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a b s t r a c t 

Numerical approaches to the correlated electron problem have achieved considerable success, yet are 

still constrained by several bottlenecks, including high order polynomial or exponential scaling in system 

size, long autocorrelation times, challenges in recognizing novel phases, and the Fermion sign problem. 

Methods in machine learning (ML), artificial intelligence, and data science promise to help address these 

limitations and open up a new frontier in strongly correlated quantum system simulations. In this paper, 

we review some of the progress in this area. We begin by examining these approaches in the context of 

classical models, where their underpinnings and application can be easily illustrated and benchmarked. 

We then discuss cases where ML methods have enabled scientific discovery. Finally, we will examine 

their applications in accelerating model solutions in state-of-the-art quantum many-body methods like 

quantum Monte Carlo and discuss potential future research directions. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The development of nonperturbative numerical methods and 

teady growth in available computational power achieved over 

he last half-century have provided us with the tools necessary 

o obtain reliable solutions to simplified correlated electron mod- 

ls. Through the combined use of methods like quantum Monte 

arlo (QMC), density matrix renormalization group (DMRG), dy- 

amical mean-field theory (DMFT) and its cluster extensions, and 

thers, we now have a great deal of insight into the physics of 

he single-band Hubbard [1–18] , Holstein [19–25] , Su–Schrieffer–

eeger [26–33] , and periodic Anderson models [34–39] . Substan- 

ial progress is also being made towards understanding models 

here several different, competing, interactions are present [40–

9] , as well as those that extend beyond the “standard” interac- 

ions [49–55] . For example, while not everything is settled, it is 

ow clear that the single-band Hubbard model in the intermedi- 
∗ Corresponding author at: Department of Physics and Astronomy, The University 
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te coupling regime, 1 is a minimal model for the low-temperature 

lectronic properties of cuprates, and many aspects of their phase 

iagram [3–5,7–9,11,12,15–18,48,56] (with the important possible 

xception of superconductivity [9,13,14] ). This knowledge, however, 

as only won after decades of method development and research 

tudies by groups from around the world. 

While impressive progress has been made toward understand- 

ng multi-orbital extensions of these models, achieving the same 

evel of success for other strongly correlated materials will re- 

uire new approaches. For example, the suitable minimal effec- 

ive models remain unknown in many cases. And even when they 

re known, they often cannot be treated using existing numerical 

ethods owning to issues like the Fermion “sign problem” [57–64] . 

Many researchers hope that methods in data science, machine 

earning (ML), and artificial intelligence (AI) can be exploited to 

each the next stage of quantum simulations. Research in this area 

as developed along with several particularly opportune areas, in- 

luding (but not limited to) using ML to (1) implement general 

chemes to perform “global moves” – analogs of loop and Wolff–

wendsen–Wang methods [65–67] – in classical and QMC simu- 
1 U/W ≈ 1 where U is the strength of the Hubbard interaction and W is the elec- 

ronic bandwidth, see Section 2 . 
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ations that update many degrees of freedom simultaneously with 

igh acceptance rates; (2) recognize phase transitions in models, 

specially in cases when the relevant order parameter(s) are un- 

nown; (3) determine optimal constrained wave functions in varia- 

ional approaches to deal with the sign problem with the minimal 

ntroduction of bias; and (4) extract suitable low-energy effective 

odels from experimental data or high-energy models. 

In response to this rapidly emerging field, Oak Ridge Na- 

ional Laboratory held a workshop on Artificial Intelligence in Multi- 

idelity, Multi-Scale and Multi-Physics Simulations of Materials in Au- 

ust of 2021 as part of the Joint Nanoscience and Neutron Scatter- 

ng User Meeting. This special issue on Digital Twins in Materials 

nd Chemical Sciences is the result of that workshop. At that meet- 

ng, we gave consecutive talks on applications of ML for the many- 

ody problem, drawing from our research areas. In that spirit, this 

rticle synthesizes our talks in a mini-review, focusing on where 

hese methods intersect with our work and interests in magnetic, 

harge, and pairing order in classical and quantum many-body sys- 

ems. The fields of correlated electrons and ML applications are 

road and rapidly evolving. We have not attempted to be exhaus- 

ive in our references or discussion, especially given the rapid pace 

t which this field is developing. For the interested reader, we note 

hat several comprehensive reviews and books of ML applications 

n physics have recently been published [68–74] . We apologize in 

dvance for any work that we have left omitted. 

The organization of this paper is as follows. Section 2 will pro- 

ide a brief overview of the models discussed throughout this pa- 

er. Since the majority of our research involving ML methods fo- 

uses on Markov Chain Monte Carlo methods, Section 3 provides a 

rief description, including the path integral mapping of the quan- 

um partition function in d spatial dimensions to an equivalent 

lassical problem in d + 1 dimensions. Section 4 then provides an 

verview of the ML methods discussed throughout this work while 

ection 5 discusses several proof-of-concept studies applying these 

ethods to problems in statistical and correlated electron physics. 

e then highlight a few new scientific discoveries that have been 

nabled by ML methods in Section 6 . Section 7 focuses on self- 

earning Monte Carlo methods, emphasizing recent applications to 

he Holstein model as an example. Finally, Section 8 provides our 

erspective on future work in this area. 

. Models 

We will discuss several ML and data science applications to un- 

erstanding correlated electron systems, often tested on canonical 

odel Hamiltonians. This section provides an overview of the rele- 

ant models to acquaint the reader and establish our notation, be- 

inning with classical systems. Due to the nature of this review, 

ur discussion will be brief. The reader familiar with this material 

an safely skip to the next section. 

.1. The Ising model 

The Ising Hamiltonian 

 = −
∑ 

i j 

J i j s i s j − B 

∑ 

i 

s i , (1) 

escribes a collection of localized classical degrees of freedom, 

hich are often understood to represent the magnetic moments 

or spins) of individual atoms on a lattice of sites i = 1 , 2 , . . . , N.

hese spins are constrained to point in one of two directions such 

hat s i = ±1 . Each spin individually couples to an external mag- 

etic field B so that the orientation s i = +1 is energetically favored. 

airs of spins interact via a magnetic coupling J i j between differ- 

nt lattice sites. For J i j > 0 ( < 0 ), the interactions are ferromagnetic

antiferromagnetic) in nature. 
2

The Ising model is perhaps the simplest model exhibiting spon- 

aneous symmetry breaking, which occurs at a phase transition. 

or example, in the absence of a field B = 0 , the total energy is in-

ariant under a global change of variables s i ↔ −s i . Nevertheless 

n d ≥ 2 , the system falls into one of these two equivalent states 

s T is lowered, and for the ferromagnetic case, the magnetization 

 = 1 /N 

∑ 

i 〈 s i 〉 becomes non-zero. This behavior occurs only in the 

hermodynamic limit, N → ∞ , so one of the challenges of Monte 

arlo and in the use of ML is in the finite-size scaling needed to 

xtrapolate finite N simulations. 

The Ising model has known analytical solutions in certain 

ases [75] . For example, on a square lattice for nearest-neighbor 

erromagnetic coupling and in zero field, it undergoes a second- 

rder transition between paramagnetic ( m = 0 ) and ferromag- 

etic ( m 
 = 0 ) phases at T c = 2 . 269 J. The correlation length ξ ,

hich measures the decay in the magnetic correlations 〈 s i s i + r 〉 ∼
 

−r/ξ 〈 s i s i + r 〉 ∼ e −r/ξ , diverges at this transition as ξ ∼ 1 / (T − T c ) ν ,

s does the magnetic susceptibility χ = [ 〈 m 

2 〉 − 〈 m 〉 2 ] /T ∼ 1 / (T −
 c ) γ . The exponents ν = 1 and γ = 7 / 4 are known analytically, as

s the exponent β = 1 / 8 describing the onset of nonzero magne- 

ization m ∼ (T c − T ) βm ∼ (T c − T ) β below T c . There is no known 

nalytic solution for the Ising model in d > 2 . 

The Ising model combines simplicity with deep conceptual 

hysics. It also provides a textbook application for Markov chain 

onte Carlo methods, through which researchers can readily pro- 

uce training and validation data in large quantities. The fact that 

he model has an exact solution in d ≤ 2 while being unsolved 

n general means that researchers can use it as a high-precision 

enchmark for new numerical approaches while also offering the 

pportunity to sharpen our knowledge of unknown critical points 

nd exponents. These aspects have positioned the Ising model as 

n essential test for many new ML-based approaches [76–82] . 

Because the (ferromagnetic) Ising model on other 2D lattices 

alls into the same universality class (i.e. identical critical expo- 

ents), it is probably sufficient to consider the square lattice in 

esting ML approaches to this problem. It is worth noting, how- 

ver, that realizations of the Ising model on different lattices exist, 

hich offer rich opportunities to compare traditional simulation 

ethods with ML-driven methodologies. These include Kagome 

nd triangular lattices [83–85] , which exhibit frustration in the an- 

iferromagnetic (AF) case of J i j < 0 , and spin-glass behavior when 

he J i j are chosen with random ferromagnetic and antiferromag- 

etic signs [86–88] . 

.2. The Blume–Capel model 

The Blume–Capel model [89,90] is a generalization of the Ising 

odel, where the magnetic moments can align parallel, antiparal- 

el, or orthogonal to an external magnetic field. Its Hamiltonian is 

 = −�
∑ 

i 

(
1 − s 2 i 

)
−

∑ 

i, j 

J i j s i s j − B 

∑ 

i 

s i . (2) 

here s i = 0 , ±1 and � is the zero-field splitting, which measures 

he energy difference between the singlet s i = 0 and doublet s i = 

1 moments. 

The parameter � controls the density of s i = 0 sites. When 

→ −∞ such sites are energetically highly unfavorable. The 

lume–Capel model approaches the Ising model in this limit, ex- 

ibiting the same second-order magnetic phase transition. As �

ncreases, more s i = 0 sites are introduced and T c decreases. Ul- 

imately, at � = J/ 2 there is no long-range order at any T > 0 ,

.e. the critical temperature T c = 0 . A fascinating feature of this 

odel is that along the phase boundary in the T − � plane, the 

ature of the transition changes from second to first order at a “tri- 

ritical point.” Thus the Blume–Capel model offers several new vis- 

as for ML: first, in providing a simple model to explore methods 
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hat can locate a one-dimensional locus of critical temperatures, 

s opposed to an isolated critical point, and second, as means to 

xamine whether these methods can distinguish different types of 

hase transitions. 

