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One-particle spectral weight of the three-dimensional single-band Hubbard model
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Dynamic properties of the three-dimensional single-band Hubbard model are studied using quantum Monte
Carlo combined with the maximum entropy technique. At half-filling, there is a clear gap in the density of
states and well-defined quasiparticle peaks at thetiofiom) of the lower(uppe) Hubbard band. We find an
antiferromagnetically induced weight above the naive Fermi momentum. Upon hole doping, the chemical
potential . moves to the top of the lower band where a robust peak is observed. Results are compared with
spin-density-wave mean-field and self-consistent Born approximation results, and also with the infinite-
dimensional D=«) Hubbard model, and experimental photoemission for three-dimensional transition-metal
oxides.[S0163-182696)11148-9

I. INTRODUCTION bard Hamiltonian. The motivation is twofold. First, we want
to compare general properties of the 3D Hubbard Hamil-
The single-band two-dimensional Hubbard Hamiltohian tonian with the extensive studies already reported in the
has recently received considerable attention due to possiblgeraturd®1262for the 2D and infinite-dimensional cases.
connections with high-temperature superconductors. Indee®@f particular importance is the presence of quasiparticles
evidence is accumulating that this Hamiltonian may de-near the half-filling regime, as well as the evolution of spec-
scribe, at least qualitatively, some of the normal-state proptral weight with doping. Many of the higfiz. cuprates con-
erties of the cupratésExact diagonalizatiofED) and quan-  tain CuQ, planes that are at least weakly coupled with each
tum Monte Carlo(QMC) have been used to model static other, and thus the study of the 3D system may help in un-
properties like the behavior of spin correlations and magnetiderstanding part of the details of the cuprates. More gener-
susceptibility both at half-filling and with dopirfgCompari-  ally, the Hubbard Hamiltonian is likely to continue being one
sons of dynamic quantities like the spectral weight and denef the models used to capture the physics of strongly corre-
sity of states with angle-resolved photoemission re$tits lated electrons, so we believe it is important to document its
have also proven quite successful. Significantly, while anaproperties in as many environments as possible for potential
lytic calculations have pointed towards various low- future comparisons against experiments.
temperature superconducting instabilities, such indications Secondly, we discuss a particular illustration of such con-
have been absent in numerical wérk. tact between Hubbard Hamiltonian physics and experiments
Historically, however, the Hubbard model was first pro-on 3D transition-metal oxides. In addition to the studies of
posed to model magnetism and metal-insulator transitions ihalf-filled systems with varying correlation energy men-
3D transition metals and their oxidésather than supercon- tioned above, experiments where the band filling is tuned by
ductivity. Now that the technology of numerical work has changing the chemical composition have also been
developed, it is useful to reconsider some of these originaleported:*'%1*One compound that has been carefully inves-
problems. A discussion of possible links between the 3Dtigated in this context is ¥,Ca, Ti O3. At x=0 the system is
Hubbard model and photoemission results for YJiO an antiferromagnetic insulator. As increases, a metal-
Sr V0, and otherd51%has already recently occurred. In such insulator transition is observed in PES studies. The lower
perovskite Ti" and V** oxides, which are both in ad®  and upper Hubbard bandsHB and UHB) are easily iden-
configuration, the hopping amplitudebetween transition- tified even withx close to 1, which would naively corre-
metal ions can be varied by modifying tlded neighboring  spond to small electronic density in the single band Hubbard
overlaps through a tetragonal distortion. Thus, the strength ahodel, i.e., a regime wherd/t is mostly irrelevant. In the
the electron correlatiot/t can be varied by changing the experiments, a very small amount of spectral weight is trans-
composition. In fact, a metal-insulator transition has beerferred to the Fermi energy, filling the gap observed at half-
reported in the series Sr\{@Ca VO;-LaTiOs-YTiO5. On the  filling (i.e., generating a “pseudogap”
metallic side, a quasiparticle band is experimentally ob- Analysis of the photoemissaiPES results of these com-
served near the Fermi ener@y:, as well as a high-energy pounds using the paramagnetic solution of the Hubbard
satellite associated to the lower Hubbard bah#iB).8'®  Hamiltonian in infinite dimension¥, a limit where dynamic
Spectral weight is transferred from the quasiparticle to thanean-field theory becomes ex#see Sec. )| has resulted in
LHB as U/t is increased at half-filling. qualitative agreemetft!”1®with the experimental results. At
In this paper, we report the use of quantum Monte Carloand close to half-filling there is an antiferromagneit)
combined with analytic continuation techniques, to evaluatesolution which becomes unstable against a paramagnetic
the spectral function and density of states for the 3D Hub{PM) solution at a critical concentration of holes. In the PM
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case, weight appears in the original Hubbard gap as reportggtoduct is positive definite. At general fillings, however, the
experimentally. However, this analysis of the spectral weighproduct can become negative, and this “minus-sign prob-
in terms of the infinite-dimensional Hamiltonian is in contra- lem” restricts the application of QMC to relatively high tem-
diction with results for the density of states reported in theperature(of order 1/30 of the bandwidjtoff half-filling.

