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We use quantum Monte Carlo simulations to show the presence and study the properties of solitons in the
one-dimensional soft-core bosonic Hubbard model with near-neighbor interaction in traps. We show that when
the half-filled charge density wavesCDWd phase is doped, solitons are produced and quasi-long-range order
established. We discuss the implications of these results for the presence and robustness of this solitonic phase
in Bose-Einstein condensates on one-dimensional optical lattices in traps and study the associated excitation
spectrum. The density profile exhibits the coexistence of Mott insulator, CDW, and superfluid regions.
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The study of Bose-Einstein condensatessBECsd on opti-
cal latticesf1g has opened new doors into studying and un-
derstanding the physics ofstrongly correlatedquantum sys-
tems. Indeed, the strength of the on-site interaction term can
be precisely tunedf2g, leading to one of the most control-
lable experimental realizations of a superfluid to Mott insu-
lating sMI d transitionf1g. An especially close and quantita-
tive contact has evolved between these experiments and
theoretical work on the soft-core bosonic Hubbard modelf2g.
This has been evident both in the original work in three
dimensions and in subsequent studies of very elongated one-
dimensional optical latticesf3g.

Recently, the first BEC of dipolar atomss52Crd was
achievedf4g. In this system, the relative strength of the con-
tact and dipole-dipole interactions can be adjusted using one
of the 14 observed Feshbach resonancesf5g. When this con-
densate is placed on an optical lattice, the system is governed
by the extended bosonic Hubbard model with experimentally
tunablenear-neighbor and even next-near-neighbor interac-
tions f6,7g. Such intersite repulsions can give rise to long-
range charge ordering. One of the exciting new possibilities
is the experimental realization of exotic phases such as su-
persolidsf8,6g in two dimensions.

In addition to unusual new thermodynamic phases, the
ability to tune intersite interactions will make possible the
exploration of novel dynamical phenomena in strongly cor-
related systems. One of the most interesting and important of
these is the possibility of the formation of latticesor gapd
solitons. These solitons can be viewed as domain walls be-
tween the two degenerate charge density wavesCDWd
phases which become the ground states when strong intersite
repulsion is present. Such intrinsically localized excitations
arising from the interplay of the discreteness of the lattice
and nonlinearity of the underlying dynamics have been the
focus of intense experimental activity in many different con-
texts f9–13g.

Already, some recent effort has focused on the existence
of localized modes in BECs. In the absence of the optical
lattice, dark solitons were exhibited in numerical solutions to
the Gross-Pitaevskii equationf14g and also observed experi-
mentally f15g while bright solitons were shown to exist in
BECs with attractive contact interactionssnegative scattering

lengthd by solving numerically the nonlinear Schrödinger
equationf16g and observed experimentallyf17g. In addition,
bright solitons are known to exist for repulsive contact inter-
actions when the effective mass is negativef18g and were
shown to exist experimentally for positive scattering length
atomic condensates on trapped optical latticesf19g. How-
ever, none of these examples are in the strongly correlated
regime; they all fall in the domain of themean fieldwhere
the Gross-Pitaevskii equation gives an accurate description
of the system.

In this paper we focus on solitonic excitations in the pres-
ence of extended-range interaction in the strongly correlated
regime which is not well described by the mean field. We
demonstrate soliton formation in a confined strongly corre-
lated system described by the bosonic Hubbard model. In
addition, we show that the trapped Bose-Hubbard Hamil-
tonian with near-neighbor interactions exhibits a rich coex-
istence of superfluid, charge density wave, and Mott insula-
tor regions as one traverses the system spatially. To this end
we use exact quantum Monte CarlosQMCd simulations to
determine the effect of near-neighborsNNd repulsive inter-
actions on the ground-state phase diagram of a BEC on one-
dimensional optical lattices, both with and without traps. The
system is described by the bosonic Hubbard tight-binding
model,
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The hopping parametert sets the energy scale,ni =ai
†ai is the

number operator, andfai ,aj
†g=di j are bosonic creation and

destruction operators.VT sets the confining trap curvature;
the contactsUd and near-neighborsV1d interactions are de-
termined by the dipolar interactions with the help of Eqs.
s2d–s4d in f6g. We use theWORLD LINE QMC algorithm.