.3. The Hubbard model 

The Hubbard Hamiltonian [91] is a simple model for describ- 

ng the effect of electron-electron interactions on itinerant lattice 

lectrons. In the case of a single band, 

ˆ 
 = 

ˆ H 0 + 

ˆ H U , (3) 

here 

ˆ 
 0 = 

∑ 

i, j,σ

t 
i, j 

c † 
i,σ

c 
j,σ

− μ
∑ 

i,σ

ˆ n i,σ (4) 

escribes electrons propagating through a one-orbital lattice and 

ˆ 
 U = U 

∑ 

i 

ˆ n i, ↑ ̂  n i, ↓ (5) 

s a local Coulomb interaction between electrons on the same site. 

ere, c 
† 
i,σ

( c 
i,σ

) creates (destroys) an electron with spin σ on lat- 

ice site i , ˆ n i,σ is the Fermion number operator at site i , μ is the

hemical potential, t i, j is hopping integral between sites i and j, 

nd U is the strength of the Hubbard interaction, which can either 

e repulsive ( U > 0 ) or attractive ( U < 0 ). The range of values of

he energy levels of H 0 is referred to as the bandwidth W . 

Despite its simplicity, analytical solutions to the Hubbard model 

ave only been obtained in one dimension [92] . In higher dimen- 

ions, the most reliable results have been obtained with nonper- 

urbative numerical methods, particularly in the intermediate cou- 

ling regime U/W ≈ 1 . Nevertheless, significant progress has been 

ade toward understanding the physics of the Hubbard model 

n this regime. For example, the doped two-dimensional Hub- 

ard model contains robust antiferromagnetic Mott correlations 

1,18,93] , spin- and charge-stripes [8,11–13,16,18,94,95] , strange 

etal behavior [64,96] , a pseudogap [18,93,97] , and unconven- 

ional superconductivity [9,97–99] . 

The Hubbard model can also be easily generalized to include 

onger-range interactions, 

ˆ 
 V = 

∑ 

i 
 = j,σ,σ ′ 
V i, j ̂  n i,σ ˆ n j,σ ′ , (6) 

r additional orbital degrees of freedom by modifying the under- 

ying tight-binding model. From a computational perspective, the 

nclusion of further orbitals is ‘trivial’ in the determinant QMC for- 

alism on which we focus - the orbital index plays an identi- 

al role as a site label. However, longer-range interactions have a 

ramatic effect. They necessitate a significant restructuring of the 

ubbard–Stratonovich transformation, described below, and make 

he fermion sign problem much worse. 

.4. The Holstein model 

The Holstein Hamiltonian is a simplified model for describing 

lectrons coupled to the lattice [100] . Like the Hubbard model, it 

pproximates the noninteracting electronic degrees of freedom us- 

ng a single orbital tight-binding model. The noninteracting lattice 

egrees of freedom are described using simple harmonic oscilla- 

ors at each site, while the electron-lattice interaction is introduced 

hrough a linear coupling between the on-site electron density and 

he lattice displacement. The corresponding Hamiltonian is 

ˆ 
 = 

ˆ H 0 + 

ˆ H lat + 

ˆ H e −lat , (7) 

here H 0 describes the electronic degrees of freedom as in Eq. (4) , 

ˆ 
 lat = 

∑ 

i 

[
ˆ P 2 
i 

2 M 

+ 

1 

2 

Mω 

2 
0 ̂

 X 

2 
i 

]
(8) 
3 
escribes the noninteracting lattice degrees of freedom and 

ˆ 
 e −lat = 

∑ 

i,σ

α ˆ n i,σ
ˆ X i (9) 

escribes the electron-phonon interaction. Here, ˆ P i and 

ˆ X i are the 

omentum and position operators for the oscillator at site i , ω 0 is 

he energy of the oscillator ( h̄ = 1 ), and α is the electron-phonon 

oupling strength. 

Two dimensionless ratios are frequently quoted when simulat- 

ng the Holstein model. The first is the so-called adiabatic ratio 

 0 /E F , which measures the relative energies of the lattice and elec- 

ron degrees of freedom. The second is the dimensionless e -ph 

oupling constant λ = 2 α2 / (MW ω 

2 
0 ) , where W is again the non- 

nteracting bandwidth. 

Like the Hubbard model, the Holstein model exhibits a rich 

ollection of phases. The model has a metal to a charge-density- 

ave (CDW) insulator transition near half-filling [24,101] , conven- 

ional superconductivity away from half-filling [102] , and polaron 

nd bipolaron formation [23,24,103] . In the ML context, this model 

rovides an excellent platform for testing new algorithms where 

lectrons are coupled to continuous fields (the lattice displace- 

ents) and where there can be significant differences in the time 

cales associated with the electron and lattice dynamics. It is also 

orth noting that a fast and scalable hybrid quantum Monte Carlo 

lgorithm has recently been made available for studying Holstein 

odels and other electron-phonon coupled systems [104] . This ap- 

roach can treat these models on large system sizes, thus provid- 

ng additional opportunities for testing proposed ML-accelerated 

lgorithms. 

.5. The periodic Anderson model 

The periodic Anderson model (PAM) is a variant of the Hub- 

ard Hamiltonian containing two orbitals per site. In this case, one 

rbital ( c i,σ ) is ‘metallic’ and has no on-site interaction, while the 

ther orbital ( f i,σ ) is ‘localized’ and has a large on-site Hubbard 

epulsion U f 
 = 0 . Its Hamiltonian is 

ˆ 
 = −t 

∑ 

〈 i, j〉 
c † 

i,σ
c 

j,σ
− μ

∑ 

i,σ

[
n 

c 
i,σ + n 

f 
i,σ

]
+ V 

∑ 

i,σ

[
c † 

i,σ
f 
i,σ

+ h.c. 
]

+ U f 

∑ 

i 

n 

f 

i, ↑ n 

f 

i, ↓ , (10) 

here V is the hybridization between the localized and metallic 

rbitals and n c 
i,σ

= c 
† 
i,σ

c 
i,σ

and n 
f 
i,σ

= f 
† 
i,σ

f 
i,σ

are the number oper- 

tors for each type of orbital. 

In its ground state and at half-filling, the PAM undergoes a 

uantum phase transition as a function of V . Here, the system tran- 

itions from a state with antiferromagnetic order on the f -orbitals 

t small V to a singlet phase at large V . In the latter, the conduc-

ion and localized f electrons form local spin-0 singlets on a site, 

hich disrupts the long-range antiferromagnetic order. Previous 

eterminant QMC studies have placed the quantum critical point 

QCP) for this transition at V c ∼ tV c ∼ t for U f ∼ 4 tU f ∼ 4 t [35] . 

. Monte Carlo methods 

.1. Overview 

Markov chain Monte Carlo (MCMC) methods are a powerful 

lass of algorithms for simulating physical systems and have found 

idespread use in condensed matter physics [105,106] . These tech- 

iques perform a random walk through some configuration space 

hile statistically sampling the relevant observables in a way that 

uarantees the correct probability distribution is generated. 
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Fig. 1. The magnetic susceptibility χ = d 〈 M〉 /d B = β(〈 M 

2 〉 − 〈 M〉 2 ) of the 2D Ising 

model using a primitive single spin flip Metropolis Monte Carlo algorithm. χ is 

maximal in the vicinity of the known T c = 2 . 269 , and the peak shifts towards T c 
as the lattice size N grows. 
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Fig. 2. Analysis of the crossing of the Binder ratio B = 1 − 〈 M 
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2 〉 2 gives a 

more accurate estimate of T c . The data here could be vastly improved by using a 

cluster method to avoid critical slowing down; however, even with this straightfor- 

ward implementation, T c is given to accuracy of one percent or so, with simulation 

run times on the order of minutes on a desktop computer. 
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.2. Classical Monte Carlo 

In a classical Monte Carlo simulation, one aims to evaluate the 

hermodynamic expectation value of an observable O with respect 

o a set of microstates | m 〉 that follow a Boltzmann probability dis- 

ribution, 

 O 〉 = 

1 

Z 

∑ 

m 

e −βE m 〈 m | O | m 〉 . (11) 

ere, E m 

denotes the energy of the microstate, O m 

denotes the 

alue of the observable for the microstate, and Z = 

∑ 

m 

exp (−βE m 

) 

s the partition function. 

The sum in Eq. (11) must be taken over all accessible mi- 

rostates, which is intractable for most systems of interest. Instead, 

ne uses MCMC methods to evaluate the sum stochastically. In a 

lassical simulation of the Ising model, for example, a standard 

rocedure is to start with a random lattice of up or down spins 

nd then select individual spins to flip. These flips may be done 

ither by visiting each site in a random order or by going through 

he lattice in some specified pattern. The change in energy �E

hat is induced by flipping the spin is then evaluated, and the pro- 

osed move is accepted with probability p = min (1 , e −β�E ) , where 

= 1 /T is the inverse temperature in units where k B = 1 . This pre-

cription is the ‘Metropolis-Hastings’ algorithm [107] , and it en- 

ures that the statistical distribution of the spins follows a Boltz- 

ann distribution. Alternatively, one can use a ‘heat-bath’ proba- 

ility p = e −β�E / (1 + e −β�E ) . 

A crucial feature of classical Monte Carlo is that updating the 

ntire lattice scales linearly with system size N, making simulations 

f large lattices practical. 2 This linear scaling follows from the lo- 

ality of the energy, which implies that evaluating �E is indepen- 

ent of N. In contrast, QMC generally scales as N 

3 for interacting 

ermions. As we shall discuss later, this scaling results from the fact 

hat the action determining the probability is non-local , involving 

he determinant of a matrix of dimension N. 

Fig. 1 shows a typical result for a classical simulation obtained 

sing the traditional classical Monte Carlo methodology. In this 

ase, the magnetic susceptibility χ of the 2D Ising model is plotted 

s a function of temperature. Scale-invariant measurements such 
2 There can, however, be ‘hidden’ factors of N. Most commonly, near a critical 

oint, the autocorrelation time τ of the simulation diverges as L z , where L is the 

inear system size and z is the dynamical critical exponent of the algorithm being 

sed. z often takes the value z ∼ 2 , leading to very long τ . However, in many cases, 

pecial larger-scale “global” or “block” moves have been developed to address this 

65–67] , leading to z ∼ 0 . 

v

l  

i

Z
H

t

4 
s the Binder ratio provides improved ways to locate the critical 

oint on finite lattices [108] , as indicated in Fig. 2 . The key take- 

way is that a determination of the critical temperature to one 

ercent accuracy is easily attained using these simplest classical 

odels, even with unsophisticated single spin flip moves, and typ- 

cal desktop computers. These models, therefore, form interesting 

estbeds for ML methods and provided the first evidence of their 

otential. However, ML, while adding interesting insight, are un- 

ikely to constitute breakthrough applications in this context, given 

he efficacy of existing tools. 