2D Hubbard modélwhere it is found that upon holelec- The QMC algorithm provides a variety of static and dy-
tron) doping away from half-filling the chemical potential namic observables. One equal time quantity in which we are
n moves to the topbottom of the valence(conduction  interested is the magnetispin-spin correlation function,
band. The results dn)=1 in 2D already show the presence 1

of a robust quasiparticle peak which is absent in the insulat- _ = .

ing PM solution of theD =<« model. That is, in the 2D ch N; (M. @
system the large peak in the density of states observed away

from half-filling seems to evolve from a robust peak alreadyHere m;== ,on;, is the local spin operator, and is the
present at half-filling. On the other hand,@t=« a feature total number of lattice sites. Static correlations have also
resembling a “Kondo resonance” generatedupon doping been investigated in earlier studies of the 3D Hubbard
if the paramagnetic solution is used. This peak in the densitynodef'?? where the antiferromagnetic phase diagram at
of states does not have an analog at half-filling unless frushalf-filing was explored.

tration is included? Studies in three dimensions may help in  To obtain dynamical quantities in real-time or frequency,
the resolution of this apparent noncontinuity of the physicshe QMC results in imaginary time have to be analytically
of the Hubbard model when the dimension changes from 2 t@ontinued to the real-time axis. Since we are mostly inter-
». The proper way to carry out a comparison betweerested in the one-particle spectrum we measure the one-
D=3 andx features is to base the analysis on ground-statparticle Green functionG(p,7). The imaginary part of
properties. With this restriction, i.e., using the AF solution atG(p, ) (in real frequencydefines the spectral weight func-
D=« and close to half-filling, rather than the PM solution, tion at momentunp, A(p, ), which is related tds(p, 7) by

we found that th® =3 and« results are in good agreement.

In this paper we will consider which of these situations | e
the 3D Hubbard Hamiltonian better corresponds to, and Glp.7)= f,wde(p’w)lJreﬁ‘”'
therefore whether the single-band Hubbard Hamiltonian pro-
vides an adequate description of the density of states of 3IA(p,w) can in principle be calculated by inverting E@),

—Tw

()

transition-metal oxides. but the exponential behavior of the kernel at large values of
|w| makes this inversion difficult numericalyG(p,7) is
Il. MODEL AND METHODS quite insensitive to details oA(p,w) in particular at large
_ o frequencies. Sinc&(p, 7) is known only on a finite grid in
The single-band Hubbard Hamiltonian is the interval[0,8] and there only within the statistical errors
N given by the QMC sampling, solving EQ3) for A(p,w) is
H= _t% (CigCio T H-C-)_M%: Nig an ill-posed problem. A large number of solutions exist, and

the problem is to find criteria to select out the correct one.
This can be done by employing the maximum entrOg)
+U Z (niy—1/2)(n; — 1/2), (D) method?® Basically, the ME finds the “most likely” solution
A(p,w) which is consistent with the data and all information
where the notation is standard. Heip) represents nearest- that is known about the solutioflike positivity, normaliza-
neighbor links on a 3D cubic lattice. The chemical potentialtion, etc). ME avoids “overfitting” to the data by a
wu controls the doping. For=0 the system is at half-filling “smoothing” technique that tries to assimilate the resulting
((n)=1) due to particle-hole symmetry=1 will set our A(p,w) to a flat default model. In the absence of any data
energy scale. [G(p,7)] ME would converge to the default model which is
We will study the 3D Hubbard Hamiltonian using a finite chosen to be a constant within some large frequency interval.
temperature, grand canonical quantum Monte CEEIMC)  There is no adjustable parameter in the ME application. One
method® which is stabilized at low temperatures by the useneeds accurate data f@é(p,7) with a statistical error of
of orthogonalization techniqué$The algorithm is based on  O(10™%) to get reliable results foA(p, »).
a functional-integral representation of the partition function In principle, one can calculate analytically the first and
obtained by discretizing the “imaginary-time” interval second(and higher moments of the spectral weight and in-
[0,8] where B is the inverse temperature. The Hubbard in-clude this information in the ME procedure. However, we
teraction is decoupled by a two-valued Hubbard-chose to calculate the moments afterwards from the resulting
Stratonovich transformatidh yielding a bilinear time- function A(p,w), and to compare them with the analytically
dependent fermionic action. The fermionic degrees oknown results as a further test. The agreement was in all
freedom can hence be integrated out analytically, and theases within 10%. Still, the ME methods provides only a
partition function(as well as observablesan be written as a rough estimate of the true spectral weight functions. Band
sum over the auxiliary fields with a weight proportional to gaps and the positions of significant peaks are usually well
the product of two determinants, one for each spin speciegaptured but fine structure which needs a high-frequency
At half-filling ((n)=1), it can be shown by particle-hole resolution is hard to detect within the ME approach.
transformation of one spin specimlﬂ(—l)'cﬂ] that the Integrating A(p,w) over the momenta gives the one-
two determinants differ only by a positive factor; hence theirparticle density of state®0S) N(w). However, technically,
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IIl. HALF-FILLING

