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Abstract—The Hubbard Hamiltonian provides a theoretical
framework for describing electron interactions of quantum
many-body systems in condensed matter physics. Determinant
Quantum Monte Carlo (DQMC) simulations of the Hubbard
Hamiltonian have contributed greatly to understanding im-
portant properties of materials. Physical measurements such
as superconductivity and magnetic susceptibility are based
on selected entries of a large set of Green’s functions. The
computations of Green’s functions are equivalent to computing
selected blocks of the inverses of large-scale p-cyclic matrices.
The performance of the state-of-art algorithm for computing
Green’s functions is around 100 Gflops on a 12-core Intel “Ivy
Bridge” processor.

In this paper, we describe a fast selected inversion (FSI) algo-
rithm for computing selected entries of Green’s functions and
present a parallel implementation using hybrid MPI/OpenMP
programming. The FSI algorithm rests on three ideas: (1)
applying a block cyclic reduction for a structure-preserving
reduction; (2) computing the inverse of the reduced block
p-cyclic matrix by a structured orthogonal factorization; (3)
using the blocks of the inverse of the reduced block p-cyclic
matrix as seeds to rapidly form the selected inversion in
parallel. Performance results of the new FSI algorithm on
Edison, NERSC (National Energy Research Scientific Comput-
ing Center)’s newest Cray XC30 supercomputer show a 80%
improvement to 180 Gflops on the “Ivy Bridge” processor.
The parallel applications of the FSI algorithm for computing
selected entries of multiple Green’s functions reach to 20–30
Tflops on 100 compute nodes with 2400 cores in total. The
preliminary results show that the FSI algorithm speeds up a
full DQMC simulation of Hubbard Hamiltonian of moderate
size system by a factor of five, reducing from 2.5 hours down to
less than half an hour on a compute node of our local system
Zwolf with two 6-core Intel “Westmere” processors per node.

Keywords-p-cyclic matrix; Hubbard model; Quantum Monte
Carlo simulations; Green’s functions; Hybrid MPI/OpenMP
parallelism

I. INTRODUCTION

Broadly speaking, theoretical and computational ap-
proaches to solve for the properties of condensed matter
systems fall into two categories. Electronic structure meth-
ods attempt to solve the Schroedinger equation directly in
continuum space. They can incorporate many of the details
of specific materials, such as the precise chemical species

via the appropriate charges on the nucleii, but treat the
interactions between the electrons through the rather crude
Hartree-Fock approximation. Model Hamiltonians, on the
other hand, consider the electrons as moving on discrete
lattice sites, with typically only a very limited number of
orbitals on each site. Indeed, in the most common case
of the Hubbard Hamiltonian, a single orbital is considered.
These models sacrifice chemical specificity, but allow for
much more exact treatments of electron-electron interac-
tions. Their most careful solution is via Quantum Monte
Carlo, and is very time consuming. For example, some of
the largest projects (hundreds of millions of core hours) of
the DOE INCITE program1 are QMC simulations of model
Hamiltonians.

Determinant quantum Monte Carlo (DQMC) simulations
[1], [2] have contributed greatly to the understanding of the
Hubbard Hamiltonian. It provides one of the few means
to attain exact solutions to the interacting electron prob-
lems which lie at the heart of phenomena like magnetism,
superconductivity, metal-insulator and valence transitions
in solids. In combination with density functional theory,
DQMC methods are increasingly moving from providing
qualitative insight concerning these dramatic phenomena to
quantitative, material specific modeling. These approaches
are very challenging, and their implementation constitutes
one of the frontiers of modern computational science. Sev-
eral recent advances [3] have already dramatically increased
the number of electrons and material complexity that can be
treated, but significant bottlenecks remain. Further algorithm
development, and the implementation of these approaches
on multi-core hardware, offer the prospect of breaking these
logjams, and enabling the solution of frontier questions in
the behavior of strongly correlated materials.

The state-of-art implementation of the DQMC simulation
of the Hubbard model is available in the QUantum Electron
Simulation Toolbox (QUEST)2, a Fortran 90/95 package
that uses two-dimensional periodic rectangular lattice as the

1http://www.doeleadershipcomputing.org/incite-program/
2https://code.google.com/p/quest-qmc/



default geometry. The computational kernel in QUEST is the
repeated computations of large number of Green’s functions.
Green’s functions determine the probability amplitude for
electrons to travel between sites, which is used for extracting
information of phenomena caused by electron interaction
such as magnetism, metal-insulator transitions and high-
temperature superconductivity. In a MC simulation, a large
number (order 10

3 to 10

4) of Green’s functions are com-
puted and used to calculate equal-time and time-dependent
physical measurements.

