single-band Hubbard model are studied using quantum Monte
Carlo combined with the maximum entropy technique. At half-filling, there is a clear gap in the density of
states and well-defined quasiparticle peaks at the top~bottom! of the lower~upper! Hubbard band. We find an
antiferromagnetically induced weight above the naive Fermi momentum. Upon hole doping, the chemical
potentialm moves to the top of the lower band where a robust peak is observed. Results are compared with
spin-density-wave mean-field and self-consistent Born approximation results, and also with the infinite-
dimensional (D5`) Hubbard model, and experimental photoemission for three-dimensional transition-metal
oxides.@S0163-1829~96!11148-6#

I. INTRODUCTION

The single-band two-dimensional Hubbard Hamiltonian1

has recently received considerable attention due to possible
connections with high-temperature superconductors. Indeed,
evidence is accumulating that this Hamiltonian may de-
scribe, at least qualitatively, some of the normal-state prop-
erties of the cuprates.2 Exact diagonalization~ED! and quan-
tum Monte Carlo~QMC! have been used to model static
properties like the behavior of spin correlations and magnetic
susceptibility both at half-filling and with doping.2 Compari-
sons of dynamic quantities like the spectral weight and den-
sity of states with angle-resolved photoemission results3–7

have also proven quite successful. Significantly, while ana-
lytic calculations have pointed towards various low-
temperature superconducting instabilities, such indications
have been absent in numerical work.2

Historically, however, the Hubbard model was first pro-
posed to model magnetism and metal-insulator transitions in
3D transition metals and their oxides,1 rather than supercon-
ductivity. Now that the technology of numerical work has
developed, it is useful to reconsider some of these original
problems. A discussion of possible links between the 3D
Hubbard model and photoemission results for YTiO3,
Sr VO3, and others

8–10has already recently occurred. In such
perovskite Ti31 and V41 oxides, which are both in a 3d1

configuration, the hopping amplitudet between transition-
metal ions can be varied by modifying thed-d neighboring
overlaps through a tetragonal distortion. Thus, the strength of
the electron correlationU/t can be varied by changing the
composition. In fact, a metal-insulator transition has been
reported in the series SrVO3-Ca VO3-LaTiO3-YTiO3. On the
metallic side, a quasiparticle band is experimentally ob-
served near the Fermi energyEF , as well as a high-energy
satellite associated to the lower Hubbard band~LHB!.8,16

Spectral weight is transferred from the quasiparticle to the
LHB asU/t is increased at half-filling.

In this paper, we report the use of quantum Monte Carlo,
combined with analytic continuation techniques, to evaluate
the spectral function and density of states for the 3D Hub-

bard Hamiltonian. The motivation is twofold. First, we want
to compare general properties of the 3D Hubbard Hamil-
tonian with the extensive studies already reported in the
literature11,12,16,2for the 2D and infinite-dimensional cases.
Of particular importance is the presence of quasiparticles
near the half-filling regime, as well as the evolution of spec-
tral weight with doping. Many of the high-Tc cuprates con-
tain CuO2 planes that are at least weakly coupled with each
other, and thus the study of the 3D system may help in un-
derstanding part of the details of the cuprates. More gener-
ally, the Hubbard Hamiltonian is likely to continue being one
of the models used to capture the physics of strongly corre-
lated electrons, so we believe it is important to document its
properties in as many environments as possible for potential
future comparisons against experiments.

Secondly, we discuss a particular illustration of such con-
tact between Hubbard Hamiltonian physics and experiments
on 3D transition-metal oxides. In addition to the studies of
half-filled systems with varying correlation energy men-
tioned above, experiments where the band filling is tuned by
changing the chemical composition have also been
reported.13,10,14One compound that has been carefully inves-
tigated in this context is Y1-xCax Ti O3. At x50 the system is
an antiferromagnetic insulator. Asx increases, a metal-
insulator transition is observed in PES studies. The lower
and upper Hubbard bands~LHB and UHB! are easily iden-
tified even withx close to 1, which would naively corre-
spond to small electronic density in the single band Hubbard
model, i.e., a regime whereU/t is mostly irrelevant. In the
experiments, a very small amount of spectral weight is trans-
ferred to the Fermi energy, filling the gap observed at half-
filling ~i.e., generating a ‘‘pseudogap’’!.