A. Quantum Monte Carlo

(001)
I We first study the single-particle spectral weidt(tp, w)

I
A
(002) at relatively strong coupling,U=8, and half-filling
J ((n)=1) at a low temperature of=1/10.
(012) A gap is clearly present in the spectriffig. 1) which is
compatible with the expectation that the half-filled Hubbard
P (022) model on a bipartite lattice is an antiferromagnetic insulator
T | for all nonzero values of the couplingl/t. The spectral
| (122) weight has four distinct featurg$wo in the LHB and two
A identical ones in the UHB, as expected from particle-hole
0 | | @22) symmetry. In the UHB there is weight at a high energy,
J\\& roughly in the interval betweer 5t and &. This broad fea-
) ture likely corresponds to the incoherent part of the spectral
000 . - L 000) function found in previous simulations for the 2D Hubbard
"2 8 0 4 8 12 and t-J models? The dominant scale of this incoherent
® weight ist, and since it is located far from the top of the
valence band its presence is not important for the low-
FIG. 1. Single-particle spectral functiol(p,w) versusw for temperature properties of the system.
several momenta. The results correspond to a lattice witkités, Much more interesting is the sharper peak found close to
U=8, =10, half-filling ar_ld gsingzl as energy scale. Momenta the gap in the spectrum. This band dispersion starts at a
p are in units ofw/2. Bars indicate the position of the quasiparticle binding energy of approximatelyw=—4t at momenta
peak. (0,0,0) and moves up in energy obtaining its maximum value
at w~—2t at momenta (G7/2,7) and (w/2,7/2,7/2) in
it is preferrable to integrate fir<s(p, 7), which reduces the Fig. 1. The width of the peak diminishes as the top of the
statistical errors, and then perform the analytic continuationvalence band is reached. Similar structure was discussed be-
The DOS will be compared to results from the dynamicalfore in studies of 2D systems, which had a somewhat higher
mean-field theory of infinite dimension§=«." In this  resolution, as a “quasiparticle” band corresponding to a hole
limit, with the proper scaling of the hopping element moving coherently in an antiferromagnetic backgroGAf.
(t=t*/Z, with Z being the coordination numbethe one-  This quasiparticle should be visualized as a hole distorting
particle self-energy becomes local or, equivalently, momenthe AF order parameter in its vicinity. In this respect it is like
tum independent and the lattice problem is mapped onto a spin polaron or spin ba§,although “string states” likely
single-site problem. The constatit is set tot* = /6 to ob- influence its dispersion and shap&he quasiparticlghole
tain the same energy scale=1, when compared to the plus spin distortionmovement is regulated by the exchange
3D case?® In contrast to conventional mean-field theories,J, rather thart.
the self energy remains frequency dependent, preserving im- Using the center of the quasiparticle peaks of Fig. 1 as an
portant physics. Spatial fluctuations are neglected, an apndication of the actual quasiparticle pole position, we obtain
proximation which becomes exact in the limf—co a bandwidthw of about 2 to 3 or, equivalently, 4 to 8
(Z=2D for the simple cubic lattide Even inD=o<, the usingJ=4t?/U for U=8. However, due to the low resolu-
remaining local interacting problem cannot be solved anation of the ME procedure, reflected in part in the large width
lytically but will also be treated by a finite temperature of the peaks of Fig. 1, it is difficult to show more convinc-
QMC? supplemented by a self-consistency iterafibtf  ingly within QMC/ME that the quasiparticle bandwidth is
The advantage is that the system can be investigated in tiedeed dominated by.
thermodynamic limit with a modest amount of computer Note that moving from (0,0,0) to#,m,7) along the
time. Due to its local character tH2=o approach cannot main diagonal of the Brillouin zoneZ), the PES part of the
provide information on momentum-dependent spectral funcspectruni.e., the weight atw<<0) loses intensity. There is a
tions. However, recently &-resolved spectral function has clear transfer of weight from PES at smi| to IPES at
been studietf in D= . large|p|, as observed in 2D simulatioA$In addition, note
Among other things, thé® = limit has been used re- that there is PES weight above ttraive) Fermi momentum
cently to study the AF phase diagram in the Hubbardof this half-filled system. For example, pt= (0,7, 7), spec-
model!? The agreement of the & temperature with 3D tral weight atw<0 can be clearly observed. Similarly, at
results is good? In D= it is further possible to suppress p=(0,0,7) weight in the IPES region is found. This effec-
AF long-range order artificially by restricting the calculation tive doubling of the size of the unit cell in all three directions
to the (at low temperatures unstaplparamagnetic solution is a consequence of the presence of AF long-range order.
at half-filling. In this way, one may simulate frustration due The hole energy gi=(0,0,0) and ¢, 7, 7) becomes degen-
to the lattice structure or orbital degeneracy, although in therate in the bulk limit and the quasiparticle band, for ex-
absence of calculations for hypercubic lattices with nearesample, along the main diagonal of the BZ, has a reflection
and next-nearest uniform hopping amplitudes it is still a consymmetry with respect to#/2,7/2,7/2), as observed in our
jecture how close this approach is to including these effectsesults(Fig. 1). However, note that the actual intensity of the
fully. AF-induced PES weight close tar(, ) is a function of