In matrix computation terms, Green’s function calcula-
tions concern computing selected blocks of the inverse of
block p-cyclic matrices, which we refer to as Hubbard
matrices. The Hubbard matrices are of dimension NL⇥NL,
where N is the number of spatial lattice sites and L is the
number of time slices from the discretization of temporal
domain which is proportional to the inverse temperature. To
study moderate lattice at low temperature, NL = O(10

3 ·
10

2

) = O(10

5

).
In QUEST, optimized BLAS and LAPACK subroutines

have been used to execute matrix operations for computing
Green’s functions, which lead to certain performance im-
provement, but are not scalable on modern high-performance
computers. In addition, physical measurement calculations
are done by direct reference to elements of Green’s functions
in multi-layer loops and are bounded by communication
cost. As a result, a modest size DQMC simulation with only
100 warmup iterations and 200 measurement iterations takes
2.5 hours on two 6-core “Westmere” processors, in which
nearly 80% of the CPU time is spent on the computation of
Green’s functions and physical measurements.

Matrix inversion is one of the fundamental linear algebra
problems. There is a large volume of literature on algorithms
for computing selected entries of the inverse of a matrix,
referred to as selected inversion. These algorithms can be
organized in two classes. One concerns the selected inversion
of unstructured sparse matrices [4], [5], [6], [7]. Another
class concerns the selected inversion of structured matrices,
such as Vandermonde [8], tridiagonal [9], [10], [11], [12]
and Toeplitz [13], [14].

In this paper, we study an algorithm for computing
selected blocks of the inverse of block p-cyclic matrices.
Our contributions include (1) a fast selected inversion (FSI)
algorithm to compute the selected blocks of the inverse of a
block p-cyclic matrix by exploiting the structure of the ma-
trix and underlying mathematical properties and (2) parallel
application of the FSI algorithm on hybrid MPI/OpenMP by
exploiting coarse-grain parallelism at the MPI level and fine-
grain parallelism at the OpenMP level. Performance results
of parallel applications of the FSI algorithm for computing
selected entries of multiple Green’s functions on Edison,
NERSC (National Energy Research Scientific Computing
Center)’s newest Cray XC30 supercomputer reach to 20–30
Tflops on 100 compute nodes with 2400 cores in total. The

preliminary results show that the FSI algorithm speeds up a
full DQMC simulation of Hubbard Hamiltonian of moderate
size system by a factor of five, reducing from 2.5 hours down
to less than half an hour on the two 6-core Intel “Westmere”
processors.

We note that there is a close relation between the FSI al-
gorithm and the probing and sketching algorithms for matrix
computations, such as the probing algorithm for computing
the diagonal of the inverse of a sparse matrix inverse [15]
and the trace of the inverse of a sparse matrix [16], [17],
[18] and the matrix sketching methods for least squares
regression and low rank approximation [19], [20].

II. FAST SELECTED INVERSION ALGORITHM

A. Green’s function

In our current setting, Green’s function can be defined
by the inverse of the following block p-cyclic matrix in the
normal form

A =

2

6664

A
11

A
1L

A
12

A
22

. . . . . .
AL,L�1

ALL

3

7775
,

where each block is N ⇥N square and the diagonal block
matrices Aii for 1  i  L are nonsingular. The p-cyclic
matrix has been studied since early 1950s [21]. It has been
widely used in many applications such as numerical solution
of partial differential equations [22], [23], Markov chain
modelling [24] and QMC simulation.

Let D = diag(A
11

, A
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, · · · , ALL), then
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for 2  i 
L. A block LU factorization of M is given by M = LU
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It can be verified that the inverses of L and U are given by
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where F = (I + BLBL�1

· · ·B
2

B
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)

�1. Consequently, the
inverse of M , denoted by G, is then given by

G = M�1

= U�1L�1

= (Gk`) (2)

where for 1  k, `  L,

Gk` = W�1

kk Zk`, (3)

and
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The inverse of the block p-cyclic matrix A is then given by

A�1

= GD�1.