.3. Quantum Monte Carlo: the DQMC method 

This section presents a brief overview of the standard deter- 

inant quantum Monte Carlo (DQMC) algorithm while highlight- 

ng the critical aspects for understanding the ML applications dis- 

ussed later. For more complete discussions of the DQMC algo- 

ithm, we refer the reader to Refs. [1,47,104,105,109–111] . 

The goal of DQMC is to evaluate the expectation values of ther- 

odynamic observables of quantum many-body Hamiltonians such 

s the Hubbard, periodic Anderson, and Holstein models. That is, it 

llows the computation, within the grand canonical ensemble, of 

 ≡ 〈 ̂  O 〉 = 

1 

Z 

Tr ˆ O e −β ˆ H , 

here Z = Tr e −β ˆ H is the grand partition function. Observables of 

nterest include the Hamiltonian itself, giving the energy and spe- 

ific heat, as well as pairing, charge, and spin correlation func- 

ion and their susceptibilities, which signal transitions into low- 

emperature ordered phases. We will first focus on evaluating Z . 

nce the recipe is established, it is straightforward to generalize it 

o evaluate O . 

It is convenient first to partition the Hamiltonian into two 

arts, ˆ H = 

ˆ H 0 + 

ˆ H int , where ˆ H 0 contains the noninteracting terms 

i.e. those which are quadratic in the fermion creation and de- 

truction operators) and 

ˆ H int contains the interaction terms. (Note 

hat if lattice terms are present in the model - e.g., as in the 

olstein model – then the Hamiltonian is further partitioned as 
ˆ 
 = 

ˆ H 0 + 

ˆ H lat + 

ˆ H int .) Next, we divide the imaginary time inter- 

al into L discrete imaginary time steps such that τ = l�τ , with 

 = 0 , 1 , . . . , L − 1 and �τ = β/L . We can then approximate Z us-

ng the Trotter formula [112–114] , 

 = Tr e −β ˆ H = Tr (e −�τ ˆ H 0 e −�τ ˆ H int ) L + O (�τ 2 ) (12) 

ere, O (�τ 2 ) is a controllable Suzuki-Trotter error introduced by 

he neglected commutation of the Hamiltonian terms. 
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factorizations and other numerical tricks to stabilize the numer- 
We first consider the case where the model only has local Hub- 

ard interactions. In this case, one needs to recast the quartic 

erms in the Hamiltonian into quadratic ones by introducing an 

uxiliary field s i,l at every spatial i ( = 1 , 2 , . . . , N) and imaginary

ime l point. While many auxiliary fields are possible, in DQMC, 

ne usually adopts the discrete Hubbard–Stratonovich (HS) trans- 

ormation for an on-site Hubbard interaction [115] . For U > 0 , s i,l 
ouples to the z-component of spin, 

 

−U�τ
(

n i, ↑ − 1 
2 

)(
n i, ↓ − 1 

2 

)
= 

1 

2 

e −
�τU 

4 
∑ 

s i,l 

e λs i,l (n i, ↑ −n i, ↓ ) 

nd for U = −| U| < 0 , s i,l couples to the charge, 

 

| U| �τ
(

n i, ↑ − 1 
2 

)(
n i, ↓ − 1 

2 

)
= 

1 

2 

e −
�τ | U| 

4 
∑ 

s i,l 

e λs i,l (n i, ↑ + n i, ↓ −1) . 

egardless of the sign of U , s i,l = ±1 and λ is a constant satisfying 

osh (λ) = exp (�τ | U| / 2) . From this point forward, we will focus 

n the repulsive case with U > 0 . The generalization to negative 

alues of U is straightforward. 

Once the HS transformation is applied, the partition function 

nly involves quadratic terms in the fermion operators, which 

omes at the expense of having to sum over the auxiliary fields. 

or a fixed configuration { s i,l } , the trace over the fermion degrees 

f freedom can be evaluated analytically [116] to yield a product 

f determinants (hence the name). The traces over up and down 

ermions yield separate determinants as long as ˆ H 0 contains no 

erms that hybridize the two spin species. The partition function 

hus reduces to 

 = 

∑ 

{ s i,l } 
det (M ↑ ) det (M ↓ ) ≡

∑ 

{ s i,l } 
W ({ s i,l } ) . (13) 

ere, the matrices M σ are defined as 

 σ = I + B σ (L − 1) σ B σ (L − 2) . . . B σ (0) , 

here B σ (l) = e ∓�τλv (l) e −�τK , K is the matrix representation of 

 0 , I is the N × N identity matrix, and v (l) is a diagonal matrix 

hose elements are given by [ v (l)] i, j = δi, j s i,l . The ∓ in the expo-

ential refers to spin σ = ↑ , ↓ . 

All that remains is to evaluate the summation over all HS 

onfigurations appearing in Eq. (13) , which is accomplished us- 

ng standard MCMC methods. A central quantity in this sam- 

ling procedure is the equal time Green’s function G 

σ
i j 
(τ = l�τ ) = 

 c 
j,σ

(τ ) c † 
i,σ

(τ ) 〉 . For a given auxiliary field configuration, it can be

xpressed as 

 

σ
i, j (l) = [ I + B σ (l) σ B (l − 1) . . . B σ (0) × B σ (L − 1) . . . B σ (l + 1)] −1 

i, j 
. 

(14) 

his quantity can be interpreted as describing the propagation of 

 free electron through the potential established by the given HS 

eld configuration. Note that Eq. (14) implies that the Green’s 

unction on successive time slices satisfies the equation 

 

σ (l + 1) = B σ (l + 1) G 

σ (l) B 

−1 
σ (l + 1) . (15)

t also establishes that the weight of the Monte Carlo configuration 

an be equated to the product of the determinant of the inverse 

reen’s functions 

 ({ s i,l } ) = det (G 

−1 
↑ ) det (G 

−1 
↓ ) . 

These relationships form the basis for the MCMC sampling pro- 

edure, where one performs a random walk through the con- 

gurations { s i,l } following the probability distribution W ({ s i,l } ) . 
irst, the time index is fixed to a particular slice l, and the 

orresponding equal time Green’s functions G σ (l�τ ) are com- 

uted. Next, one visits every spatial site i in the lattice, propos- 

ng changes in the local auxiliary fields s i,l → s ′ 
i,l 

. (For the case 
5 
f the HS fields, this is a local spin flip move s i,l → −s i,l .) 

hese moves can be accepted with the Metropolis probability p = 

in [1 , W ({ s ′ 
i,l 
} ) /W ({ s i,l } )] , or with the heat-bath prescription, p =

 ({ s ′ 
i,l 
} ) / (W ({ s ′ 

i,l 
} + W ({ s i,l } ) 

)
, both of which obey detailed bal-

nce. Similarities with the Monte Carlo procedure for a classical 

odel (like Ising) are evident. Two key differences are (i) that sim- 

lation of the original quantum model in d dimensions requires 

ampling a field s i,l with an ‘imaginary time’ index l in addition 

o the spatial site label i ; and (ii) the weight involves a non-local 

uantity - the fermion determinants. 

In principle, updating a single s i,l requires the O (N 

3 ) operations 

equired in evaluating a determinant. However, the computation of 

p involves only the ratio of the determinants, for which there is 

 simple expression in terms of the equal time Green’s functions. 

nce updates have been proposed at every site, the algorithm ad- 

ances to the next time slice using Eq. (15) , and the process is 

epeated. Because of the locality of the change in the matrix, the 

eterminant ratios can be evaluated in O (N 

2 ) operations, so that 

pdating all NL components s i,l of the HS field takes O (N 

3 L ) steps. 

his is the fundamental system-size scaling of the DQMC algo- 

ithm. 

The Holstein model does not have e − e interaction terms and 

hus does not necessitate the introduction of the Ising-like HS 

elds. Instead, one must deal with the e -ph terms, which couple 

he local (quadratic) fermion density operator to the lattice dis- 

lacement. We again begin with Eq. (12) , but this time we in- 

ert a complete set of phonon position and momentum states at 

ach spacetime point (i, l) . At this stage, the trace over the phonon 

omenta and quadratic electron degrees of freedom can be per- 

ormed analytically, reducing the partition function to a familiar 

orm 

 = 

∫ 
d Xe S lat det (M ↑ ) det (M ↓ ) = 

∫ 
d X W ({ X i,l } ) . (16)

n this case, the matrices B σ (l) = e �τgX(l) e −�τK , where X(l) de- 

otes a diagonal matrix whose diagonal elements are [ X(l)] i, j = 

 i,l δi, j , { X i,l } denotes a given configuration of the lattice sites, and 

 X is short hand for an N × L multi-dimensional integral over all 

attice displacements { X i,l } . The structure is very similar to that 

f the Hubbard Hamiltonian. Note, the additional term exp ( S lat ) 

here 

 lat = �τ

[ 

ω 

2 
0 

2 

∑ 

i,l 

X i,l + 

∑ 

i,l 

(
X i,l+1 − X i,l 

2�τ

)2 
] 

n the configuration weight resulting from noninteracting lattice 

erms ˆ H lat . Apart from these changes, the remainder of the DQMC 

lgorithm is unchanged. 

The evaluation of S lat is very rapid compared to dealing with 

he fermion determinant, so it contributes very little to the com- 

utational workload. Indeed, its simplicity also makes adapta- 

ion of the Holstein model to other forms of ˆ H lat , e.g. including 

nharmonic terms in the phonon potential energy, almost triv- 

al. S lat does play a profound role in controlling the imaginary 

ime fluctuations of the phonon field in comparison to the HS 

eld, for which an analog of S lat is absent. As a consequence, 

he fermion matrices are much better conditioned, opening the 

oor for efficient Langevin updates of electron-phonon Hamiltoni- 

ns [25,31,104] , which are much more challenging in the Hubbard 

odel. 

It is important to stress that we have skipped over many tech- 

ical details in this brief overview, which must be addressed when 

mplementing the DQMC algorithm. For example, the B σ (l) ma- 

rices are stiff, especially as the product Uβ becomes large. To 

valuate the long products of these matrices, one must use QR 
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cs. Additional details on these technical details can be found in 

efs. [1,47,104,105,109–111,117] . 