A(p,w)
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FIG. 2. Density of statebl(w) of the 3D Hubbard model on a FIG. 3. Density of statebl(w) of the 3D Hubbard model on a
4% lattice, U=8, B=10 (solid line) and =4 (dotted ling and 43 |attice atU=8 (dotted liné andU =12 (solid line), =4, and
(n)=1. We do not enforce the(w)=p(—w) symmetry which  (ny=1,
occurs at half-filling due to particle-hole symmetry. However, de-
viations from this constraint are small, a further check on our nu-

merics. Even the estimated charge gap of Fig. 3, defined by the onset

of spectral weight relative to the Fermi energy,

the coupling. AsU/t—0, the intensity of the AF-induced Acpags~3t=1.5 eV is not too far from the experimental
region is also reduced to zero. The presence of this AFvalue of ~1.1 eV. The ratior =w,/w; decreases withJ
generated feature has recently received attention in the cosince forU>t both energies are expected to converge to
text of the 2D highT. cuprate$®3 While its presence in  U/2. While for U=12, r~2.1 is comparable to the experi-
PES experiments at optimal doping is still under discussionmental value 1.7), itis too large fotJ =8 (r~2.9) show-
these features clearly appear in PES experimental studies ofg that under the assumption of a single-band Hubbard
half-filled insulators, like SICUO,Cl,.3! Thus, while this be- model description for LaFeQthe effective on-site interac-
havior has been primarily discussed in the context of 2Dtion is at least of the size of the bandwidth.
systems angle-resolved PESRPES, studies of 3D insula- Another feature which has been attributed to antiferro-
tors like LaTiO; might also show such features. magnetic ordering was found in a high-resolution PES study

In Fig. 2 we show the density of statd80S) N(w) of the  of V,03.3*3*In the AF insulator aff =100 K the spectrum
43 lattice. The two features described before, namely quasishows a shoulder ab,;=—0.8 eV which is absent in the
particle and incoherent background, in both PES and IPEParamagnetic metal at=200 K. This shoulder might be a
are clearly visible. Also shown in Fig. 2 is the temperaturereminiscent of the quasiparticle peak. The maximum of the
effect onN(w), which is weak for the given temperatures lower Hubbard band is at aboub~ — 1.3 eV, giving a ratio
(8=10 and 4. The basic features are still retained, only thew,/w,~1.6 similar to that observed in LaFgOrhe on-site
gap is slightly reduced and the quasiparticle peak less prdnteraction was estimated to be about 1.5 times the
nounced at the higher temperature. bandwidth?3

Results corresponding to a larger coupling=12, at It is interesting to compare the results obtained in our
B=4 are shown in Fig. 3. The gap increases and the quassimulations with those found in the =< limit of the Hub-
particle band becomes sharperl& grows, as expected if bard model. At half-filling for arbitrary coupling strength,
its bandwidth is regulated byl. A(p,w) at U=12 and theD =% model has an AF insulating ground state. Its DOS
B=4 are similar to the results shown in Fig. 1. is shown in Fig. 4, using the same coupling and temperature

A characteristic double peak like that seen in Figs. 2 ands in the 3D simulatiorN(w) for both cases are similar, and
3 has been observed in the x-ray-absorption spectrum dhey are also similar to results found before in 2D, suggest-
LaFeQ,? which is a strongly correlated, wide-gapped anti-ing that the physics of holes in an antiferromagnetic system
ferromagnetic insulator. The peaks appear at energies d¢$ qualitatively the same irrespective of whether a 2D, 3D, or
about 2.2 eV and 3.8 eV. When Fe is substituted by Ni thiscD lattice is used, at least within the accuracy of present
structure vanishes and the system becomes a paramagne@®C/ME simulations.
metal at a Ni concentration of about 80%. If we choose for
comparison with the calculated DdS5ig. 3 a hopping am-
plitude of t=0.5 eV, giving a reasonabld bandwidth of
W=6 eV, the positions of the quasiparticle peak and the Since the data shown in the previous subsection corre-
maximum of the incoherent band f&f=12t are at about spond to holes in a system with AF long-range order, it is
wi~4t=2 eV and w,~8.4=4.2 eV, respectively. The natural to compare our results against those found in mean-
agreement with the experimental values is fairly good confield approximations to the half-filled 3D Hubbard model
sidering the crude simplifications of the Hubbard model sucthat incorporate magnetic order in the ground state. The
as neglecting orbital degeneracy and charge transfer effectsspin-density-wave” (SDW) mean-field approximation has