Therefore, for the rest of discussion, we will focus on the
computation of G, which is also the form of Green’s function
appeared in DQMC simulations.

A critical observation is that by the expression (3), there
are relations between adjacent blocks of G. In other words,
if a block Gk` of G is known, then its adjacent blocks
Gk�1,`, Gk+1,`, Gk,`�1

and Gk,`+1

can be easily computed.
Specifically, if the block Gk` is known, then vertically
adjacent block Gk�1,` satisfies the relation

Gk�1,` = B�1

k Gk`, (4)

except when Gk` is on the boundaries,
• diagonal (k = ` 6= 1): Gk�1,k = B�1

k (Gkk � I);
• first row (k = 1, ` 6= 1): GL` = �B�1

1

G
1`;

• corner (k = 1, ` = 1): GL1

= �B�1

1

(G
11

� I).
Note that here and in the rest of paper, we use a torus index
notation, namely if k = 0, then k ⌘ L and if k = L+1,then
k ⌘ 1, which is the same for the index `.

Figure 1. Relations between adjacent subblocks of Green’s function.

Similarly,
Gk+1,` = Bk+1

Gk`, (5)

except when Gk` is on the boundaries,
• sub-diagonal (` = k+1): Gk+1,k+1

= Bk+1

Gk,k+1

+I;
• last row (k = L, ` 6= 1): G

1` = �B1

GL`;
• corner (k = L, ` = 1): G

11

= �B
1

GL1

+ I .
For horizontally adjacent block Gk,`�1

, we have

Gk,`�1

= Gk`B` (6)

except when Gk` is on the boundaries,
• sub-diagonal (` = k + 1): Gkk = Gk,k+1

Bk+1

+ I;
• first column (k 6= L, ` = 1): GkL = �Gk1B1

;
• corner (k = L, ` = 1): GLL = �GL1

B
1

+ I .
Similarly,

Gk,`+1

= Gk`B
�1

`+1

(7)

except when Gk` is on the boundaries,
• diagonal (k = ` 6= L): Gk,k+1

= (Gkk � I)B�1

k+1

;
• last column (k 6= L, ` = L): Gk,1 = �GkLB

�1

1

;
• corner (k = L, ` = L): GL1

= �(GLL � I)B�1

1

.
In addition, by the relations (4)–(7), the adjacent diagonal

blocks Gk�1,`�1

and Gk+1,`+1

of Gk` can be computed as

Gk�1,`�1

= B�1

k Gk`B` and Gk+1,`+1

= Bk+1

Gk`B
�1

`+1

.

The relations of of adjacent blocks of Green’s function are
pictorially illustrated in Fig. 1

B. Selected inversion

A selected inversion is a collection of the selected blocks
of G. Let us discuss four patterns of the selected inversion
shown in Fig. 2. We use I to denote the index set I =

{c�q, 2c�q, . . . , bc�q}, where c is a factor of L, b = L/c
and q is an integer randomly selected such that 0  q  c�1.
q is chosen in the uniform distribution to allow blocks to be
selected uniformally across the set {G} of Green’s functions.

• b diagonal blocks of G:

S
1

= {Gkk | k 2 I}.
• b (q 6= 0) or b� 1 sub-diagonal blocks of G:

S
2

= {Gk,k+1

| k 2 I � {L}}.



Figure 2. Patterns of selected inversions, diagonal, subdiagonal, columns
and rows.

• b block columns of G:

S
3

= {Gk` | 1  k  L and ` 2 I}.
• b block rows of G:

S
4

= {Gk` | k 2 I and 1  `  L}.
The set of selected inversion is relative small. For exam-

ple, a selected inversion of column blocks only needs 1/c
of the memory requirements of the the full inverse matrix.
Typically for a p-cyclic matrix with (N,L) = (1000, 100),
we choose c =

p
L = 10. Thus we save the memory usage

by 90%. A summary of the number of selected blocks in
different patterns and the reduction factor compared with a
full inversion is shown as follows:

Patterns No. of selected blocks Reduction factor
S
1

b cL
S
2

b or b� 1 cL
S
3

bL c
S
4

bL c

C. Fast selected inversion algorithm

There are a number of algorithms aiming at computing
selected diagonal blocks of Green’s function. The method
in [25] provides parallel approaches to compute the matrix
chain mutiplications arising in the explicit form of the
diagonal blocks. The algorithm in [26] uses the pre-pivoting
to balance the tradeoff between numerical stability and high-
performance on multicore systems with GPU accelerations.