Analysis of the photoemisson~PES! results of these com-
pounds using the paramagnetic solution of the Hubbard
Hamiltonian in infinite dimensions,15 a limit where dynamic
mean-field theory becomes exact~see Sec. II!, has resulted in
qualitative agreement12,17,16with the experimental results. At
and close to half-filling there is an antiferromagnetic~AF!
solution which becomes unstable against a paramagnetic
~PM! solution at a critical concentration of holes. In the PM
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case, weight appears in the original Hubbard gap as reported
experimentally. However, this analysis of the spectral weight
in terms of the infinite-dimensional Hamiltonian is in contra-
diction with results for the density of states reported in the
2D Hubbard model2 where it is found that upon hole~elec-
tron! doping away from half-filling the chemical potential
m moves to the top~bottom! of the valence~conduction!
band. The results at^n&51 in 2D already show the presence
of a robust quasiparticle peak which is absent in the insulat-
ing PM solution of theD5` model. That is, in the 2D
system the large peak in the density of states observed away
from half-filling seems to evolve from a robust peak already
present at half-filling. On the other hand, atD5` a feature
resembling a ‘‘Kondo resonance’’ isgeneratedupon doping
if the paramagnetic solution is used. This peak in the density
of states does not have an analog at half-filling unless frus-
tration is included.12 Studies in three dimensions may help in
the resolution of this apparent noncontinuity of the physics
of the Hubbard model when the dimension changes from 2 to
`. The proper way to carry out a comparison between
D53 and` features is to base the analysis on ground-state
properties. With this restriction, i.e., using the AF solution at
D5` and close to half-filling, rather than the PM solution,
we found that theD53 and` results are in good agreement.

In this paper we will consider which of these situations
the 3D Hubbard Hamiltonian better corresponds to, and
therefore whether the single-band Hubbard Hamiltonian pro-
vides an adequate description of the density of states of 3D
transition-metal oxides.

II. MODEL AND METHODS

The single-band Hubbard Hamiltonian is

H52t(
Šij ‹

~cis
† cjs1H.c.!2m(

is
nis

1U(
i

~ni↑21/2!~ni↓21/2!, ~1!

where the notation is standard. HereŠij ‹ represents nearest-
neighbor links on a 3D cubic lattice. The chemical potential
m controls the doping. Form50 the system is at half-filling
(^n&51) due to particle-hole symmetry.t[1 will set our
energy scale.

We will study the 3D Hubbard Hamiltonian using a finite
temperature, grand canonical quantum Monte Carlo~QMC!
method18 which is stabilized at low temperatures by the use
of orthogonalization techniques.19 The algorithm is based on
a functional-integral representation of the partition function
obtained by discretizing the ‘‘imaginary-time’’ interval
@0,b# whereb is the inverse temperature. The Hubbard in-
teraction is decoupled by a two-valued Hubbard-
Stratonovich transformation20 yielding a bilinear time-
dependent fermionic action. The fermionic degrees of
freedom can hence be integrated out analytically, and the
partition function~as well as observables! can be written as a
sum over the auxiliary fields with a weight proportional to
the product of two determinants, one for each spin species.
At half-filling ( ^n&51), it can be shown by particle-hole
transformation of one spin species@ci↓→(21)ici↓

† # that the
two determinants differ only by a positive factor; hence their

product is positive definite. At general fillings, however, the
product can become negative, and this ‘‘minus-sign prob-
lem’’ restricts the application of QMC to relatively high tem-
perature~of order 1/30 of the bandwidth! off half-filling.

The QMC algorithm provides a variety of static and dy-
namic observables. One equal time quantity in which we are
interested is the magnetic~spin-spin! correlation function,

C~ l!5
1

N(
j

^mjmj1l&. ~2!

Heremj5(ssnjs is the local spin operator, andN is the
total number of lattice sites. Static correlations have also
been investigated in earlier studies of the 3D Hubbard
model21,22 where the antiferromagnetic phase diagram at
half-filling was explored.

To obtain dynamical quantities in real-time or frequency,
the QMC results in imaginary time have to be analytically
continued to the real-time axis. Since we are mostly inter-
ested in the one-particle spectrum we measure the one-
particle Green functionG(p,t). The imaginary part of
G(p,v) ~in real frequency! defines the spectral weight func-
tion at momentump, A(p,v), which is related toG(p,t) by

G~p,t!5E
2`

`

dvA~p,v!
e2tv

11ebv . ~3!

A(p,v) can in principle be calculated by inverting Eq.~3!,
but the exponential behavior of the kernel at large values of
uvu makes this inversion difficult numerically.G(p,t) is
quite insensitive to details ofA(p,v) in particular at large
frequencies. SinceG(p,t) is known only on a finite grid in
the interval@0,b# and there only within the statistical errors
given by the QMC sampling, solving Eq.~3! for A(p,v) is
an ill-posed problem. A large number of solutions exist, and
the problem is to find criteria to select out the correct one.
This can be done by employing the maximum entropy~ME!
method.23 Basically, the ME finds the ‘‘most likely’’ solution
A(p,v) which is consistent with the data and all information
that is known about the solution~like positivity, normaliza-
tion, etc.!. ME avoids ‘‘overfitting’’ to the data by a
‘‘smoothing’’ technique that tries to assimilate the resulting
A(p,v) to a flat default model. In the absence of any data
@G(p,t)# ME would converge to the default model which is
chosen to be a constant within some large frequency interval.
There is no adjustable parameter in the ME application. One
needs accurate data forG(p,t) with a statistical error of
O(1024) to get reliable results forA(p,v).