We will briefly mention one issue since it is the primary lim- 

tation to the application of DQMC: the signs of the configura- 

ion weights det (M ↑ ) det (M ↓ ) are not always positive-definite and, 

herefore, cannot be directly interpreted as a probability. When 

his occurs, the auxiliary fields are sampled according to a new 

robability distribution given by the absolute value of the orig- 

nal distribution | W ({ s i,l } ) | . The two distributions are related by

 = sign W | W | . This change requires us to re-weight any observ- 

ble as 

 O 〉 W 

= 

〈 O sign W 〉 | W | 
〈 sign W 〉 | W | 

, (17) 

here the subscript | W | in the expectation value emphasizes the 

onfigurations are now generated with probability ∝ | W | . When 

he system size increases or the temperature decreases, the sign 

f W is positive and negative with nearly equal probability, caus- 

ng 〈 sign W 〉 → 0 . The numerator must also vanish exponentially 

ince 〈 O 〉 is well defined. The process of taking the ratio of 

wo very small quantities, each with finite error bars ultimately 

ields values that are meaningless. This behavior is a reflection of 

he Fermion sign problem [57,59] . (The sign problem is not re- 

tricted to fermionic models, but also occurs for frustrated quan- 

um spins [118] .) 

It is worth noting that the determinants det (M ↑ ) = det (M ↓ ) for 

he Holstein model because the phonon field couples in the same 

ay to the spin up and spin down fermions. This is also true of the 

ttractive Hubbard model at any filling, and of the half-filled Hub- 

ard with nearest-neighbor hopping only. Other ‘sign-problem free’ 

odels and the symmetries and choices of bases from which they 

riginate have been discovered [58,61–63,119–132] . In such cases, 

 ({ X i,l } ) is always greater than zero and DQMC can access the 

hysics down to arbitrarily low temperatures. In these cases, one 

an obtain essentially exact solutions of the corresponding quan- 

um many-body problem. 

.4. Challenges and limitations 

Despite their power and versatility, MCMC methods are lim- 

ted in several notable ways. First, they frequently employ finite- 

ize clusters when studying correlated electron models like those 

iscussed in Section 2 . Because of this, a finite-size analysis is re- 

uired to extrapolate results to the thermodynamic limit. The ther- 

odynamic limit can be approached more directly by embedding 

he cluster in a self-consistent dynamical mean field that approx- 

mates correlations beyond the cluster [133,134] . However, such 

mbedding schemes can still exhibit considerable finite-size effects 

9] . Because of this, addressing the thermodynamic limit requires 

arge system sizes, which can be prohibitively expensive for many 

lasses of MC algorithms. 

Another fundamental limitation of any MC method is its decor- 

elation time. A MC algorithm must draw measurements from sta- 

istically independent configurations to obtain unbiased estimators 

or an observable and its statistical error. Because of this, the auto- 

orrelation time τ - defined as the number of updates needed to 

enerate such configurations - is a crucial measure of a MC simu- 

ation’s efficiency. Many MC applications suffer from prohibitively 

ong autocorrelation times (e.g., e -ph or frustrated spin models, 

ontinuum limit lattice gauge theory simulations, and confined 

uantum liquids). 

Autocorrelation times can also depend strongly on the pa- 

ameter regime of a particular model and the sampling method. 

he Holstein model in the adiabatic limit ( ω 0 /t � 1 ) is quite 

hallenging for traditional Metropolis-Hastings sampling but more 

menable to hybrid Monte Carlo methods [104] . Autocorrelation 
6 
imes also tend to grow in the vicinity of a phase transition, 

here correlation lengths extend beyond the size of the clus- 

er and single-site updates are no longer capable of efficiently 

oving MC configurations out of meta-stable minima. This lat- 

er problem is known as “critical slowing down.” In some cases, 

global” MC moves can be performed to mitigate the autocorre- 

ation time. In such schemes, an extended region of configuration 

pace is updated simultaneously to generate independent configu- 

ations quickly. However, the form of these updates is only known 

n some special cases. Examples include the Wolff update [135] for 

he classical Ising model as well as ω n = 0 shifts of auxiliary fields 

n QMC simulations of the Hubbard [101] and Holstein models 

47] , or “swap” updates where lattice configurations on neighbor- 

ng sites are interchanged [104] . Importantly, these global moves 

an fail to reduce autocorrelation time if they only achieve low 

cceptance rates. It is usually not obvious how global MC moves 

hould be proposed for a given model. 

Finally, QMC simulations must also contend with the aforemen- 

ioned Fermion sign problem. 

These factors have prevented the widespread deployment of 

MC algorithms for many effective models relevant to current ma- 

erials of interest. However, it is hoped that ML methods can pro- 

ide new routes forward. For example, the problem of constructing 

eneralized global updates can be addressed using so-called self- 

earning Monte Carlo methods [76] , as discussed in Section 7 . 

. Machine learning methods 

.1. Artificial neural networks 

Artificial neural networks (ANNs) are data structures capable of 

ncoding highly-nonlinear functions of their input features. Origi- 

ally motivated by models for the brain, ANNs usually consist of 

everal interconnected layers of perceptrons. Like a neuron, a per- 

eptron is an element of decision-making, providing an output ( y ) 

ased on the weighted average of a set of input values ( x ) 

 = f (x · W + b) , (18) 

here W are weights associated with the input values, b is a bias 

ariable, and f is called the activation function, usually a nonlinear 

unction such as tanh , sigmoid, or the rectified linear unit (ReLU). 

he idea is that more complex decisions can be made by having 

 large number of these perceptrons in deeper (in terms of the 

umber of layers) and more complicated ANNs. 

ANNs are usually designed for specific tasks or to make partic- 

lar decisions, e.g., categorizing a large number of inputs. Train- 

ng ANNs to make correct decisions takes place through obser- 

ation. In supervised learning, a supervisor provides many inputs 

nd their “labels” (correct categories) to the ANN. During this pro- 

ess, through backpropagation, the network gradually adjusts its 

any fitting parameters (weights W ’s and biases b’s) to match 

ts output with the desired output (labels). For more details, see 

efs. [136,137] . 

.2. Convolutional neural networks 

Convolutional neural networks (CNNs) are a group of ANNs that 

se one or more convolutional layers in their architecture. In a 

onvolutional layer, a kernel (also known as a filter), usually with 

he same dimensionality as the input data, sweeps across each in- 

ut and convolves with portions of it. After going through an acti- 

ation function, the results of these convulsions are combined in a 

feature map”, which is passed to the next layer of the neural net- 

ork. Pixel values of the kernel are considered weights that can 

e adjusted during the training process. But importantly, the same 

eights are used for every convolution for a given kernel. A CNN 
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Fig. 3. The topology of an autoencoder. High dimensional input data are com- 

pressed through a hidden layer with (far) fewer degrees of freedom, followed by 

a demand that the high dimensional output reproduces the input when fed back 

into the decoder layers. 
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an have more than one convolutional layer, with subsequent lay- 

rs acting on feature maps of previous layers, or more than one 

ernel in each convolutional layer, where each kernel has a unique 

et of weights and creates its feature map. 

The idea behind convolutional layers is that one can work with 

he input data in their original shape and take advantage of spatial 

orrelations or patterns that may exist in them. Kernels in the first 

onvolutional layers usually pick up the most basic features in the 

ata that can be used for categorization, and subsequent layers use 

hose features to create more complicated patterns. Having con- 

olutional layers generally improves the training accuracy of neu- 

al networks, especially if the input data contain important spatial 

eatures (e.g., translational invariance in physical systems). For this 

eason, CNNs are widely used in image recognition. However, in 

ection 6 , we will see examples of how the information encoded 

n convolutional kernels can be used to infer nonlocal correlations 

rom snapshots of fermions on a lattice. 

.3. Principal component analysis 

Principal component analysis (PCA) is perhaps conceptually the 

implest unsupervised ML approach. Within the context of clas- 

ical statistical mechanics, it begins with a set of M ‘snapshots’ 

f the lattice, e.g. a collection of N-component vectors S γ , with 

= 1 , 2 , 3 , . . . , M, each representing a given configuration gener-

ted during a Monte Carlo simulation. (For example, the compo- 

ents S γ could represent the N = L × L spin orientations at a given 

nstance of a simulation of the 2D Ising model.) These M vectors 

re assigned to rows of a matrix X , with dimension M × N. The M

ectors are typically chosen from simulations at n T different tem- 

eratures { T i } that transit T c . At each T i , R configurations are cho-

en, so that M = n T R . To implement the PCA, the eigenvalues λα

nd eigenvectors w α of the N × N covariance matrix X 

T X are de- 

ermined 

 

T X w α = λαw α. (19) 

he overlaps of each configuration S γ with a given eigenvector 

 α are then computed to define weights, or principal components, 

p γα = S γ · w α . 

As we shall see below, the topology of scatter plots of p γ α for 

he first few largest eigenvalues λα changes decisively through T c . 

he method works best when these eigenvalues are much larger 

han the remaining ones, a condition that holds in many interest- 

ng cases. In such a scenario, the original N-dimensional data con- 

ained in X , the M vectors S γ of length N, have been projected 

o a (much) smaller dimensional space of p γα with, for example, 

= 1 , 2 . PCA is an unsupervised ML method. No labeling of S γ
s being below or above T c is required, and one only utilizes the 

aw spin configurations. The critical point emerges spontaneously 

s a change in the nature of the principal components in passing 

hrough the phase transition. 

.4. Autoencoders 

Like PCA, the autoencoder (AE) method is an unsupervised 

ethod for performing dimensional reduction. However, it is gen- 

rally more powerful because it employs nonlinear transforma- 

ions. In its simplest form, an AE consists of two ANNs, the “en- 

oder” and the “decoder”, connected through a hidden layer in the 

iddle, as shown in Fig. 3 . An AE analysis begins, like the PCA, 

ith a collection S γ of snapshots of the system. These snapshots 

re used as the ‘inputs’ to the encoder from which the values U of 

 subsequent (‘hidden’) layer are computed. Denoting the compo- 

ents of a given S γ as S i (suppressing the label γ ), and the associ- 
7 
ted hidden layer values by U j , one computes for each γ

 j = f 

( ∑ 

i 

W 

(1) 
ji 

S 
i 
+ b (1) 

j 

) 

. (20) 

s in Eq. (18) . Similarly, the values V k on an ‘output’ layer out of 

he decoder are obtained from those on the hidden layer using 

 k = f 

( ∑ 

j 

W 

(2) 
k j 

U 

j 
+ b (2) 

k 

) 

. (21) 

he weights W 

(1) between the input and hidden layers, and W 

(2) 

etween hidden and output layers, as well as the biases b (1) and 

 

(2) are adjusted, e.g. through backpropagation so that the output 

 matches the input S. (Hence the name ‘autoencoder.’) 