The computation of selected off-diagonal blocks of
Green’s function is much more challenging and has not
been closely studied. In principle, one may use the explicit
expression (3) to compute selected off-diagonal blocks of G.
However, for example, it needs bL2N3 flops to compute the
selected b block columns of G. In contrast, the fast selected
inversion (FSI) algorithm described below reduces the flops
by a factor of L, to 3bLN3.

The FSI algorithm rests on three ideas:
• applying the block cyclic reduction (BCR) for a

structure-preserving reduction of M ;
• computing the inverse of the reduced block p-cyclic

matrix by a stable structure orthogonal factorization;
• using adjacency relations (4)– (7) to rapidly form the

selected inversion S .

Figure 3. Graphical illustration of the FSI algorithm

The BCR is well-known, see for example [27]. In [28],
Hirsch has exploited the BCR for computing the diagonal
blocks (equal-time) of Green’s functions.

At a high-level, the FSI algorithm is summarized as in
Alg. 1, with a pictorial illustration in Fig. 3.

Algorithm 1 FSI algorithm
Input: M, c
Output: S

randomize q 2 {0, ..., c� 1}
cM = CLS(M, c, q)
bG =

cM�1

S = WRP( bG, c, q)

In Alg. 1, cM = CLS(M, c, q) is for a factor-of-c block-
cyclic reduction of M , i.e.,

cM =

2

6666664

I bB
1

� bB
2

I

� bB
3

I
. . . . . .

� bBb I

3

7777775
,

where bBi is a product of c consecutive matrices Bj , i.e.,

bBi = Bj0Bj0�1

· · ·Bj0�c+1

.

where j
0

= ci � q. Note that if the index j  0, then
j := j + L.

The computatinal complexity of CLS is 2b(c�1)N3. Iter-
ations for clustering bBi’s can be executed in embarrassingly
parallel. We note that the integer c determines the size of
clustering. A larger c leads to a greater reduction. However,
the size of c is limited by numerical stability. A large c
results in the loss of the precision due to round-off errors.
Usually, c ⇡ pL. A numerical stability analysis for the
choice of c can be found in [29].

The operation bG =

cM�1 in Alg. 1 is to use the
block structured orthogonal factorization inversion (BSOFI)
method from our early work [30] to compute the full inverse
of the reduced block p-cyclic matrix cM . It first applies the
block structured orthogonal factorization cM =

bQ bR, and then
calculate the inverse bG =

bR�1 bQT .
The BSOFI method is numerically stable and takes ad-

vantage of block p-cyclic structure of cM to lower the



computational complexity to 7b2N3. Instead of computing
a full QR decomposition and then inversion of the p-cyclic
matrix in the size of (NL)2, the block structured orthogonal
factorization computes the QR decomposition only on the
dense blocks in the size of 2N ⇥N and then compute the
inversion in the order of N . Thus, it exploits the sparsity
and structure of the p-cyclic matrix.

The final step S = WRP( bG, c, q) in Alg. 1 is a wrapping
process. By examining the explicit expression (3) for the
blocks Gk` of Green’s function, the computed blocks of bG
form a subset of the blocks of the original Green’s function
G, namely

bGk0,`0 = Gck0�q,c`0�q for 1  k
0

, `
0

 b. (8)

This crucial observation leads us to use bGk0,`0 as seeds to
compute their adjacent blocks for forming the set S of se-
lected inversions of interest. Alg. 2 is a wrapping process for
the selected block columns. The inner for loop is separated

Algorithm 2 Wrapping(WRP)

Input: bG, c, q
Output: S

S = { bGk0,`0 |1  k
0

, `
0

 b}
for each seed bGk0,`0 do

set k = ck
0

� q and ` = c`
0

� q in G
for i = 1, ..., b(c� 1)/2c do
Gk`  Gk�1,` by Eq. 4
S  S [ {Gk�1,`}
k = k � 1

end for
reset k = ck

0

� q and ` = c`
0

� q in G
for i = 1, ..., bc/2c do
Gk`  Gk+1,` by Eq. 5
S  S [ {Gk+1,`}
k = k + 1

end for
end for

into two loops (for Gk`  Gk�1,` and Gk`  Gk+1,`

respectively) to minimize the accumulated floating point
arithmetic error. The computational cost is 3(bL � b2)N3.
Furthermore, we note that the b2 iterations for calculating
the adjacent blocks in wrapping are data independent. All
seeds can be used independently to compute their adjacent
blocks in parallel.