In principle, one can calculate analytically the first and
second~and higher! moments of the spectral weight and in-
clude this information in the ME procedure. However, we
chose to calculate the moments afterwards from the resulting
functionA(p,v), and to compare them with the analytically
known results as a further test. The agreement was in all
cases within 10%. Still, the ME methods provides only a
rough estimate of the true spectral weight functions. Band
gaps and the positions of significant peaks are usually well
captured but fine structure which needs a high-frequency
resolution is hard to detect within the ME approach.

Integrating A(p,v) over the momenta gives the one-
particle density of states~DOS! N(v). However, technically,
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it is preferrable to integrate firstG(p,t), which reduces the
statistical errors, and then perform the analytic continuation.

The DOS will be compared to results from the dynamical
mean-field theory of infinite dimensions,D5`.15 In this
limit, with the proper scaling of the hopping element
(t5t* /AZ, with Z being the coordination number! the one-
particle self-energy becomes local or, equivalently, momen-
tum independent and the lattice problem is mapped onto a
single-site problem. The constantt* is set tot*5A6 to ob-
tain the same energy scale,t51, when compared to the
3D case.24 In contrast to conventional mean-field theories,
the self energy remains frequency dependent, preserving im-
portant physics. Spatial fluctuations are neglected, an ap-
proximation which becomes exact in the limitZ→`
(Z52D for the simple cubic lattice!. Even in D5`, the
remaining local interacting problem cannot be solved ana-
lytically but will also be treated by a finite temperature
QMC25 supplemented by a self-consistency iteration.17,16

The advantage is that the system can be investigated in the
thermodynamic limit with a modest amount of computer
time. Due to its local character theD5` approach cannot
provide information on momentum-dependent spectral func-
tions. However, recently ak-resolved spectral function has
been studied26 in D5`.

Among other things, theD5` limit has been used re-
cently to study the AF phase diagram in the Hubbard
model.12 The agreement of the Ne´el temperature with 3D
results is good.22 In D5` it is further possible to suppress
AF long-range order artificially by restricting the calculation
to the ~at low temperatures unstable! paramagnetic solution
at half-filling. In this way, one may simulate frustration due
to the lattice structure or orbital degeneracy, although in the
absence of calculations for hypercubic lattices with nearest
and next-nearest uniform hopping amplitudes it is still a con-
jecture how close this approach is to including these effects
fully.

III. HALF-FILLING

A. Quantum Monte Carlo

We first study the single-particle spectral weightA(p,v)
at relatively strong coupling,U58, and half-filling
(^n&51) at a low temperature ofT51/10.

A gap is clearly present in the spectrum~Fig. 1! which is
compatible with the expectation that the half-filled Hubbard
model on a bipartite lattice is an antiferromagnetic insulator
for all nonzero values of the couplingU/t. The spectral
weight has four distinct features~two in the LHB and two
identical ones in the UHB, as expected from particle-hole
symmetry!. In the UHB there is weight at a high energy,
roughly in the interval between;5t and 8t. This broad fea-
ture likely corresponds to the incoherent part of the spectral
function found in previous simulations for the 2D Hubbard
and t-J models.2 The dominant scale of this incoherent
weight is t, and since it is located far from the top of the
valence band its presence is not important for the low-
temperature properties of the system.

Much more interesting is the sharper peak found close to
the gap in the spectrum. This band dispersion starts at a
binding energy of approximatelyv524t at momenta
(0,0,0) and moves up in energy obtaining its maximum value
at v'22t at momenta (0,p/2,p) and (p/2,p/2,p/2) in
Fig. 1. The width of the peak diminishes as the top of the
valence band is reached. Similar structure was discussed be-
fore in studies of 2D systems, which had a somewhat higher
resolution, as a ‘‘quasiparticle’’ band corresponding to a hole
moving coherently in an antiferromagnetic background.2,27

This quasiparticle should be visualized as a hole distorting
the AF order parameter in its vicinity. In this respect it is like
a spin polaron or spin bag,28 although ‘‘string states’’ likely
influence its dispersion and shape.2 The quasiparticle~hole
plus spin distortion! movement is regulated by the exchange
J, rather thant.

Using the center of the quasiparticle peaks of Fig. 1 as an
indication of the actual quasiparticle pole position, we obtain
a bandwidthW of about 2 to 3t or, equivalently, 4 to 6J
usingJ54t2/U for U58. However, due to the low resolu-
tion of the ME procedure, reflected in part in the large width
of the peaks of Fig. 1, it is difficult to show more convinc-
ingly within QMC/ME that the quasiparticle bandwidth is
indeed dominated byJ.