B. SDW mean-field and Born approximation
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0'00_15 15 FIG. 6. Quasiparticle dispersion in the SDW MF approximation

atU=12.8 (dashed linecompared against similar results obtained
with the SCBA approximation for one hole in thel model at
J/t=0.3125(solid ling). The energy scale of the SCBA dispersion
is shifted such that the bottom of the band &tZ,7/2,7/2) agrees
with the SDW MF result. The QMC data, also shown, lie between
these weak and strong coupling approximations. The area in the
rcles is proportional to the peak intensity. The error bars are the
idth of the peak.

FIG. 4. Density of statebl(w) of the 3D Hubbard model on a
43 lattice atU=12, =4, and(n)=1 (solid line) compared with
the density of states at the same parameter®ferc (dotted ling.

been extensively used in the context of the 2D Hubbarqi:
model3® and here we will apply it to our 3D problem. For a

lattice ofN sites, the self-consistent equation for the dajs explicitly calculatec” Figure 5 shows many of the features
U 1 observed in the numerical simulation, namely, a hole disper-
=—> (4) sion which is maximized at#/2,7/2,7/2) for the momenta
2N Ep shown there, an overall bandwidth smaller than the noninter-
acting one, and the presence of AF-induced features in the
where E,=\e,+A% is the _Quasiparticle energy, and dispegrsion above thepnaive Fermi momentum.
€p=— 2t(cop,+cogpy+cop,) is the bare electron disper-  Thys the SDW MF approach qualitatively captures the
sion. The resulgng guasiparticle dispersion is shovvn in Fllg. Rorrect hole quasiparticle bandwidghat half-filling. How-
compared against the results of the QMC/ME simulationgyer g spurious degeneracy appears in the hole dispersion in
The overall agreement is good if the couplibgin the gap g approximation. Momenta satisfying ggs cog,
equation, Eq(4), is tuned to ava_lueJ~5.6. Itis re_asc_)nable +cop,=0 have the same energy. This is not induced by
that a reducedi_J should be required for such a fit, since the symmetry arguments and is an artifact of the SDW approach.
SDW MF gap is usually larger than the more accurate QMGp, aqdition, A(p, ) in the SDW approximation only has one
result. Similar renormalizations &f in comparing QMC and peak in the PES region for each value of the momentum,
approximate analytic work have been discussed in the COMyissing entirely the incoherent part.
text of fitting the magnetic respond®and have also been While it may not be necessary to fix this problem in this
case, it is important in general to be able to go beyond SDW
MF. To do this, the self-consistent Born approximatfon

Et 8 EL\ s L (SCBA) for one hole in the 3@-J model, which corresponds
Ny % “E. /E to the strong coupling limit of the Hubbard model, can be
AN % ST used. This technique reproduces accurately exact diagonal-
@] O ization results in the 2D cas@ Actually, the dispersion of a
0 dressed hole in an antiferromagnet within the SCBA for a
Q 3 ’O‘~© bilayer system, and also for a 3D cubic lattice, has been
LN Sl I ied® for completeness, we reproduce
4% N P \"\é | recently studied® Here, p , produc
AN N some of the results of Ref. 39, and compare them against
£ Nz R those of the 3D Hubbard model obtained with the SDW MF
8 l | | ] approximation and QMC calculatiorigig. 6). The compari-
(0,0,0) (mam) mm0) (@00) (0,0,0) son is carried out atd/t~0.3, which corresponds to

U/t~13. The maximum of the dispersion in the valence

FIG. 5. Quasiparticle dispersion in the SDW MF approximation band us!ng the SCBA now lies atr(2,7/2,7/2), remoying
at half-filing and zero temperature. Results areldt=8 (dot-  th€ spurious SDW MF degeneracy. In the scale of Fig. 6 the

dashed lingandU=5.5% (dashed line QMC/ME results for the  SPlitting between this momentum ana(/2,0) is difficult