Computational costs depend on the shape of selected
inversion. The computational complexity for explicit form
2 and FSI algorithm is shown as follows:

Selected inv. Explicit form FSI
b diagonals 2b2cN3

[2(c� 1) + 7b]bN3

b� 1 sub-diag. 4b2cN3

[2c+ 7b]bN3

b cols./rows. b3c2N3

3b2cN3

Figure 4. A Cray X30 dual-socket node, QuickPath Interconnect (QPI)
connects two 12-core Intel “Ivy Bridge” processors.

Notes: (1) If we just compute the selected diagonals or sub-
diagonal blocks, the major computation cost lies in BSOFI.
(2) For most of the application, selected columns and rows
are needed. In this case, the wrapping step is the bottleneck
in term of the number of flops.

There are a number of advantages of the FSI algorithm. It
uses less flops and reduces by a factor of 2

3

bc2 and 7

3

c than
full LU inversion and BSOFI if b block columns are needed.
More importantly, FSI can compute selected blocks of large
scale p-cyclic matrices which may be not feasible by the
full inversion method due to the memory bound. Comparing
with directly applying the explicit form (3), say computing
b columns, it is 1

3

bc times faster. The main operations of the
FSI algoirthm are Level-3 BLAS operations, such as DGEMM.
The process of FSI can be highly parallelized, which will
be discussed in detail in §III.

III. HYBRID IMPLEMENTATION

A. OpenMP and MPI

Modern supercomputers have hierarchical architecture,
where thousands of multi-socket multi-core shared-memory
compute nodes are connected with a high-speed network.
On each node, the memory hierarchy allows many cores to
have multi-layer private cache and a big shared memory with
non-uniform memory access. For example, NERSC’s newest
supercomputer Edison has 5576 compute nodes. With 24
cores per node, it has 133824 cores in total. An Edison
compute node is shown in Fig. 4.

To take advantage of both distributed memory and multi-
core shared memory architecture, it goes very natural to
employ a hybrid MPI/OpenMP parallelism to a program
that use MPI for message passing and use OpenMP for fre-
quently shared data accessing. Generally, the hybrid model
better matches the hierarchy memory structure, and many
applications are found to be suitable for this hybrid model
[31], [32], [33], [34]. However, there also exist some exam-
ples [31] where a pure MPI implementation is more efficient.



A tradeoff of hybrid model against pure MPI is that the
extra communication overhead within each MPI process is
replaced by OpenMP threads creation and synchronization.

As for all hybrid models, an important decision before
launching the application is to select the number of OpenMP
threads per MPI process and the number of MPI pro-
cesses per node. Assigning too few MPI process with many
OpenMP threads on a node may lead to poor performance
[35], but assigning too many MPI process with few OpenMP
threads on a node may exceed the memory capacity.

B. Parallel application of FSI algorithm

DQMC simulations require the selected inversion of tens
of thousands of block p-cyclic matrices. The application of
FSI algorithm is well positioned to fit the hybrid model.
We can exploit two levels of parallelism. The first level on
computing the inverse of multiple matrices is coarse-grained
and is suitable for MPI. The second level on FSI itself is
fine-grained, which is best suited for OpenMP. A complete
pseudocode of parallel application of FSI algorithm is de-
scribed in Alg 3.

Algorithm 3 Parallel application of FSI
Input: M

1

,M
2

, ...,Mm and c
Output: S

1

,S
2

, ...,Sm and global measurement quantities
On MPI root {
MPI_Init

m per MPI = m/num MPI process
MPI_Scatter (sbuff:{Mi},scount:m per MPI, ...)
}
On each MPI process){
for iter = 1, ...,m per task do

select q 2 {0, ..., c� 1} randomly
!$omp parallel do

cM = CLS(M, c, q) by OpenMP multi-threads
!$omp end parallel do nowait

bG =

cM�1 by BSOFI
initialize S = { bGk0,`0 |1  k

0

, `
0

 b}
!$omp parallel do

execute WRP(Alg. 2) by OpenMP multi-threads
compute local measurement quantities

!$omp end parallel do nowait

end for
MPI_Reduce (sbuff:local measurement quantities,...)
}
On MPI root{
MPI_Finalize

compute global measurement quantities
}

At the MPI level, a large set of p-cyclic matrices are
distributed among the MPI processes. Each MPI process
gets a portion (m/num MPI process) of the matrices and
runs the FSI to collect the local measurement quantities.