Note that moving from (0,0,0) to (p,p,p) along the
main diagonal of the Brillouin zone~BZ!, the PES part of the
spectrum~i.e., the weight atv,0) loses intensity. There is a
clear transfer of weight from PES at smallupu to IPES at
large upu, as observed in 2D simulations.29 In addition, note
that there is PES weight above the~naive! Fermi momentum
of this half-filled system. For example, atp5(0,p,p), spec-
tral weight atv,0 can be clearly observed. Similarly, at
p5(0,0,p) weight in the IPES region is found. This effec-
tive doubling of the size of the unit cell in all three directions
is a consequence of the presence of AF long-range order.
The hole energy atp5(0,0,0) and (p,p,p) becomes degen-
erate in the bulk limit and the quasiparticle band, for ex-
ample, along the main diagonal of the BZ, has a reflection
symmetry with respect to (p/2,p/2,p/2), as observed in our
results~Fig. 1!. However, note that the actual intensity of the
AF-induced PES weight close to (p,p,p) is a function of

FIG. 1. Single-particle spectral functionA(p,v) versusv for
several momenta. The results correspond to a lattice with 43 sites,
U58, b510, half-filling and usingt[1 as energy scale. Momenta
p are in units ofp/2. Bars indicate the position of the quasiparticle
peak.
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the coupling. AsU/t→0, the intensity of the AF-induced
region is also reduced to zero. The presence of this AF-
generated feature has recently received attention in the con-
text of the 2D high-Tc cuprates.

28,30 While its presence in
PES experiments at optimal doping is still under discussion,
these features clearly appear in PES experimental studies of
half-filled insulators, like Sr2CuO2Cl2.

31 Thus, while this be-
havior has been primarily discussed in the context of 2D
systems angle-resolved PES~ARPES!, studies of 3D insula-
tors like LaTiO3 might also show such features.

In Fig. 2 we show the density of states~DOS! N(v) of the
43 lattice. The two features described before, namely quasi-
particle and incoherent background, in both PES and IPES
are clearly visible. Also shown in Fig. 2 is the temperature
effect onN(v), which is weak for the given temperatures
(b510 and 4!. The basic features are still retained, only the
gap is slightly reduced and the quasiparticle peak less pro-
nounced at the higher temperature.

Results corresponding to a larger coupling,U512, at
b54 are shown in Fig. 3. The gap increases and the quasi-
particle band becomes sharper asU/t grows, as expected if
its bandwidth is regulated byJ. A(p,v) at U512 and
b54 are similar to the results shown in Fig. 1.

A characteristic double peak like that seen in Figs. 2 and
3 has been observed in the x-ray-absorption spectrum of
LaFeO3,

32 which is a strongly correlated, wide-gapped anti-
ferromagnetic insulator. The peaks appear at energies of
about 2.2 eV and 3.8 eV. When Fe is substituted by Ni this
structure vanishes and the system becomes a paramagnetic
metal at a Ni concentration of about 80%. If we choose for
comparison with the calculated DOS~Fig. 3! a hopping am-
plitude of t50.5 eV, giving a reasonabled bandwidth of
W56 eV, the positions of the quasiparticle peak and the
maximum of the incoherent band forU512t are at about
v1'4t52 eV and v2'8.4t54.2 eV, respectively. The
agreement with the experimental values is fairly good con-
sidering the crude simplifications of the Hubbard model such
as neglecting orbital degeneracy and charge transfer effects.

Even the estimated charge gap of Fig. 3, defined by the onset
of spectral weight relative to the Fermi energy,
Dcharge'3t51.5 eV is not too far from the experimental
value of ;1.1 eV. The ratior5v2 /v1 decreases withU
since forU@t both energies are expected to converge to
U/2. While forU512t, r'2.1 is comparable to the experi-
mental value (;1.7), it is too large forU58 (r'2.9) show-
ing that under the assumption of a single-band Hubbard
model description for LaFeO3, the effective on-site interac-
tion is at least of the size of thed bandwidth.

Another feature which has been attributed to antiferro-
magnetic ordering was found in a high-resolution PES study
of V2O3.

33,34 In the AF insulator atT5100 K the spectrum
shows a shoulder atv1520.8 eV which is absent in the
paramagnetic metal atT5200 K. This shoulder might be a
reminiscent of the quasiparticle peak. The maximum of the
lower Hubbard band is at aboutv2'21.3 eV, giving a ratio
v2 /v1'1.6 similar to that observed in LaFeO3. The on-site
interaction was estimated to be about 1.5 times the
bandwidth.33

It is interesting to compare the results obtained in our
simulations with those found in theD5` limit of the Hub-
bard model. At half-filling for arbitrary coupling strength,
theD5` model has an AF insulating ground state. Its DOS
is shown in Fig. 4, using the same coupling and temperature
as in the 3D simulation.N(v) for both cases are similar, and
they are also similar to results found before in 2D, suggest-
ing that the physics of holes in an antiferromagnetic system
is qualitatively the same irrespective of whether a 2D, 3D, or
`D lattice is used, at least within the accuracy of present
QMC/ME simulations.