The phase diagram withVT=0 is known at half filling
f20g. For V1,2t the ground state is superfluid, while for
largeU andV1.2t off-diagonal long-range order is replaced
by an incompressible, insulating charge density wave phase
where sites alternate between high and low occupation. Away
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from half and integer filling the system is always superfluid.
Static and dynamic quantities like the density and compress-
ibility have already been shown to exhibit unusual features
due to the trap, requiring local generalizations of these global
quantitiesf21,22g.

To address the question of solitonic excitations, we mea-
sure the structure factor at equal imaginary time,

Sskd =
1

L2o
x,x8

eiksx−x8dknsx,tdnsx8,tdl, s2d

where L is the number of lattice sites and 0øtøb. Our
simulations are done atb=10 which is large enough to study
the ground state. To make contact with the excitation spec-
trum, we use thef-sum rule
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where Ssk,vd is the dynamic structure factorfNbSskd
=edv Ssk,vdg and
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The dispersion relation is given by the Feynman result,

Vskd =
Ek

Sskd
. s5d

The dispersion curves shown below are obtained with Eq.
s5d. However, we have verified that we obtain the same re-
sults by measuring the imaginary-time-separated density-
density correlation function, performing the Laplace trans-
form using the maximum-entropy algorithm to obtain
Ssk,vd, and applying Eq.s3d directly.

For solitonic excitations to be possible, the contact inter-
action U must be large enough to suppress multiple occu-
pancy in order to stabilize the CDW phase at half filling
whenV1 is large enoughf20g. Such large values ofU have
been achieved experimentally on optical lattices and lead to
the Mott phase at full fillingf1,3g. In what follows we fix
U=5t. At V1=4t, the ground-state density profile and corre-
lation function at half filling exhibit a strong CDW pattern.
The density-density correlations oscillate with nearly maxi-
mal amplitude, indicating quantum fluctuations are small,
and show little decay with increasing separation. Doping this
system by removing two bosonssFig. 1d yields pronounced
soliton excitations. In real space, as seen in Fig. 1, these
appear as local regions of density alternation, modulated by
an overall “beating” pattern. The beat wavelengthssoliton
sized is given byDx=2p / sp−k*d, wherek* is the position of
the soliton energy minimum inVskd. In Fig. 2 we show the
dispersionVskd for several fillings.Sskd snot shownd exhibits
a peak atk=k* corresponding to the soliton minimumfsee
Eq. s5dg which moves toward lowerk* as doping is increased.
For Nb,32, where the system is superfluid,Vskd~k for
small k, which shows that the low-energy excitations are
phonons and that the superfluid satisifes the Landau stability
criterion. However, forNb=32, the system is a gapped CDW

insulator. This is seen clearly in Fig. 2 whereVskd goes to a
finite value ask→0. There is also no soliton feature at inter-
mediatek* . For Nb=32 the dispersionVskd has minima only
at k=0,p.

Placing the system in a trap destroys translational invari-
ance. Nonetheless, we shall now show that robust CDW and
solitonic excitations are observed. In Fig. 3 the local density
profiles in a trap,VT=0.008, are given for three fillings. For
Nb=16, solitonic oscillations are again evidentssee also Fig.
4d as local CDW correlations modulated by a beat envelope.
For Nb=22 long-range CDW order dominates although some
residual solitonic excitations remain near the edges. ForNb
=55 one sees a remarkable coexistence of several phases:
CDW toward the edges, followed by superfluidsno CDW
oscillation and compressibled, and then a central incompress-
ible Mott insulator. The density fluctuations in the two CDW
regions are decoupled by the intervening MI. Such striking
density oscillations have been observed in non-neutral plas-
mas f23,24g which, due to their electric charge, have long-
range repulsive interactions.

Figure 4 showsVskd for the same fillings as in Fig. 3. For
Nb=16 there is a clear solitonic excitation of the type seen
for the uniform system,k* ,p. For the higher filling,Nb
=55, the excitation has shifted towardk* =p but Vskd re-
mains relatively high, indicating that this is not true long-

FIG. 1. The density profile and correlation functionsaveraged
over 106 QMC sweepsd for the doped soft-core system.