In the AE approach, separate networks are trained for distinct 

arameter choices (e.g. temperature). The values characterizing the 

mall number of hidden layer nodes, e.g. their activations, can be 

nalyzed as a function of the control parameter. Typically these 

alues change distinctively through a phase transition. 

.5. T-distributed stochastic neighbor embedding 

Like PCA, t-distributed stochastic neighbor embedding (tSNE) is 

n unsupervised method used to reduce the dimensionality of data 

nd represent them using a few projected values. But unlike PCA, 

SNE does this nonlinearly by minimizing the difference between 

airwise conditional probability distributions representing the sim- 

larity of points in the high- and low-dimensional spaces. The dis- 

ributions are based on Student’s t-distribution functions centered 

t each point and have widths adjusted to keep the number of ef- 

ective neighbors of each point fixed throughout the configuration 

pace. The user sets the latter as the “perplexity” number. A typical 

SNE analysis starts with an initial PCA to reduce the dimension- 

lity of data from the original value to around 50 before applying 

he tSNE algorithm, as it can be costly to work directly with an 

nput dimension of hundreds or thousands. More details about the 

SNE method can be found in Refs. [138,139] . 

.6. Random trees embedding 

Random trees embedding is another unsupervised learning 

ethod that uses the notion of a tree to extract features from data. 

 tree refers to a graph with nodes repeatedly branching out in 



S. Johnston, E. Khatami and R. Scalettar Carbon Trends 9 (2022) 100231 

o

d

r

i

s

b

d

d

o

o

m

5

5

p

t

t

h

f

i

I

a

u

t

c

e

o

t

c

n

T

d

d

c

a

l

i

s

g

m

a

p

i

k

s

i

s

h

m

t

X
s

(

e

[

o  

o  

(

v

Fig. 4. PCA results for the square lattice Ising model, which has an analytically 

known T c /J = 2 . 269 . (a) Distribution of the lowest 2500 eigenvalues of the matrix 

X T X . (b) Scatter plot of pairs (p 1 γ , p 2 γ ) of overlaps of Ising configurations S γ with 

the first two eigenvectors w 1 , w 2 of X T X . Results are shown for 100 configurations 

at each temperature. (c) Average overlap p 1 γ and (d) p 2 γ as a function of tempera- 

ture for four linear lattice sizes L . Adapted from Ref. [146] with minor modifications. 

Fig. 5. (a) The eigenvector w 1 of largest eigenvalue in a PCA is nearly uniform 

( k = (0 , 0) ), so that its dot products p 1 γ with spin configurations S γ have the 

physical interpretation of the magnetization. (b) The eigenvector w 2 of next-largest 

eigenvalue in a PCA exhibits domain walls between spin-up and spin-down re- 

gions. It can be well fit by a vector consisting of a sum of two plane waves with 

k 1 = (0 , 2 π/L ) and k 2 = (2 π/L, 0) , i.e. the k values closest to the origin, as seen 

in panel (c). (d) shows the evolution of the peak positions of the average of p 2 γ
( Fig. 4 (d)) with inverse linear lattice size. Adapted from Ref. [146] with minor mod- 

ifications. 
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ne direction. The parent node (the root of the tree) has all the 

ata, while the data is divided into subsets at subsequent nodes 

epresenting tree branches. Each node corresponds to a feature 

n the data, so branches farther from the parent node containing 

maller subsets of data correspond to finer features. 

In random trees embedding, data are projected onto an ensem- 

le of random trees whose total number and maximum branching 

epth are parameters that can be tuned. Each tree makes an in- 

ependent observation regarding the features, and the ensemble 

f trees “votes” for dominant features, judged by the amount of 

verlap between nodes at a certain depth from different trees. For 

ore details see Refs. [140,141] . 

. Proofs of concept and benchmarks 

.1. Classical models 

In May and June of 2016, a series of groundbreaking pa- 

ers [142–145] came out that demonstrated the power and poten- 

ial of machine learning techniques in encoding information about 

he statistics of classical and quantum many-body systems and 

ow they may be used for physics discovery. These works showed 

or the first time that one could think of the degrees of freedom 

n many-body systems – e.g., individual spin orientations in the 

sing model or auxiliary field configurations in QMC simulations –

s “features” in ML algorithms. This realization paved the way for 

tilizing ML methods developed and refined for industry applica- 

ions to learn new physics. 

Carrasquilla and Melko [142] employed fully-connected and 

onvolutional neural networks to study phase transitions in mod- 

ls for magnetic systems. By coloring their 2D spin configurations 

btained from a Monte Carlo simulation as hot or cold (referring 

o whether they were obtained at a temperature above the criti- 

al temperature of the model or not), they were able to train the 

etworks to classify never-before-seen configurations and pinpoint 

 c with a high degree of accuracy. They further showed that pre- 

icted values of T c approached the analytical value in the thermo- 

ynamic limit as their system sizes increased and explored appli- 

ations of training with models exhibiting topological orders. They 

lso demonstrated that a fully-connected neural network simply 

earns to compute the magnetization of the Ising model and uses 

t as a metric for classification. This observation helped explain its 

uccess in transferring the knowledge learned on a square lattice 

eometry to a triangular lattice geometry. 

Lei Wang’s application of the PCA technique to the Ising 

odel [143] led to a similar conclusion: physical properties, such 

s magnetization or magnetic susceptibility, emerge in the first two 

rincipal components. What was remarkable about Wang’s find- 

ngs was that these properties could be inferred without providing 

nowledge about the problem’s physics to the machine. That is, the 

pin configurations were not labeled in the PCA study. Later these 

deas were applied to study frustrated classical magnetic models, 

uch as in Ref. [147] . 

To illustrate these approaches more concretely, we now 

ighlight a specific example, the 2D ferromagnetic Ising 

odel [146,148,149] . Fig. 4 shows results obtained for the phase 

ransition using a PCA [146] . Fig. 4 (a) plots the eigenvalues of 

 

T X , which fall off rapidly, a condition for the data compres- 

ion inherent in a PCA to be effective. A scatter plot of pairs 

p 1 γ , p 2 γ ) of projections of the spin configurations S γ on the PCA 

igenvectors w 1 , w 2 with the largest and next-largest eigenvalues 

 Fig. 4 (b)] shows an evolution from a single clump centered at the 

rigin for T > T c to a bimodal distribution for T < T c . The average

f | p 1 γ | , shown in Fig. 4 (c), behaves like an order parameter

the magnetization), evolving from zero at high T to a non-zero 

alue at low T . The transition becomes increasingly sharp with L 
8 
the total number of sites N = L × L ) and occurs near the known 

 c = 2 . 269 [75] . The average of | p 2 γ | [see Fig. 4 (d)] behaves like

he susceptibility, peaking near T c (compare with Fig. 1 ). 

Fig. 5 (a) shows the first eigenvector w 1 . It is nearly uniform, 

o that p 1 γ = w 1 · S γ is essentially the magnetization, as already 

mplied by Fig. 4 (c). One of the most promising possibilities of 

L approaches for statistical mechanics is the possibility that ex- 

mining the learning mechanism might lend insight into the na- 

ure of phase transitions, especially in cases where the order pa- 

ameter is unknown. Fig. 5 (b) shows, similarly, the second eigen- 

ector, which can be compared with a linear combination of vec- 

ors with domain walls in the vertical and horizontal directions, 

.e. k 1 = (0 , 2 π/L ) and k 2 = (2 π/L, 0) , as shown in Fig. 5 (c). To-
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Fig. 6. Autoencoder results for the 2D square lattice Ising model. (a) After com- 

pression of the spin configuration of an N = 40 × 40 lattice through 200 hidden 

layer neurons, the basic features of the input can still be replicated in the output. 

(b) Scatter plots of the activations (h 1 , h 2 ) of a hidden layer with two neurons. The 

distribution bifurcates at T c . (c) The activation h ∗ of a single hidden layer neuron fol- 

lows a single trajectory for T > T c but then separates into two branches for T < T c . 

Adapted from Ref. [146] with minor modifications. 
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Fig. 7. Projection of 3D Ising data for an N = 8 × 8 × 8 lattice on the space of two 

latent variables (hidden neurons) of an AE. CNN’s are used for the encoder/decoder 

of the AE. Different colors in the scatter plot correspond to different temperatures. 

Top inset: The output of a different AE, in which the hidden layer consists of one 

single neuron, as a function of temperature. The dashed line is a fit to A (B − T ) β + C

with A = 0 . 38 , B = 4 . 55 , β = 0 . 34 , and C kept fixed at -0.25, which is the aver- 

age output overall T . Bottom inset: Temperature dependence of a measure for the 

spread of data in the main panel. The vertical dashed lines mark the location of T c . 

Taken from Ref. [146] . 
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(  

s  
ether with the k = (0 , 0) structure of the first eigenvector shown 

n Fig. 5 (a), one concludes PCA is constructing the low energy 

small k ) Fourier components of the spin configurations. Finally, 

ig. 5 (d) shows an extrapolation of the peaks in Fig. 4 (d) in inverse

inear lattice size. The temperature intercept in the thermodynamic 

imit is within error bars (of about 1%) of the exact T c = 2 . 269 . This

esult illustrates that ML can be combined with finite size scal- 

ng to reach the thermodynamic limit (as with older methods), but 

lso that quite accurate results can be obtained without too much 

ffort (i.e., using the simple PCA). 

As mentioned, the AE method can be viewed as a nonlinear 

eneralization of PCA. Therefore, it should be no surprise that the 

E method is also an effective means to study the Ising phase tran- 

ition, as shown in Fig. 6 . Panel (a) illustrates the data compression 

f the AE by showing the actual input features (top row), in this 

ase, N = 40 × 40 spin values for configurations at four different 

emperatures, together with their replication at the output stage 

bottom row). Here, the AE uses two hundred hidden neurons, al- 

ost an order of magnitude reduction over the number of sites 

n the model. Figs. 6 (b) and (c) demonstrate that the AE retains 

he ability to detect the phase transition even when the data is 

ighly compressed. For example, in Fig. 6 (b), the hidden layer has 

nly two neurons, yet a scatter plot in the plane of their activa- 

ion ( h 1 , h 2 ) bifurcates in a manner similar to a PCA of Fig. 4 . The

emperature at which this bifurcation occurs yields an estimate of 

 c ; however, even the activation h ∗ of a single hidden layer neuron, 

anel Fig. 6 (c), shows a clear signal of the phase transition as T is

educed. 