Figure 5. Hybrid MPI/OpenMP parallel application of the FSI algorithm
for multiple Green’s functions.

MPI_Reduce is called to collect the local measurement
quantities to be aggregated into the global measurement
quantities. Generating all the input matrices in one MPI
process is neither efficient nor feasible due to the memory
capacity when m is large. However, in the DQMC, the
matrices are parameterized by an array of random parameters
h, generated during a Monte Carlo process (see §IV). This
allows us to generate a set of random parameters h on the
MPI root process and scatter h to other MPI processes.

At the OpenMP level, that is the FSI algorithm. For
clustering, the number of L Bi blocks are evenly divided
into b clusters with c blocks each. Every OpenMP slave
thread picks one cluster simultaneously to compute a chain
of matrix multiplication in the size of c. For wrapping, bG
are divided into b2 seeds. Every OpenMP slave thread picks
a seed individually and starts to calculate its adjacent blocks
until the whole pattern of selected inversion is formed.

Note that the local measurement quantity calculations are
carried out in the OpenMP parallel region. The reason to
create local measurements for each thread is to overcome
the concurrent writing issue caused by the data references
of physical measurements, see an example in §IV.

Fig. 5 shows an example of topology of computing
selected blocks of 8 matrices by 4 nodes. Each node has
two MPI processes for 2 matrices respectively and each MPI
process has 3 OpenMP threads associated with one matrix.

IV. QMC SIMULATION

At a high level, the DQMC simulation consists of two
stages: warmup and physical measurement, as shown in
Alg. 4. In the DQMC simulation, a DQMC sweep, as shown
in Alg. 5, travels through every site of the lattice in a multi-
layer imaginary time slices.



Algorithm 4 DQMC simulation
initialize HS configuration h

0

= (h`i) = (±1)

%– Warmup stage –%
for i=1,...,w do

DQMC sweep
end for
%– Measurement stage –%
for i=1,...,m do

DQMC sweep
compute Green’s function and physical measurements

end for

Algorithm 5 DQMC sweep
for ` = 1, 2, ..., L do

for i = 1, 2, ..., N do
(1) Propose a new configuration: h0

`i = �h`i;

(2) Compute the Metropolis ratio:

r`i =
det[M

+

(h0
)] det[M�(h

0
)]

det[M
+

(h)] det[M�(h)]
;

(3) Apply Metropolis acceptance-rejection:
randomize r ⇠ uniform[0, 1],
if r  min{1, r`i} then
h = h0.

end if
end for

end for

Figure 6. A N = 4⇥ 4 lattice structure in a multi-layer imaginary time
(L) slices

The physical measurements include the correlation func-
tions for magnetic, charge, superconducting order and phase
transitions and so on. They are classified by two categories.
One is called equal-time measurements, which only need
the data from the diagonal blocks of Green’s functions G.
The other one is called time-dependent measurements which
need the information of off-diagonal blocks of G.

As an example, consider the measurement of XY spin-
spin correlation (SPXX), an L⇥ d

max

matrix with d
max

⇠
O(N). To calculate the SPXX, we need to compute Green’s
functions for both spin direction at the same time [36], [37].

Figure 7. Overview of DQMC simulation

We denote G� with � = (", #) to the electron spinning
up and down, respectively. The (⌧, d) element of SPXX
contributed by G is given by

{SPXX(G�
)}

(⌧,d) =

� 1

2C(⌧)
X

(k,`)

X

(i,j)

⇣
G"

k`(j, i)G
#
`k(i, j) +G#

k`(j, i)G
"
`k(i, j)

⌘

when C(⌧) > 0, and equal to 0 when C(⌧) = 0, where C(⌧)
is the number of blocks contributing to {SPXX(G�

)}
(⌧,d),

C(⌧) =
NX

k=1

NX

`=1

b(k, `), b(k, `) =

⇢
1, (k, `) 2 T (⌧)
0, otherwise .