B. SDW mean-field and Born approximation

Since the data shown in the previous subsection corre-
spond to holes in a system with AF long-range order, it is
natural to compare our results against those found in mean-
field approximations to the half-filled 3D Hubbard model
that incorporate magnetic order in the ground state. The
‘‘spin-density-wave’’ ~SDW! mean-field approximation has

FIG. 2. Density of statesN(v) of the 3D Hubbard model on a
43 lattice, U58, b510 ~solid line! and b54 ~dotted line! and
^n&51. We do not enforce ther(v)5r(2v) symmetry which
occurs at half-filling due to particle-hole symmetry. However, de-
viations from this constraint are small, a further check on our nu-
merics.

FIG. 3. Density of statesN(v) of the 3D Hubbard model on a
43 lattice atU58 ~dotted line! andU512 ~solid line!, b54, and
^n&51.
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been extensively used in the context of the 2D Hubbard
model,35 and here we will apply it to our 3D problem. For a
lattice ofN sites, the self-consistent equation for the gapD is

15
U

2N(
p

1

Ep
, ~4!

where Ep5Aep
21D2 is the quasiparticle energy, and

ep522t(cospx1cospy1cospz) is the bare electron disper-
sion. The resulting quasiparticle dispersion is shown in Fig. 5
compared against the results of the QMC/ME simulation.
The overall agreement is good if the couplingU in the gap
equation, Eq.~4!, is tuned to a valueU;5.6. It is reasonable
that a reducedU should be required for such a fit, since the
SDW MF gap is usually larger than the more accurate QMC
result. Similar renormalizations ofU in comparing QMC and
approximate analytic work have been discussed in the con-
text of fitting the magnetic response,36 and have also been

explicitly calculated.37 Figure 5 shows many of the features
observed in the numerical simulation, namely, a hole disper-
sion which is maximized at (p/2,p/2,p/2) for the momenta
shown there, an overall bandwidth smaller than the noninter-
acting one, and the presence of AF-induced features in the
dispersion above the naive Fermi momentum.

Thus the SDW MF approach qualitatively captures the
correct hole quasiparticle bandwidthJ at half-filling. How-
ever, a spurious degeneracy appears in the hole dispersion in
this approximation. Momenta satisfying cospx1cospy
1cospz50 have the same energy. This is not induced by
symmetry arguments and is an artifact of the SDW approach.
In addition,A(p,v) in the SDW approximation only has one
peak in the PES region for each value of the momentum,
missing entirely the incoherent part.

While it may not be necessary to fix this problem in this
case, it is important in general to be able to go beyond SDW
MF. To do this, the self-consistent Born approximation38

~SCBA! for one hole in the 3Dt-J model, which corresponds
to the strong coupling limit of the Hubbard model, can be
used. This technique reproduces accurately exact diagonal-
ization results in the 2D case.38 Actually, the dispersion of a
dressed hole in an antiferromagnet within the SCBA for a
bilayer system, and also for a 3D cubic lattice, has been
recently studied.39 Here, for completeness, we reproduce
some of the results of Ref. 39, and compare them against
those of the 3D Hubbard model obtained with the SDW MF
approximation and QMC calculations~Fig. 6!. The compari-
son is carried out atJ/t;0.3, which corresponds to
U/t;13. The maximum of the dispersion in the valence
band using the SCBA now lies at (p/2,p/2,p/2), removing
the spurious SDW MF degeneracy. In the scale of Fig. 6 the
splitting between this momentum and (p,p/2,0) is difficult
to resolve, since it corresponds to about 100 K. Note that the
bandwidth predicted by the SDW MF technique is approxi-
mately a factor 2 larger than the more accurate pre-
diction of the SCBA. However, for this larger value ofU
it does not appear possible to fit simultaneously the

FIG. 4. Density of statesN(v) of the 3D Hubbard model on a
43 lattice atU512, b54, and^n&51 ~solid line! compared with
the density of states at the same parameters forD5` ~dotted line!.

FIG. 5. Quasiparticle dispersion in the SDW MF approximation
at half-filling and zero temperature. Results are atU/t58 ~dot-
dashed line! andU55.57t ~dashed line!. QMC/ME results for the
3D Hubbard model on a 43 lattice at the same coupling, density,
and temperature are also shown~open circles!. The area in the
circles is proportional to the peak intensity. The error bars are the
width of the peak. For some momenta the intensity of the PES or
IPES data is so low that no peak position is reported.