3D Hubbard model on a%lattice at the same coupling, density, t0 resolve, since it corresponds to about 100 K. Note that the
and temperature are also showspen circles The area in the bandwidth predicted by the SDW MF technique is approxi-
circles is proportional to the peak intensity. The error bars are thénately a factor 2 larger than the more accurate pre-
width of the peak. For some momenta the intensity of the PES odiction of the SCBA. However, for this larger value bf
IPES data is so low that no peak position is reported. it does not appear possible to fit simultaneously the
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FIG. 7. Spin-spin correlation functio@(l) over a path in real 0.18 ' ; w
space on the % lattice at U=8, =10, (n)=1 (O); B=2, b)
(n)=1 (X); and =2, (n)=0.88 (¢). C(0) values are divided 100 ! Uss
by a factor of 3 for clarity. Error bars are smaller than the symbols \
when not shown. " n=0.94 ‘
o1zp 4
SDW MF bandwidth and band gap to the results of QMC _
o . . 3 —- n=073
by the same renormalization &, something which can >
be done successfully at weaker couplitg=8. The QMC
points at this intermediate coupling value where 0.06 - :
U=bandwidth lie in between the SDW MF and SCBA.
Though the uncertainties in the QMC results are rather o
large, we expect the agreement between SCBA and QMC i
results to improve as the coupling increases. The best 0.00 ) . e
fit of the SCBA datd is e(p)=c+ 0.082(cop,comp, 5 10 5 0 5 10 15
+cogp,cop,+coPp,co,)+ 0.022(cosP,+cosd, +cosd,) w0

(eV), if J=0.125 eV and=0.4 eV are used. The constant
c is defined by the SDW MF gafig. 6). As in the case of FIG. 8. (8 N() for the 3D Hubbard model on &4attice with
the 2D problem, holes tend to move within the same sublatl =8 and3=2 at several densities indicated in the figuit®;same
tice to avoid distorting the AF backgrouﬁd\Norking at as (a)_but on a _6” lattice. Frequencies are always relative to the
smallJ/t, the bandwidth of the 3B-J hole quasiparticle was Cchemical potentia..
found to scale ad,*® as occurs in two dimensions.
ence of a gap in the density of states. In particular, it was
observed that if N(w) is evaluated on lattices of increasing
size at fixed temperature a well formed gap appearing on
small lattices disappears when the spatial extent exceeds the
We can also use the QMC approach to study the 3D Hubspin-spin correlation length. Decreasing the temperatamd
bard model away from half-filling for temperatures down to hence increasing the range of the spin correlatilows the
about 1/30 of the bandwidth, a value for whith-J for the  gap to reform. Similar effects are seen here in 3D.
present strong coupling values. First, we study the influence Figure §a) shows the density of states on 2 lttice at
of doping and temperature on the spin-spin correlation funcseveral densities,)=8 and 3=2. At this temperature the
tion C(I). At half-filing C(I) shows strong antiferromag- charge gap is not fully developed, and the quasiparticle
netic correlations over the whol€ 4attice at3=10(Fig. 7).  peaks cannot be resolved. The result with doping is similar to
At B=2 the correlations are significantly weakened, andthat reported on 2D latticé§. The chemical potentiaj
with additional doping (n)=0.88) all correlations are sup- moves to the top of the valence band as the density is re-
pressed besides those between nearest neighbors. These @jced from half-filling. A large peak is generated which in-
pear to be stable against doping. The density of local mocreases in intensity &) is further reduced. The weight of
ments,\/C(0) reaches its low-temperature limit at an energythe upper part of the spectrufneminiscent of the UHB
scale set byJ and hence is unaffected by the changeBof decreases with doping due to the reduced effective interac-
from =2 to S=10 (note that longer-range spin correlations tion. Similar results are shown in Fig(t8 but for a & lat-
form at a temperature set by the much smaller energy scaklice. There is not much difference between the two lattices,
J). vC(0) is to first order proportional to the electronic den- showing that within the resolution of the ME procedure finite
sity and hence slightly reduced @t)=0.88. size effects are small.
There has been considerable discussion concerning the The large peak that appears in Fig&)&nd 8b) at finite
relationship between the spin-spin correlations and the pres$wole density is crossed by as the density is reduced. At

IV. FINITE HOLE DENSITY
A. D=3
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FIG. 9. (a) Spectral weightA(p,w) of the 3D Hubbard model
calculated using QMC/ME on a®4attice, atU=8, =2, and at
density(n)=0.94;(b) same aga) but at(n)=0.88;(c) same a%a)
but at(n)=0.72.

(n)=0.94, the peak is located to the left @f at(n)=0.88 it
has reached the chemical potential, and(rat=0.72, the
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FIG. 10. Dispersion of the dominant peak of Figga)9(c)
against momentum. The densities are indicated. The area in the
circles is proportional to the peak intensity. Error bars correspond to
the half-width of the peaks in the spectral weight.

and it may be of relevance for estimations of superconduct-
ing critical temperatures if a source of carrier attraction is
identified??

The results of the previous section at half-filling obtained
at low temperaturesT{~ 1/10) revealed a sharp quasipatrticle
peak in the DOS at the top of the valence band and bottom of
the conduction band. Numerical studies of 2D lattices have
shown that the peak intensity &=0 is thelargest at
half-filling.** Away from half-filling, the peak is still visible
but it is broader than &)= 1.*! Thus there is no evidence
that the sharp peak in the DOS of the doped system has been
generated dynamically and represents a “Kondo resonance”
induced by doping, as has sometimes been sugg&sted)
as Fig. 8 obtained at relatively high temperatugs-2,
seems to imply.