Index (k, `) is in the set T (⌧) = {(k, `)|T (k, `) = ⌧} where
T (k, `) is a mapping from the block index (k, `) to ⌧ defined
via temporal distances in lattices

T (k, `) =

⇢
k � `, k � `
k � `+ L, k < `

.

Index (i, j) is in the set D(d) = {(i, j)|D(i, j) = d}
where D(i, j) is a mapping from the entry index (i, j)
to d defined via spatial distances in the lattice. Therefore,
in order to compute {SPXX(G�

)}
(⌧,d), block columns and

rows are both required (for entries in Gk` and G`k simul-
taneously) from the selected inversion. We note that the
calculations in {SPXX(G�

)}
(⌧,d) are element-wise. It is

extremely inefficient level-1 BLAS operations. FSI enables
these calculations be executed in OpenMP multi-threads.

By embedding the FSI algorithm for computing the
Green’s function and physicial measurements, the overview
of the DQMC simulation is shown in Fig. 7.

V. PERFORMANCE RESULTS

We begin with a validation of the correctness and accuracy
of the FSI algorithm, and then report the performance of the
FSI algorithm and its usage in full DQMC simulation.

Two platforms are used for performance testing. One is
a Cray XC30 machine Edison at NERSC. Edison has 5576
compute nodes. With 24 cores per node, it has 133824 cores
in total. Each Edison node consists of two sockets, and
each socket is populated with a 12-core 2.4GHz Ivy Bridge
processor. A node has 64GB DDR3 1866MHz memory (four
8GB DIMMS per socket). Each core has its own L1 and



L2 caches, with 64KB (32KB instruction cache and 32KB
data cache) and 256KB respectively. A 30MB L3 cache is
shared between 12 cores. Edison employs the “Dragonfly”
topology for the interconnection network with 23.7TB/s
global bandwidth. It has 0.25µs to 3.7µs MPI latency and
8 GB/sec MPI bandwidth.

The second platform is a single node of our local machine
Zwolf. Each node has two 6-core 2.93GHz Intel Westmere
Xeon X5670 processors. Each core has private 32KB L1
cache and 256KB L2 cache. Every six cores on a processor
share a 12MB L3 cache. A node shares 96GB memory.

A. Correctness validation

To test the correctness of the FSI algorithm, we form a
set of block p-cyclic Hubbard matrices M defined as (1).
Each block B` is of the form

B`(h(`, :)) = et�⌧Ke�⌫V`(h(`,:)),

where h = (h`,i) = (±1) for 1  `  L and 1 
i  N are random variables, referred to as a Hubbard-
Stratonovich configuration in the DQMC simulation; t is
a hopping amplitude; �⌧ = �/L, where � is the inverse
temperature; K = (kij) is an adjacency matrix of the
lattice structure; � represents electron direction spinning;
⌫ = cosh

�1 e
U�⌧

2 , where U is the interacting energy;
V`(h(`, :)) = diag(h(`, 1), h(`, 2), . . . , h(`, N)).

We generate a random 6400 by 6400 p-cyclic Hubbard
matrix (N,L) = (100, 64) with (t,�,�, U) = (1, 1, 1, 2).
The condition number of M is O(10

5

). We compute b
selected block columns S = {Sij} by FSI. G is computed by
Intel MKL routines DGETRF and DGETRI. The correctness
of the FSI algorithm is validated by the fact that the relative
error

" =
1

L⇥ b

LX

i=1

bX

j=1

kSij �Gi,cj�qkF
kGi,cj�qkF = O(10

�10

).

B. Performance of the FSI algorithm

We consider a set of Hubbard matrices with various block
sizes N = 256, 400, 576, 784, 1024 and fixed (L, c) =

(100, 10). The set of the selected inversion is b = L/c = 10

block columns. The top plot of Fig. 8 shows the performance
profile of three steps of OpenMP multi-threaded FSI on
the “Ivy Bridge” processor. As we can see, the lower
performance rate of the dense matrix inversions (BSOFI)
is compensated by DGEMM-rich operations at the clustering
and wrapping steps of FSI algorithm.

To test the scalability, we let (N,L, c) = (576, 100, 10)
and compute b = L/c = 10 block columns. The bottom plot
of Fig. 8 shows the scalability of the FSI using OpenMP and
MKL, respectively. We see that the former is much closer to
the ideal scaling. The OpenMP overhead is negligible when
the number of OpenMP threads per process is small.
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Figure 8. FSI performance rate (top) and scalability (bottom) on a single
12-core Intel “Ivy Bridge” processor.