FIG. 6. Quasiparticle dispersion in the SDW MF approximation
atU512.8t ~dashed line! compared against similar results obtained
with the SCBA approximation for one hole in thet-J model at
J/t50.3125~solid line!. The energy scale of the SCBA dispersion
is shifted such that the bottom of the band at (p/2,p/2,p/2) agrees
with the SDW MF result. The QMC data, also shown, lie between
these weak and strong coupling approximations. The area in the
circles is proportional to the peak intensity. The error bars are the
width of the peak.
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SDW MF bandwidth and band gap to the results of QMC
by the same renormalization ofU, something which can
be done successfully at weaker coupling,U58. The QMC
points at this intermediate coupling value where
U5bandwidth lie in between the SDW MF and SCBA.
Though the uncertainties in the QMC results are rather
large, we expect the agreement between SCBA and QMC
results to improve as the coupling increases. The best
fit of the SCBA data39 is e(p)5c1 0.082(cospxcospy
1cospycospz1cospxcospz)1 0.022(cos2px1cos2py1cos2pz)
~eV!, if J50.125 eV andt50.4 eV are used. The constant
c is defined by the SDW MF gap~Fig. 6!. As in the case of
the 2D problem, holes tend to move within the same sublat-
tice to avoid distorting the AF background.2 Working at
smallJ/t, the bandwidth of the 3Dt-J hole quasiparticle was
found to scale asJ,39 as occurs in two dimensions.

IV. FINITE HOLE DENSITY

A. D53

We can also use the QMC approach to study the 3D Hub-
bard model away from half-filling for temperatures down to
about 1/30 of the bandwidth, a value for whichT;J for the
present strong coupling values. First, we study the influence
of doping and temperature on the spin-spin correlation func-
tion C( l). At half-filling C( l) shows strong antiferromag-
netic correlations over the whole 43 lattice atb510 ~Fig. 7!.
At b52 the correlations are significantly weakened, and
with additional doping (̂n&50.88) all correlations are sup-
pressed besides those between nearest neighbors. These ap-
pear to be stable against doping. The density of local mo-
ments,AC(0) reaches its low-temperature limit at an energy
scale set byU and hence is unaffected by the change ofb
from b52 tob510 ~note that longer-range spin correlations
form at a temperature set by the much smaller energy scale
J). AC(0) is to first order proportional to the electronic den-
sity and hence slightly reduced at^n&50.88.

There has been considerable discussion concerning the
relationship between the spin-spin correlations and the pres-

ence of a gap in the density of states. In particular, it was
observed11 that if N(v) is evaluated on lattices of increasing
size at fixed temperature a well formed gap appearing on
small lattices disappears when the spatial extent exceeds the
spin-spin correlation length. Decreasing the temperature~and
hence increasing the range of the spin correlation! allows the
gap to reform. Similar effects are seen here in 3D.

Figure 8~a! shows the density of states on a 43 lattice at
several densities,U58 andb52. At this temperature the
charge gap is not fully developed, and the quasiparticle
peaks cannot be resolved. The result with doping is similar to
that reported on 2D lattices.40 The chemical potentialm
moves to the top of the valence band as the density is re-
duced from half-filling. A large peak is generated which in-
creases in intensity aŝn& is further reduced. The weight of
the upper part of the spectrum~reminiscent of the UHB!
decreases with doping due to the reduced effective interac-
tion. Similar results are shown in Fig. 8~b! but for a 63 lat-
tice. There is not much difference between the two lattices,
showing that within the resolution of the ME procedure finite
size effects are small.

The large peak that appears in Figs. 8~a! and 8~b! at finite
hole density is crossed bym as the density is reduced. At

FIG. 7. Spin-spin correlation functionC( l) over a path in real
space on the 43 lattice at U58, b510, ^n&51 (s); b52,
^n&51 (3); andb52, ^n&50.88 (L). C(0) values are divided
by a factor of 3 for clarity. Error bars are smaller than the symbols
when not shown.

FIG. 8. ~a! N(v) for the 3D Hubbard model on a 43 lattice with
U58 andb52 at several densities indicated in the figure;~b! same
as ~a! but on a 63 lattice. Frequencies are always relative to the
chemical potentialm.
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^n&50.94, the peak is located to the left ofm, at ^n&50.88 it
has reached the chemical potential, and at^n&50.72, the
peak has moved to the right. This is in agreement with the
behavior observed in both 2D QMC and ED simulations,41

and it may be of relevance for estimations of superconduct-
ing critical temperatures if a source of carrier attraction is
identified.42

The results of the previous section at half-filling obtained
at low temperatures (T;1/10) revealed a sharp quasiparticle
peak in the DOS at the top of the valence band and bottom of
the conduction band. Numerical studies of 2D lattices have
shown that the peak intensity atT50 is the largest at
half-filling.41 Away from half-filling, the peak is still visible
but it is broader than at̂n&51.41 Thus there is no evidence
that the sharp peak in the DOS of the doped system has been
generated dynamically and represents a ‘‘Kondo resonance’’
induced by doping, as has sometimes been suggested,12 and
as Fig. 8 obtained at relatively high temperature,b52,
seems to imply.