Similar results have also been obtained for the 3D version of 

he antiferromagnetic Ising model [150] (see Fig. 7 ). The top inset 

n Fig. 7 shows that the single latent variable of a convolutional 

utoencoder can act as the order parameter; however, other indi- 

ators can also be defined, based on the distribution of more than 

ne latent variable, that point to the transition temperature and 

ven correlate with physical properties. For example, in the bot- 

om inset of Fig. 7 , the spread of the data in the space of two
9 
atent variables peaks around the critical temperature and closely 

ollows the susceptibility curve. The mean output can be fit to 

ive a critical temperature of T c = 4 . 55 and critical exponent of 

= 0 . 34 . These values should be compared with values T c = 4 . 5115

nd β = 0 . 326 obtained by Monte Carlo simulation [151] . 

Agrawal et al. have also used autoencoders to examine the re- 

ated problem of detecting and identifying which symmetry is bro- 

en spontaneously across a phase transition [82] . To this end, they 

ntroduced an architecture called the group-equivariant autoen- 

oder (GE-autoencoder). In this application, one first deduces a set 

f symmetries that will remain intact in all phases at all temper- 

tures using group theory. This information is then used to con- 

train the hyperparameters of the GE-autoencoder such that the 

ncoder learns an order parameter invariant to these symmetries. 

enchmarking their method for the ferromagnetic and antiferro- 

agnetic Ising model in 2D, they could construct GE-autoencoders 

hose size remained independent of the system size. By includ- 

ng additional symmetry regularization terms in the loss function, 

hey found that the GE-autoencoder learns an order parameter 

hat satisfied the remaining symmetries of the system. The authors 

xtracted information about the associated spontaneous symme- 

ry breaking by examining the group representation by which the 

earned order parameter transforms. The GE-autoencoder was also 

ble to produce estimates for T c in the thermodynamic limit with 

reater accuracy, robustness, and time efficiency than a symmetry- 

gnostic autoencoder discussed above. 

The studies of the Ising model ( Figs. 4, 5 , and 7 ) focused on

sing configurations at different temperatures to determine T c . In 

he Blume–Capel model, however, the phase boundary can be 

rossed by varying the zero-field splitting �. PCA is also effec- 

ive in such ‘parameter-tuned’ transitions, as shown in Figs. 8 and 

 . The Blume–Capel model has a tricritical point at (T /J, �/J) = 

0 . 609 , 1 . 965) along its phase boundary. Fig. 8 cuts across at a

econd-order transition (T /J = 1 . 0) , while Fig. 9 cuts across at a
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Fig. 8. Same as Fig. 4 except for the Blume–Capel model and sweeping � at fixed 

J = T = 1 . As in the Ising model, there is a crisp separation of eigenvalue scales 

(panel a) and a bifurcation of the scatter plot at �c (panel b). The average overlaps 

once again serve as proxies for the magnetization ( 〈| p 1 |〉 , panel c) and susceptibility 

( 〈| p 2 |〉 , panel d). The transition is second order for this T = 1 sweep. Adapted from 

Ref. [146] with minor modifications. 

Fig. 9. Similar to Fig. 8 , except the transition is first order for this T = 0 . 4 sweep. 

Adapted from Ref. [146] with minor modifications. 

fi  

e

M

m

a

l

c

t

2

g

t

i

e

5

f

b

Fig. 10. Prediction of the AF transition temperature in the 3D Hubbard model by a 

CNN. The CNN is trained using DQMC’s auxiliary field data at different temperatures 

for fixed values of U . The prediction is made after three pieces of training: One with 

data from U = 5 , one from U = 16 , and one with mixed data from U = 5 and 16. 

The latter yields the nontrivial shape of the phase boundary when providing the 

CNN with data from other U values it has not seen before. Estimates for T N in the 

thermodynamic limit are from past DQMC and numerical linked-cluster expansion 

calculations. Taken from Ref. [158] . 
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rst-order transition (T /J = 0 . 4) . Not only are the critical points

asily identified, but their orders are readily apparent. 

For pedagogical reasons, we have focused here on the use of 

L for the well-known and characterized Ising and Blume–Capel 

odels. It is worth noting, however, that these methods have 

lso been used to elucidate the behavior of other, more chal- 

enging, classical models. These include the biquadratic spin ex- 

hange spin-1 Ising model of He 3 -He 4 mixtures [146,152] , frus- 

rated magnetism [147] , the Kosterlitz–Thouless transition of the 

D XY Hamiltonian [146,153,154] , and topological order in Ising 

auge theories [155] . Together, the studies discussed here illustrate 

he rapid pace at which powerful variants of ML methods are be- 

ng developed, in analogy with the (much longer) history of the 

volution of Monte Carlo methods for studying phase transitions. 

.2. Quantum models 

The use of restricted Boltzmann machines (RBM) as an ansatz 

or representing ground state wavefunctions of quantum many- 

ody systems have been another exciting and fruitful approach. In 
10 
 novel study, Carleo and Troyer [144] used reinforcement learning 

o train their RBMs by minimizing the ground state energy of the 

ransverse-field Ising and quantum Heisenberg models. In doing 

o, they showed that they could surpass the performance of then 

tate-of-the-art conventional variational techniques by systemati- 

ally increasing the density of the hidden layer. 

These works laid the groundwork for and inspired many other 

tudies that followed shortly after [156] . For example, ideas of 

ef. [142] were extended and applied to quantum many-body sys- 

ems like the Fermi Hubbard model on the honeycomb and cubic 

attices [157,158] to learn quantum or thermal phase transitions. 

roecker et al. [157] showed that the knowledge of the physics of 

he problem at the extremes, in that case, deep in the semi-metal 

r AFM phases of the honeycomb lattice Hubbard model, can lead 

o an accurate estimate of the transition temperature by the artifi- 

ial neural networks. They also found that input data engineering 

o guide the neural networks toward physical properties of interest 

an significantly affect the training. 

Ch’ng et al. [158] used raw auxiliary field configurations of the 

ubic lattice Hubbard model in 3 + 1 dimensions and by treating 

he time slices along the quantum dimension as “color channels”

n their CNNs, allowing the method to learn the finite-temperature 

éel transition at half-filling. They then demonstrated the power 

f transfer learning by training a CNN using a mix of configura- 

ions from two different U values in the weak- and strong-coupling 

egimes, which was then used to estimate the nontrivial shape of 

he AFM phase boundary in the temperature-interaction strength 

hase diagram of the model (see Fig. 10 ). 

Both of these works touched on the fermion sign problem 

n Fermi–Hubbard models away from symmetry points and their 

mplications for machine learning. Ref. [157] demonstrated that, 

t least for some models and properties of interest, the sign 

ould essentially be ignored in the training and classification. In 

ef. [158] , Ch’ng et al. avoided training their machines in the sign- 

roblematic parameter region away from half-filling. Instead, in us- 

ng those CNNs trained at half-filling to track the magnetic transi- 

ion away from half-filling, they treated their network output as 

nother physical observable, arguing that the sign of the auxiliary 

eld configurations should be incorporated into their averages. As 

hown in Fig. 11 , ignoring the sign can lead to small but significant 

ifferences in the results in this case. 

Early on, it was shown that topological states of matter could 

lso be studied using artificial neural networks. RMBs were first 
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Fig. 11. Average neuron output O calculated with and without taking the fermion 

sign into account at T = 0 . 32 ( 〈〈 SO 〉〉 / 〈〈S〉〉 and 〈〈O〉〉 , respectively) when using a 

CNN trained at half-filling to detect the Néel transition away from half-filling. 0.5 

crossing indicates the location of the transition. The black line shows the average 

fermion sign. Taken from Ref. [158] . 
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Fig. 12. Projection of the auxiliary field data for the half-filled 2D Hubbard model 

to a two-dimensional latent space using the tSNE algorithm. The system size is N = 

10 2 and U = 4 t . Eight hundred configurations per temperature in a uniform grid of 

T /t between 0.1 and 0.60 are used. (b) The indicator (green symbols – see text) and 

the AFM structure factor (red line) as a function of temperature. Image reproduced 

from Ref. [150] . (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 13. Projection of the four latent variables of a fully-connected AE to two di- 

mensions using the random trees embedding algorithm. The original data used to 

train the AE are auxiliary fields for the 3D Hubbard model with (a) U = 4 , (b) U = 9 , 

and (c) U = 14 at half-filling. The dashed lines are line fits to data at the estimated 

Néel temperature for each U . Image reproduced from Ref. [150] . 
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sed to represent topological states in one, two, and three dimen- 

ions [159] , and it was found that the number of hidden param- 

ters needed scales only linearly with the system size. It was fur- 

her shown that RBMs could find the topological ground states of 

eneric nonintegrable Hamiltonians through reinforcement learn- 

ng and identify their topological phase transitions. RBMs were also 

sed as a decoder of topological codes [160] . The challenge of cap- 

uring nonlocal properties of topological phases with neural net- 

orks led Zhang and Kim to introduce quantum loop topography, 

 procedure to construct a multidimensional image of the wave- 

unction based on two-point correlation functions that form loops, 

hich was then used as input to neural networks to distinguish 

hern insulators from trivial insulators [161] . 

Algorithms for the unsupervised learning of phases and phase 

ransitions (with no specific knowledge of the nature of phases 

r the whereabouts of the transition) that were based on super- 

ised machine learning methods attracted much interest. In the 

confusion” method [162] , neural networks are trained with data 

hat have been deliberately mislabeled. Monitoring how the train- 

ng accuracy varies as different locations for the phase transition 

re proposed allows one to identify the correct labels for the data 

nd pinpoint the transition. Another method also used the train- 

ng accuracy as a function of the tuning parameter, but for train- 

ng performed on data from consecutive tuning parameters [163] . 

n this approach, a peak in the accuracy would indicate a sudden 

hange in the character at the location of the true phase transition. 

Traditional unsupervised learning methods, such as PCA, au- 

oencoders, tSNE, and random trees embedding, showed a remark- 

ble ability to reveal phase changes in the presence of quantum 

uctuations. While an early application of the PCA to QMC data 

or the Heisenberg model led to no discernible features in the re- 

uced dimensional space [162] , a thorough analysis of the raw aux- 

liary field DQMC data for the 2D and 3D Hubbard model demon- 

trated outstanding potential for nonlinear methods to shed light 

n the phases and phase transitions of quantum lattice models. It 

lso showed that indicators that correlate with conventional prop- 

rties could be defined using the data projected onto the reduced 

imensional space [150] . 