For the performance test in hybrid MPI/OpenMP exe-
cution, we use 100 Edison nodes with a total of 2400
CPU cores to compute selected inversions of 2400 Hubbard
matrices with (L, c) = (100, 10) and different block sizes
N . For each Hubbard matrix, b = 10 selected block columns
are computed. Fig. 9 shows the performance rate with
different MPI processes and OpenMP threads. We notice
that each Edison compute node has a 32GB shared physical
memory per socket (64GB in a node). Besides program
itself, Node Linux kernel, Lustre file system software and
message passing library buffers all consume memory. So
available memory for one core is approximately 2.5GB. If
an application runs too many MPI tasks on one node, it has
a risk to exhaust the memory and an OOM (out of memory)
killer will terminate the process on Edison.

By Fig. 9, we see that the pure MPI execution (with 1
OpenMP thread per MPI process) reaches the highest per-
formance, but it is only applicable for block size N = 400.
When N = 576, the memory requirement for the selected
inversion is approximately 2.65GB. The execution of 12
MPI processes per socket requires 31.8GB that exceeds the
available memory capacity on an Edison compute node. In
this situation, the MPI and OpenMP hybrid model exploits
the full usage of all available CPU cores and overcomes the
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Figure 9. Performance rate of parallel application of FSI for multiple
Green’s functins with difference numbers of MPI processes and OpenMP
threads.

memory shortage to achieve the highest performance rate of
31 Tflops. The similar situation happens to N = 784 and
N = 1024.

In summary, the performance of FSI algorithm with
OpenMP is close to DGEMM-rate, a practical peak rate.
In addition, FSI is scalable to the number of OpenMP
threads and almost doubles the performance of pure multi-
threaded MKL routines for computing the selected inversion.
Moreover, when the parallel application of the FSI algorithm
is used to computing the selected inversions of multiple
Green’s functions, the MPI/OpenMP model can maximize
the power of thousands of available cores in the cases when
the memory limits the number of MPI processes on each
node.

C. FSI in DQMC

To examine the application of FSI in the DQMC simula-
tion, we first integrate the FSI algorithm with the physical
measurements. We consider a Hubbard matrix M(h) of the
dimensions (L,N) = (100, 400). The cluster size c = 10.
We compute all the diagonal blocks, b block rows and b
block columns for both the equal-time and time-dependent
measurements. We compare the CPU time of the serial
execution and the parallel execution with OpenMP and pure
MKL on a node of Zwolf. Fig. 10 shows a profile of
CPU time of computing the Green’s function and physical
measurements. As we can see the pure MKL execution only
reduces the CPU time for computing Green’s function due
to the power of multi-threaded optimized LAPACK routine.
However, FSI with OpenMP is 90% less CPU time for the
physical measurement calculations.

Finally, we test the impact of the FSI algorithm in a full
DQMC simulation with (N,L) = (400, 100). To limit the
runtime, we set the number of warmup loops to w = 100

and the number of measurement loops to m = 200. The
size of clustering in FSI is c = 10. Fig. 11 shows the total
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Figure 10. Runtime profile on a single Hubbard matrix
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Figure 11. Runtime of a full DQMC simulation with (w,m) = (100, 200)

runtime of the DQMC with FSI on a node of Zwolf. As
we can see, FSI with OpenMP gains a factor of 8 speedups
from single-core to 12-core execution. In contrast, FSI with
MKL only gains a factor of 1.6 speedups. As a result, the
full DQMC simulation reduces from 2.5 hours to half an
hour.

VI. CONCLUSION AND FUTURE WORK

In this paper, we tackled the bottleneck of Green’s func-
tion calculations and physical measurements in many-body
QMC simulations. The performance of FSI algorithm has
doubled the performance of simple Intel MKL calls. Since
the hybrid MPI/OpenMP model works perfectly on the
parallel application of the FSI algorithm for multiple Green’s
function calculations and physical measurements, large scale
DQMC simulations with production-graded physical mea-
surements are feasible and importantly, more complex sys-
tems can be investigated. This is the work in progress. A
promising by-product of this work is the extension of the
basic idea of FSI algorithm to other types of structured
matrices and applications.
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