Another important quantity to study is the quasiparticle
residueZ. The SCBA results show thatZ is small but finite
for the case of one hole in an antiferromagnetic insulator
state, and actually the results are very similar in 3D and 2D
systems.38,39Numerical results provide a similar picture.2 On
the other hand,Z vanishes in theD5` approach working in
the paramagnetic state as the dopingd tends to zero. Note
that in this state there are no AF correlations (jAF50). Thus,
it is clear that the hole quasiparticle at half-filling observed
in the 2D and 3D systems isnot related with the quasi-
particle-like feature observed in the PM state atD5`.

In Fig. 9, we showA(p,v) obtained on the 43 lattice,
U58, T51/2 and various densities away from half-filling.
The gap is now absent. From the energy location of the
maximum of the dominant peak in Figs. 9~a!–~c!, the quasi-
particle dispersion can be obtained. The results are shown
in Fig. 10. It is remarkable that the quasiparticle disper-
sion resembles that of a noninteracting system, i.e.,ep
522t!(cospx1cospy1cospz), with a scale increasing from
t!;t/4 to t/3 with doping. This dispersion certainly does not
exhaust all the spectral weight but a large incoherent part
still remains at this coupling, density and temperature. Simi-
lar results were observed in 2D.5,27,41,43Only vestiges remain
of the AF-induced weight in PES near (p,p,p). However,
this drastic reduction of the AF-induced intensity may be

FIG. 9. ~a! Spectral weightA(p,v) of the 3D Hubbard model
calculated using QMC/ME on a 43 lattice, atU58, b52, and at
density^n&50.94;~b! same as~a! but at^n&50.88;~c! same as~a!
but at ^n&50.72.

FIG. 10. Dispersion of the dominant peak of Figs. 9~a!–~c!
against momentum. The densities are indicated. The area in the
circles is proportional to the peak intensity. Error bars correspond to
the half-width of the peaks in the spectral weight.
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caused by the high temperature of the simulation as observed
in the spin-spin correlation function~Fig. 7!.

B. D5`

The previous subsection and the results at half-filling have
shown that the DOS of the 3D Hubbard model has a large
peak at the top of the valence band. The peak is crossed by
the chemical potential aŝn& decreases. This behavior is in
apparent contradiction with results reported atD5` where a
peak is generated upon doping if the ‘‘paramagnetic’’ solu-
tion to the mean-field problem is selected. AtD5`, there
are only two very distinct magnetic ground states. One has
AF long-range order, and the other is a paramagnet with
strictly zeroAF correlation length, i.e., without short-range
antiferromagnetic fluctuations. Thus, atD5` the transition
is abrupt from a regime withjAF5` to jAF50. This does
not occur in finite dimensions where, before the long-range
order regime is reached, AF correlations start building up
smoothly. This qualitative difference is depicted in Fig. 11.

jAF as small as a couple of lattice spacings can be robust
enough to induce important changes in the carrier dispersion,
and may even be enough to induce superconductivity as
many theories for the 2D high-Tc cuprates conjecture. We
believe that the absence of a regime of intermediate size AF
correlations at largeD is the key ingredient that explains the
differences reported here betweenD52,3 andD5`.

In Fig. 12~a!, theD5` DOS in the AF phase is shown at
^n&51 and 0.94. For these densities the AF phase is ener-
getically stable. We observe the tendency of the large peak at
the bottom of the valence band to move towards the chemi-
cal potential in good agreement with the 3D quantum Monte

Carlo simulations. As found in 2D, the intensity of the peak
decreases as we move away from half-filling if the tempera-
ture is low enough. In Fig. 12~b!, the DOS in theD5` limit
working in the paramagnetic phase is shown at several den-
sities. For the present interaction,U58, the paramagnetic
solution remains metallic at all temperatures even at
half-filling.12 The results are qualitatively different from
those observed in the AF regime. At^n&51 a large peak at
the chemical potential is clearly visible. Upon hole doping
this peak gradually moves toward higher energies. At suffi-
ciently strong doping the DOS of the PM phase@Fig. 12~b!#
resembles the results for the 3D lattices~Fig. 8!, which is not
surprising since AF correlations in 3D are strongly sup-
pressed at the present temperature. Close to half-filling, how-
ever, the 3D results are closer to the DOS of the AF phase
where a strong peak is observed on the left-hand side of the
chemical potentialm. This result is gratifying since the
proper way to compareD53 and` results is by using the
actual ground states in each dimension. InD5`, at low
temperatures, the crossing of the peak bym is expected at
that point where the AF phase becomes unstable against dop-
ing.

FIG. 11. ‘‘Phase diagram’’ of the Hubbard model~1! in the
D-^n& plane. Solid line: AF phase boundary; dashed line: crossover
where short range AF correlations disappear. The intermediate re-
gime of short-range AF order vanishes in the limitD→`.