FIG. 2. The dispersion relationVskd vs k for several fillings for
the soft-core modelU=5t, V1=4t at b=10 and L=64. Solitons
survive despite multiple occupancy.
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range ordersas is of course clear from the density profiled.
For Nb=22, on the other hand, we see thatVsk* =pd is close
to zero, indicating the establishment of long-range CDW or-
der. For all three densities,Vskd goes to zero ask→0. This
means there is no gap, in contrast to the uniform system at
half-filling ssee Fig. 2d whereVsk→0d is nonzero. The ab-
sence of a gap implies the system as a whole is always com-
pressiblef21,22g.

Finally, the evolution of the dispersion relation with in-
creasing near-neighbor repulsion is shown forNb=16 in Fig.
5 andNb=22 in Fig. 6. In the former case, a soliton mini-
mum develops, while in the latter case CDW formation takes
place instead.

A further interesting feature of Fig. 5, with its solitonic
excitations, is the universal crossing of the dispersion curves
for different interaction strengths. On the other hand, the
crossing in Fig. 6, where CDW order dominates, is not uni-
versal. A similar well-defined crossing point in the specific
heat has been seen both experimentally in3He f26g and in

fermion Hubbard modelsf27–29g. We believe an analogous
reasoning for the existence of crossing applies here. The in-
tegral of the structure factor over all momenta is constrained
by the density. Thus ifSskd increases withV1 for some mo-
mentasfor example atk=p as CDW correlations build upd,
there must be a corresponding decrease inSskd for other
momenta. This implies a similar behavior in the dispersion
relation Vskd and hence suggests that dispersion curves for
different interaction strengths should cross. As discussed in
f28g the universality of the crossing in the specific heat case
is a second, and more subtle, issue.

In conclusion, we have demonstrated that soliton excita-
tions are present and are very robust in the superfluid phase
of the uniform one-dimensional soft-core bosonic Hubbard
model with contact and near-neighbor interactions. This
Hamiltonian provides an accurate description of confined di-
polar atomic BECs in optical latticesf6g. Our results there-
fore predict that solitons should be experimentally realizable,
now that the required near-neighbor interactions can be at-
tained.

We have also found that trapped bosons with near-

FIG. 3. Density profiles in a trap: For all fillings we see CDW
oscillations. ForNb=22 the central region has long-range CDW
order while forNb=55 the central region is a MI. TheNb=16 case
exhibits solitonic oscillations.

FIG. 4. The excitation energyVskd vs k for the systems shown
in Fig. 3. ForNb=16 there is a soliton excitation atk,p as in the
doped uniform system while forNb=22, Vsk* =pd→0, indicating
the establishment of long-range CDW order.

FIG. 5. Evolution of the excitation energyVskd with increasing
V1 for U=5t, Nb=16, VT=0.008. The presence of solitonic excita-
tions is clear forV1=3t and 4t.

FIG. 6. Evolution of the excitation energyVskd with increasing
V1 for U=5t, Nb=22, VT=0.008. The gradual establishment of
long-range CDW order is clear.
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neighbor repulsion can exhibit a remarkably rich density pro-
file in which a Mott insulator at commensurate filling occu-
pied the trap center, followed by a superfluid region and then
a CDW region where the density is locally pinned at1

2, with
a second and final superfluidsSFd region at the end of the
occupied sites. The local compressibilityf21,22g also exhib-
its some unusual features. We findf25g that the CDW region
is the most compressible followed by the SF phase, in sharp
contrast to a uniform CDW which has a gap to charge exci-
tations set by the near-neighbor repulsionV1. Experiments
can measureSskd and thereforeVskd f30g which would serve
to verify the presence of solitons or other kinds of order.

Similarly, as commented earlier, the sound velocity is given
by the linear slope at smallk.

The recent realization of such a BECf4g has now made it
very likely that within a very short time confined BECs in
optical lattices with tunable near neighbor interactions will
be realized. The various phases and excitations discussed
here should then be observable with such methods as Bragg
spectroscopyf30,31g.
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