Figs. 12 and 13 highlight some of those early findings. Fig. 12 (a) 

hows the results of tNSE applied to raw auxiliary field data for 

he half-filled 2D Hubbard model with U = 4 t on a 10 × 10 square 

attice. The color indicates temperature and makes it clear that the 

ata projected to the 2D space evolve from a large symmetric clus- 

er at relatively high temperatures to two smaller ones on either 

ide of the hot cluster at lower temperatures. They correspond to 
11 
he two possible sublattice orientations of the Néel ordered phase. 

hen applied to the data, the k -means algorithm identifies three 

lusters at each temperature. Fig. 12 (b) shows how the average dis- 

ance of a cluster’s center from the mean location of data closely 

ollows the magnetic structure factor as a function of temperature. 

ote that no knowledge about the physics of the problem has been 

rovided to the machine. 

Fig. 13 shows temperature gradients in the 3D Hubbard data 

rom an AE that have been further analyzed by the random trees 

mbedding method. Here, the AE reduces the original auxiliary 

eld data to four latent variables, and then the random trees em- 

edding projects the latent variables to a 2D space. In this case, 

he output separates data points from different temperatures. 

ML methods have been applied to many other quantum mod- 

ls. For example, PCA has also been widely used to locate phase 

ransitions in various quantum Hamiltonians, with some notable 

uccesses and failures, which we now discuss. We begin with the 

nite temperature CDW phase transition in the Holstein model 

nd then examine magnetic quantum phase transitions tuned by 

hanging model parameters in several different contexts, including: 

1) the inter-orbital hybridization in the periodic Anderson model, 

2) the on-site interaction in the Hubbard model on a honeycomb 

attice, and (3) the density in the Hubbard model on a Lieb lattice. 

Topological data analysis’ is a related ML method recently applied 

o (1) and (2) [164] . In all these cases, the input features are pro- 

ided to the PCA are the Hubbard–Stratonovich field variables { s i,l } 
btained from DQMC simulations of these models. With these suc- 

ess stories established, we then discuss the challenges encoun- 

ered in studying the Kosterlitz–Thouless transition to a supercon- 

ucting phase in the doped two-dimensional attractive Hubbard 

odel [165] . We note that for quantum models, DQMC simulations 

ork in a path integral representation of the partition function so 

hat they sample a d + 1 dimensional space-imaginary time lattice, 
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Fig. 14. PCA for the Holstein Hamiltonian on a 10 × 10 lattice at half-filling, with 

ω 0 = 1 and λ = 1 / 2 . The principal eigenvalues of panel (a) exhibit a rapid fall-off, 

suggesting data compression should be effective. The vertical dashed line gives the 

critical temperature for the CDQ phase transition obtained from a traditional finite- 

size scaling analysis of the order parameter. The ML calculation shows a sharp rise 

in the first principal component (panel c) and the development of a two-peak struc- 

ture in a (p 1 , p 2 ) scatter plot (panel b) at the same T c . The overlaps of the spin 

configurations with the first principal eigenvector having the staggered structure of 

CDW order (panel d). Adapted from Ref. [166] with minor modifications. 
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Fig. 15. PCA for the periodic Anderson Model (PAM) on a 12 × 12 lattice with 

U f = 4 t and βt = 24 . The inter-orbital hybridization V is the tuning parameter. The 

PCA can isolate the QPT, which occurs between AF order at small V and the singlet 

phase at large V . Adapted from Ref. [166] with minor modifications. 
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here d is the spatial dimension. Unless otherwise indicated, the 

onfigurational vectors used in the PCA discussion that follow con- 

ain the entire lattice. In principal, one might also study the per- 

ormance of the PCA for different discretizations β = L �τ of imag- 

nary time; however, the results do not appear to be very sensitive 

o the size of the Suzuki–Trotter errors, provided �τ is reasonably 

mall. 

The Holstein Hamiltonian poses special difficulties to QMC sim- 

lations owing to its long autocorrelation times. ML methods play 

n especially useful role in the acceleration of the simulations, as 

iscussed in Section 7 . In this section, we will confine ourselves 

o PCA’s use in analyzing configurations generated by the conven- 

ional DQMC method. 

Fig. 14 shows PCA analysis of the CDW transition in the Holstein 

odel in a close analogy to that presented in Fig. 4 . As with the

revious examples, the sharp drop-off in the eigenvalues shown in 

ig. 14 (a) (even more dramatic than that in the Ising case) suggests 

hat the PCA method will be able to compress the configuration 

pace efficiently. The projection onto the plane of the two princi- 

al components is shown in panel (b). Here, the bifurcation of the 

istribution is observed as T is lowered, reflecting the transition to 

he CDW phase. In this case, the average of the first principal com- 

onents as a function of (inverse) temperature, shown in panel (c), 

erves as an order parameter. At the same time, the spatial struc- 

ure of the components of the first eigenvector w 1 i at low T os- 

illates in sign, reflecting the two sublattice structure of the CDW 

hase whose ordering wave-vector is Q CDW 

= (π, π) . 

Fig. 15 examines PCA’s ability to discern the quantum phase 

ransition of the PAM ( Section 2.5 ) [166] . In this case, DQMC sim-

lations at low temperature ( T = t/ 24) are used to generate data 

or varying hybridization values V . Applying the PCA to this data 

et at fixed T produces results very similar to the Holstein model; 

he principal eigenvalues fall off rapidly [ Fig. 15 (a)], demonstrating 

hat PCA can indeed achieve a large degree of data compression. 

imilarly, the scatter plot of (p 1 , p 2 ) bifurcates as a function of the

odel parameter V . At the same time, the first principal compo- 

ent p 1 [ Fig. 15 (c)] behaves like an order parameter for the anti- 
12 
erromagnetic phase in that it goes to zero as V increases across 

he known V c ∼ 1 [35] . At low V , the first eigenvector exhibits a 

lear oscillatory pattern, reflecting strong AFM correlations. 

The Hubbard model on a square lattice has AFM order at half- 

lling for all values of the on-site repulsion U [1,167] . For weak 

oupling, this ordering is a consequence of the ‘perfect-nesting’ 

f the Fermi surface (FS), where a large number of points k and 

 + (π, π) lie on the FS leading to an enhanced instability to AFM 

rder. The logarithmic van-Hove singularity of the density of states 

(ω = 0) contributes to this process. No such nesting occurs on a 

oneycomb lattice, and N(ω = 0) vanishes linearly with ω at half- 

lling (the so-called ‘Dirac spectrum’) [168] . This electronic struc- 

ure leads to a finite U c for the AF order. The physics of the semi- 

etal to AF transition has engendered a great deal of investigation 

ith numerical methods [46,168–171] , including early studies of a 

ossible intervening spin-liquid phase [172] that does not appear 

o occur [173] . Ref. [166] revisited this issue and studied the semi- 

etal/AF transition of Dirac fermions on a honeycomb lattice using 

CA, with clear indications of a transition to an AFM state at a U c 

n agreement with the most accurate value U c = 3 . 87 t found in the 

iterature [173] . 

The results above demonstrate that a PCA can resolve 

emperature- and model-parameter-driven (quantum) phase tran- 

itions. However, many quantum materials can be doped, and the 

ermionic carrier density often functions as another tuning param- 

ter. With this in mind, we now examine simulations of the Hub- 

ard model on a Lieb lattice, the geometry of the CuO 2 planes 

n cuprate superconductors, as a function of carrier concentration. 

he Lieb lattice has a square array of d orbital ‘Cu’ sites that are 

ridged by intervening p orbital ‘O’ sites, as shown in the inset of 

ig. 16 (a). Each unit cell thus has three orbitals and the filling cor- 

esponding to the AF parent compounds of the cuprates is ρ = 1 / 3 

ole per unit cell. The model is most commonly studied with U d > 

 p , and on-site energy for the oxygen sites is higher (for holes) 

han for the copper sites, as is the case for cuprates [56,174,175] . 

Fig. 16 shows the density-tuned transition through AF order 

n the Lieb lattice. A somewhat different perspective here is ob- 

ained by showing the distribution of principal components both 

n the SDW phase ρ = 1 / 3 (panel c), as well as below ρ < 1 / 3

panel b) and panel ρ > 1 / 3 (panel d). The tightness of the clus- 

er at ρ = 1 / 3 , in contrast to the bracketing densities, indicates the 
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Fig. 16. PCA for the antiferromagnetic transition on a Lieb lattice. The geometry 

consisted of 10 × 10 unit cells, each with three orbitals, as shown in the inset of 

panel (a). The inverse temperature βt = 20 . The on-site U d = 4 t for the ‘copper 

sites’ and U p = 0 for the ‘oxygen sites’. The charge-transfer energy εpd = 2 t . Here the 

first eigenvector, shown in panel f, contains precise information about the nature 

of the ordered phase. The copper atoms (red circles) hold the AF order, whereas 

the oxygen sites (blue circles) do not participate. The convention for the density is 

such that ρ = 1 / 3 corresponds to one hole per (three sites) unit cell. Adapted from 

Ref. [166] with minor modifications. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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Fig. 17. PCA for the attractive Hubbard model on a square lattice with U = −4 t and 

ρ = 0 . 80 . Panels a,b are for a 12 × 12 lattice and panels c–f for a 16 × 16 lattice. 

In the latter case, the distribution has been separated into three plots. The critical 

value of the inverse temperature is βc ∼ 7 . 5 , but the analysis provides no signal 

there. Adapted from Ref. [166] with minor modifications. 
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3 Both quantities require measuring physical observables, and would be impacted 

by the fermion sign if this approach is applied to models with a sign problem. 
ature of the transition is disorder-order-disorder. This is a dis- 

inction from the previous cases where the critical point separates 

isordered from ordered regions. Another difference is the relative 

loseness of the first principal component to the succeeding ones 

 it is only larger by a factor of two. 

Application of PCA to Hubbard models has a sign problem in 

ases where the problem is not particle-hole symmetric [57,59] , 

s is the case for the Lieb lattice [174] . Thus, the results of 

ig. 16 carry the additional implication that ML methods have 

ome potential to address phase transitions in a quantum model, 

vading the sign problem. This aspect is an especially intriguing 

ossibility since the ML analysis does not involve the measure- 

ent of the noisy ratio of two quantities that are both exponen- 

ially small. Other approaches investigating novel observables that 

void the sign problem have recently been proposed [64,176] . 