FIG. 12. ~a! N(v) corresponding to theD5` Hubbard model
at U58, b54 at the electronic densities indicated. The results
were obtained using the AF solution to the mean-field equation;~b!
same as~a! but usingb52 and the PM solution to the mean-field
equation.
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V. CONCLUSIONS

In this paper we have calculated the single-particle prop-
erties of the 3D single-band Hubbard model using quantum
Monte Carlo and the SDW mean-field and SCBA approxi-
mations. Our results have many similarities with those re-
ported previously in 2D systems. At half-filling, peaks at the
top of the valence band and bottom of the conduction band
are observed in the DOS. Their behavior is associated with
spin polarons with a bandwidth of order of the exchangeJ.
We found similarities to and semiquantitive agreement with
experimentally observed features in the spectra of strongly
correlated 3D AF insulators, LaFeO3 andV2O3.

As we dope the system, the sharp peak associated with
these quasiparticles is crossed by the chemical potential as
the density^n& changes. The PES weight observed away
from half-filling is already present at half-filling. No new
states are generated by doping. This result must be con-
trasted with that observed experimentally in, e.g.,
Y1-xCaxTiO3 using angle-integrated PES. In this case spectral
weight which is not present in the insulator appears atEF in
the metallic regime as we dope the system. This behavior
does not seem reproduced by the single-band Hubbard
model, Eq.~1!, in 3D, the physics of which appears to be
very close to that of 2D. Indeed, for the 2D cuprates it has
been shown experimentally that the states found atEF upon
doping are already present at half-filling.44

An exception among 3D materials is NiS22xSex , which
remains antiferromagnetic throughout the metal-insulator
transition induced by~homovalent! Se substitution or tem-
perature. PES spectra atx50.5 for different temperatures45

show a strong peak close to the Fermi energy which does
not disappear in the insulator. Instead the peak is shifted off
the Fermi energy and only very slightly reduced in weight.
Since this situation is not described within the paramagnetic
D5` approach, AF correlations are presumably essential
for the low-energy electronic excitations of this system.

The success of theD5` approach to the Hubbard model
in describing the physics of Y1-xCaxTiO3, SrVO3, and
CaVO3, however, appears crucially to depend upon forcing
the paramagnetic solution of the equations.46 In this case,
states are actuallygeneratedin the Hubbard gap after a
small hole doping is introduced. Of course, it may be that the
‘‘arbitrary’’ choice of this paramagnetic solution, which is
not the actual minimum of the free energy, is well motivated
since it mimics the presence of physical effects like frustra-
tion, which destroy long-range order in real materials. More
work is needed to show that this scenario is realized for
realistic densities and couplings.

An alternative explanation for the discrepancy between
the PM solution in infinite-dimensional and finite-
dimensional results may lie in the finite resolution of the
combination of Monte Carlo simulations and maximum en-
tropy techniques. However, the SCBA and results at half-

filling and lowT show that it is likely that at̂n&51 we have
quasiparticle states in the DOS.

In studies of the single-band Hubbard Hamiltonian in 2D,
and in the present analysis in 3D, it is clear that short-range
AF correlations play an important role close to^n&51. In
particular, the states created at the top of the valence band
are likely to be spin polarons with a finite quasiparticle resi-
dueZ. PES states observed at finite hole doping evolve con-
tinuously from those present at half-filling. Experiments on
the 2D high-Tc cuprates seem to present similar features,
while the results for the 3D perovskites are very different in
the sense that no remnants of the coherent part of the spec-
trum away from half-filling are reported at half-filling.

Still, strong AF correlations are apparently present in sev-
eral 3D transition-metal oxides and influence the low-energy
spectrum at least on the insulating side of the transition. The
introduction of frustration in the single-band Hubbard model
in 3D, perhaps through next-nearest-neighbor hoppings, will
reduce AF correlations and, in particular, the AF-induced
charge gap, and might be sufficient to observe an evolution
of spectral weight upon doping closer to the experimental
findings. However, it might be that 3D models which explic-
itly include orbital degeneracy will be necessary to repro-
duce the physics of the transition-metal oxides, as has re-
cently been described for NiO chains47 and Mn oxides.48

Indeed, a recent argument presented by Kajueteret al.49 to
justify the use of theD5` model provides a more realistic
explanation for the apparent link between theory in this limit,
and 3D transition-metal oxide results. The idea is that the
physics of the real perovskite 3D oxides is influenced by the
orbital degeneracy. Presumably this effect leads to a drastic
reduction of the antiferromagnetic correlations that dominate
the physics of these 2D and 3D systems. Many orbitals, in-
cluding Hund’s coupling, produce an effective magnetic
frustration that may reduce the AF correlation length to a
negligible value even close to the AF insulator at half-filling.
Such a frustration effect could be strong enough to generate
a finite critical couplingU/t at half-filling.
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