Another important quantity to study is the quasiparticle
residueZ. The SCBA results show tha is small but finite
for the case of one hole in an antiferromagnetic insulator
state, and actually the results are very similar in 3D and 2D
systems®3® Numerical results provide a similar pictuf€©n
the other handZ vanishes in th® =« approach working in
the paramagnetic state as the dopihgends to zero. Note
that in this state there are no AF correlatioggd=0). Thus,
it is clear that the hole quasiparticle at half-filing observed
in the 2D and 3D systems isot related with the quasi-
particle-like feature observed in the PM stateDat .

In Fig. 9, we showA(p,w) obtained on the % lattice,
U=8, T=1/2 and various densities away from half-filling.
The gap is now absent. From the energy location of the
maximum of the dominant peak in Figsa®-(c), the quasi-
particle dispersion can be obtained. The results are shown
in Fig. 10. It is remarkable that the quasiparticle disper-
sion resembles that of a noninteracting system, ieg.,
= —2t*(cog+cogp,+cog,), with a scale increasing from
t*~1t/4 tot/3 with doping. This dispersion certainly does not
exhaust all the spectral weight but a large incoherent part
still remains at this coupling, density and temperature. Simi-
lar results were observed in ZB3/41430nly vestiges remain

peak has moved to the right. This is in agreement with theof the AF-induced weight in PES nea#r(w, 7). However,
behavior observed in both 2D QMC and ED simulatiéhs, this drastic reduction of the AF-induced intensity may be
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FIG. 11. “Phase diagram” of the Hubbard moddl) in the Z
D-(n) plane. Solid line: AF phase boundary; dashed line: crossover
where short range AF correlations disappear. The intermediate re- 0.06 1 )
gime of short-range AF order vanishes in the lifDit> .
caused by the high temperature of the simulation as observed 0.00 —— i

in the spin-spin correlation functioffFig. 7).

FIG. 12. (a) N(w) corresponding to th® = Hubbard model
at U=8, B=4 at the electronic densities indicated. The results
The previous subsection and the results at half-filling havavere obtained using the AF solution to the mean-field equatton;
shown that the DOS of the 3D Hubbard model has a largéame aga) but using3=2 and the PM solution to the mean-field
peak at the top of the valence band. The peak is crossed gfuation.
the chemical potential ag) decreases. This behavior is in
apparent contradiction with results reporteddat  where a
peak is generated upon doping if the “paramagnetic” solu-Carlo simulations. As found in 2D, the intensity of the peak
tion to the mean-field problem is selected. Bi=, there  decreases as we move away from half-filling if the tempera-
are only two very distinct magnetic ground states. One hature is low enough. In Fig. 1B), the DOS in theD =« limit
AF long-range order, and the other is a paramagnet witlworking in the paramagnetic phase is shown at several den-
strictly zero AF correlation length, i.e., without short-range sities. For the present interactiob,=8, the paramagnetic
antiferromagnetic fluctuations. Thus, Bt=o the transition solution remains metallic at all temperatures even at
is abrupt from a regime witlfar= to é,x=0. This does half-filling.}?> The results are qualitatively different from
not occur in finite dimensions where, before the long-rangehose observed in the AF regime. &i)=1 a large peak at
order regime is reached, AF correlations start building upthe chemical potential is clearly visible. Upon hole doping
smoothly. This qualitative difference is depicted in Fig. 11. this peak gradually moves toward higher energies. At suffi-
&ar @s small as a couple of lattice spacings can be robustiently strong doping the DOS of the PM phdéég. 12b)]
enough to induce important changes in the carrier dispersiomesembles the results for the 3D latti¢€sg. 8), which is not
and may even be enough to induce superconductivity asurprising since AF correlations in 3D are strongly sup-
many theories for the 2D higl; cuprates conjecture. We pressed at the present temperature. Close to half-filling, how-
believe that the absence of a regime of intermediate size AEver, the 3D results are closer to the DOS of the AF phase
correlations at larg® is the key ingredient that explains the where a strong peak is observed on the left-hand side of the
differences reported here betwebr=2,3 andD =, chemical potentialw. This result is gratifying since the
In Fig. 12a), theD = DOS in the AF phase is shown at proper way to compar® =3 ande results is by using the
(ny=1 and 0.94. For these densities the AF phase is enerctual ground states in each dimension.Di«, at low
getically stable. We observe the tendency of the large peak atmperatures, the crossing of the peakbys expected at
the bottom of the valence band to move towards the chemithat point where the AF phase becomes unstable against dop-
cal potential in good agreement with the 3D quantum Monteng.

B.D=w
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V. CONCLUSIONS filling and low T show that it is likely that atn)=1 we have

In this paper we have calculated the single-particle pro quasiparticle states in the DOS.
bap ge-p PTOP~""11 studies of the single-band Hubbard Hamiltonian in 2D,

erties of the 3D single-band Hubbard model using quanturrgind in the present analysis in 3D, it is clear that short-range
Monte Carlo and the SDW mean-field and SCBA approxi- '

mations. Our results have many similarities with those re-AF correlations play an important role close @)=1. In

ported previously in 2D systems. At half-filling, peaks at theparticular, the states created at the top of the valence band

top of the valence band and bottom of the conduction band'® likely to be spin polarons with a finite quasiparticle resi-

are observed in the DOS. Their behavior is associated WitﬁgﬁfﬁgEﬁosrtnattizsebsiggdn?;lr;:;?f.rf]mliﬁ dOE)I(ngeﬁr\;czal\r/]t:Sng—
spin polarons with a bandwidth of order of the exchadge y b 9. EXp

We found similarities to and semiquantitive agreement Withwr?ilez?hgIrgehsql—fltsc?grr?r:?as;beegot\?slztrg:eanr:a ?/'g”a(;ig?éﬂﬁi’
experimentally observed features in the spectra of strongl P y

correlated 3D AF insulators, LaFe@ndV,Os. Yhe sense that no remnants of the coherent part of the spec-

A e dope e system, the sharp ek sssociaed will'T S "o MG e eporel bt e,
these quasiparticles is crossed by the chemical potential as | ! 9. | oxid d Ppﬂ y ph |
the density(n) changes. The PES weight observed awayera 3D transition-metal oxides and influence the low-energy
A ¥ - spectrum at least on the insulating side of the transition. The
from half-filling is already present at half-filling. No new

states are generated by doping. This result must be Cor|]r_1troduct|on of frustration in the single-band Hubbard model

trasted with that observed experimentally in, e.g.,mC?D’ pirl? aps thlropgh nexé—n.earest-.nellghbor: h%\p':p[n%s, WSI
Y 1,CaTiO5 using angle-integrated PES. In this case spectrarle uce correlations and, in particular, the AF-induce

(13_')( ht h'?:h is ot present in the ins Iétor appears.ain charge gap, and might be sufficient to observe an evolution
weight which | P : insu PP i of spectral weight upon doping closer to the experimental

the metallic regime as we dope the system. This behaviof_ .. S ) -
does not seem reproduced by the single-band Hubba?ﬁ dings. However, it might be that 3D models which explic

. X . ity include orbital degeneracy will be necessary to repro-

\r;]e?deéiogg'g)ﬁ:gt i?’zg]e”?ggg(ljcsf;f t‘a’g'gg iﬂp?;l{:st(i)t Egsduce the physics of the transition-metal oxides, as has re-

y . ' ' P tently been described for NiO chafisand Mn oxideg?
been shown experimentally that the states founBgatipon

i 49
doping are already present at half-fillik. Indeed, a recent argument presented by Kajueted.™ to

An exception among 3D materials is NiS.Se,, which justify the use of théD =~ model provides a more realistic

. : ! . xplanation for th rent link between theory in this limi
remains antiferromagnetic throughout the metal—lnsulatore planation for the apparent between theory in this limit,

transition induced bythomovalent Se substitution or tem- and 3D transition-metal oxide results. The idea is that the
perature. PES spectra at0.5 for different temperaturés physics of the real perovskite 3D oxides is influenced by the

h . K ol 1o the Fermi hich d orbital degeneracy. Presumably this effect leads to a drastic
show a strong peak close to the Fermi energy WNICh COeg, ,ction of the antiferromagnetic correlations that dominate
not disappear in the insulator. Instead the peak is shifted o

! ; . i he physics of these 2D and 3D systems. Many orbitals, in-
th_e Ferml energy af‘d only very sllght_ly _reduced in Welght_‘cluding Hund's coupling, produce an effective magnetic
Since this situation is not described within the paramagnetic. | . ovion that may redu'ce the AF correlation length to a
fD:tOr: allpproach, AFI C(t)rrel_atlons_t eE[r_e pre?l:rr]nably tessentl egligible value even close to the AF insulator at half-filling.
or the low-energy electronic excitations ot this system. Such a frustration effect could be strong enough to generate

The success of thB =~ approach to the Hubbard model

in describing the physics of X,CaTiO, SrVO, and a finite critical couplinguU/t at half-filling.
CaV0;, however, appears crucially to depend upon forcing
the paramagnetic solution of the equatidhsn this case,
states are actuallgeneratedin the Hubbard gap after a We thank A. Fujimori, M. Rozenberg, and A. Moreo for
small hole doping is introduced. Of course, it may be that theuseful discussions. We are grateful to A. Sandvik for provid-
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