Our final example of using ML to examine fermionic quantum 

hase transitions concerns the transition into a superconducting 

hase in the attractive Hubbard model when doped away from 

alf-filling. This transition has long been a challenging problem in 

he field because the transition is in the Kosterlitz–Thouless uni- 

ersality class; the nature of the ordered phase, where the corre- 

ation functions decay as power laws, is more delicate than with 

 “true” long-range order. Larger lattices are required to treat such 

hases accurately, and it is fair to say they are much less under- 

tood than the phase transitions discussed above. Indeed, quantita- 
13 
ive values of superconducting T c in the attractive Hubbard model 

ave varied by 20–30% in various QMC studies [165,177–182] . 

In Fig. 17 , we observe that the same difficulty is encountered in 

 PCA. For one, the eigenvalue distribution [ Fig. 17 (a)] does not ex- 

ibit a gap but instead decays slowly. Similarly, the principal com- 

onent distribution [ Fig. 17 (b)] shows no clear signal as the inverse 

emperature β is tuned through βc ∼ 7 . 5 , where the superconduc- 

ivity is believed to onset. In an attempt to discern the transition, 

nalyses using input feature vectors containing the entire space- 

ime lattice (panels a & b) or just a single time slice (panels c–f) 

ave been attempted with no success. 

Figs. 18 and 19 present further effort s to discern the super- 

onducting transition in the attractive Hubbard model. In the for- 

er, rather than providing the HS field configurations as the vec- 

ors S γ , the authors instead use the equal time Greens function 

 

σ
i j 

= 〈 c 
iσ

c 
† 
jσ

〉 . In the latter, they used the equal time pair correla-

ion function, P i j = 〈 �
i 
�† 

j 
〉 with �i = c 

i ↑ c i ↑ . 
3 Only the second ap-

roach seems capable of capturing the transition. For example, the 

verage of the first principal component in Fig. 19 (c) has a maxi- 

um slope near the known value of βc . 

. AI-assisted phase discovery in strongly correlated systems 

The establishment of ML methods as viable tools for catego- 

izing quantum data led scientists to utilize them for phase de- 

ection and physics discovery. Here, we highlight two studies in 
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Fig. 18. PCA for the attractive Hubbard model using vectors comprised of the equal 

time Greens function. Although there is a gap in the eigenspectrum and an evolu- 

tion of the scatter plot of the first two principal components, there is no evidence 

of the transition. As might be expected, the average of the first principal compo- 

nent tracks the kinetic energy (panel d) rather than the pairing order parameter. 

Adapted from Ref. [166] with minor modifications. 

Fig. 19. PCA for the attractive Hubbard model using vectors comprised of the equal 

time pair correlation function. Here, finally, there is some indication of the super- 

conducting transition. Adapted from Ref. [166] with minor modifications. 
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Fig. 20. Top Left: Measured 440 pixel × 440 pixel STM image of Bi 2 Sr 2 CaCu 2 O 8 at 

8.5% hole doping. Top Right: The d-symmetry Fourier transform of the image on the 

left. Bottom: Average output category of 81 ANNs. The numbers on top show the 

wavelength of each electronic ordering category in units of the lattice spacing. Red 

and yellow indicate the outputs for two different orientations of the input image, 

90 ◦ rotated relative to each other. Image reproduced from Ref. [183] . (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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hich experimental data were analyzed by AI to yield insight into 

he physics of strongly correlated systems. In the first study, Zhang 

t al. [183] used an ensemble of fully-connected neural networks 

o identify the dominant pattern in an archive of real scanning tun- 

eling microscopy (STM) images of lightly-doped cuprates. These 

etworks were trained on synthetic STM images created using the- 

retical models to represent four different categories of electronic 

rdering patterns. The authors showed that the ANNs could dis- 

over a lattice-commensurate, four-unit-cell periodic, translational- 

ymmetry-breaking phase in the noisy experimental data. More- 

ver, they established the unidirectionality of the ordering pattern 

nd how its dominance depends on the electron energy. Fig. 20 

hows a sample STM image analyzed by the ensemble of ANNs 

top left panel). The linear Fourier transform (top right panel) re- 

ects the level of noise and complexity that exists in the image 

nd does not point to any particularly dominant q vector. On the 

ther hand, the output of the ANNs (lower panel) demonstrates 
14 
hat the second category with a wavelength four times the lattice 

pacing is clearly dominant. 

Linear Fourier transforms have been traditionally used for 

ecades to analyze such images. The key to the success of ANNs 

n this study was the existence of non-linearities, allowing them to 

ook beyond what a Fourier transform can provide. 

The second study [184] aimed for the CNNs to have an unbi- 

sed take (not guided by any theory) on the ordering patterns and 

ossible correlations of strongly correlated fermions in optical lat- 

ices. Following an early application of CNNs to help decide which 

ne of two theories better describes patterns in snapshots taken in 

he pseudogap regime of the Hubbard model using quantum gas 

icroscopy [185] , Khatami et al. [184] designed a simple CNN ar- 

hitecture and showed that patterns formed in filters of a CNN, 

rained to distinguish snapshots taken at low temperatures from 

hose taken at high temperatures, can reflect the correlations fa- 

ored by the systems as the temperature is lowered. Fig. 21 shows 

n example of the CNN used in their study. Having one/few filter(s) 

n the usually only convolutional layer directly connected to the 

nput (physical snapshots of fermions) allows the scheme to work. 

he idea is that since there are no correlations at high tempera- 

ures when the system is entirely unordered, the filter will likely 

ick up patterns formed in the snapshots of the system at low 

emperatures to carry out the categorization accurately. By study- 

ng the trained filters, one can then infer relevant electronic corre- 

ations. 

Two types of experimental snapshots were available at the 

ime, mainly around the strange metal phase of the Hubbard 

odel, and were used in this study: (1) Those of a single species 

f fermions and (2) those of the two species together, minus the 

ouble occupations, which would show up as empty sites for tech- 

ical reasons. (2) are often called “singles” snapshots and can also 

e thought of as snapshots of local moments. In addition, theory 

napshots were generated by periodically pausing the DQMC sim- 

lations of the 2D Hubbard model and calculating average site oc- 
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Fig. 21. The main CNN used in Ref. [184] . It has one convolutional layer with one 

filter, followed by other pooling and fully-connected layers. It is trained to distin- 

guish input snapshots of fermions at two extreme temperatures. After the training, 

patterns developed in the filter can correspond to physical correlations in the sys- 

tem at low temperatures. Image reproduced from Ref. [184] . 

Fig. 22. Sample snapshots used in the training of the CNN in Fig. 21 . Shown are 

four from the experiments for densities n = 0 . 97 and n = 0 . 82 at the two extreme 

temperatures available, and two from DQMC for n = 0 . 82 . Image partly reproduced 

from Ref. [184] . 
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Fig. 23. Sample filters after separate training using experimental single-species 

snapshots near half filling. The observed checkerboard patterns point to long-range 

antiferromagnetic correlations in the system at low temperatures. 

Fig. 24. Example of two filters after training using experimental local moment 

snapshots at densities n = 0 . 58 (left) and 0.97 (right). Signatures of nearest- 

neighbor anti-correlation and doublon-hole fluctuations are seen in the correspond- 

ing filters, respectively. Image reproduced from Ref. [184] . 
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upations. The latter leads to non-binary snapshots (non-projective 

easurements), which nevertheless proved useful for theory com- 

arisons. Fig. 22 shows a sample of these snapshots at different 

emperatures. 

Fig. 23 shows a sample of 5-pixel by 5-pixel filters from four 

ifferent CNNs that have been separately trained to distinguish 

ingle-species snapshots at half-filling at two different temper- 

tures of T = 0 . 35 t and 2 . 5 t . The long-range checkerboard pat-

erns in these filters hint at developing antiferromagnetic corre- 

ations at temperatures below T = t . Typical patterns drawn from 

ther training sets using snapshots of local moments are shown 

n Fig. 24 for densities 〈 n 〉 = 0 . 58 and 0.97. They show the anti-

orrelation of nearest-neighbor fermions for a density close to 

uarter-filling as expected and a pattern that can be interpreted as 

ignificant nearest-neighbor doublon-hole fluctuations, which are 

nown to be large near half-filling [186] . In local moment snap- 

hots, empty sites could represent holes or double occupancies. 

Similar results obtained at a density of 0.82, where a strange 

etallic behavior was directly observed through the dynamical 

roperties of the same system [187] . They point to short-range 

ntiferromagnetic correlations when training with single-species 

napshots, and more or less random patterns when training with 

napshots of local moments. Training with theory snapshots leads 

o similar results. To shed some light on density correlations (or 

ore accurately, local moment correlations) that might be specific 

o the strange metal phase, the authors designed a CNN with six 
15 
arger 7-pixel by 7-pixel filters and were able to show that the CNN 

rained at the density of 0.82 can as a whole act as an order pa- 

ameter for the strange metal phase with a signal that decreases as 

ne moves away from this density. They eliminated the density of 

articles as an obvious indicator by subtracting the network signal 

or the real snapshots of local moments from that obtained for the 

ame snapshots but with randomized pixels (fake snapshots). This 

ork demonstrated that by studying the inner workings of neural 

etworks, one could gain unbiased insight into the physics of the 

roblem. 

Until now, this perspective has focused squarely on solving low- 

nergy effective Hamiltonians for strongly correlated materials. 

owever, it is important to keep in mind that the right effective 

odels are not known or are still being debated for many classes 

f models. In this context, an important task is to extract effec- 

ive models from inelastic scattering data by solving the inverse 

cattering problem, where the high-dimensional inelastic neutron 

r X-ray scattering data for a dynamical structure factor S(q , ω) is 

sed to determine the parameters of an effective model. ML meth- 

ds can help with this task by formulating it as a supervised learn- 

ng problem [72,188] . Essentially, one formulates a model with pa- 

ameters θ = [ θ1 , θ2 , . . . , θn ] that can be used to generate a model 

pectra S model (q , ω, θ) . One then adjusts the parameters to mini- 

ize 

2 = || S model (q , ω, θ) − S(q , ω) || 2 , (22) 

here || · || defines a norm [72] . Eq. (22) is minimized using AI 

nd ML-based optimization methods. In this context, autoencoders 

ave been particularly useful for reducing the complexity of the 

ptimization problem [72,188,189] . For this approach to be success- 
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ul, however, one must rapidly generate dynamic structure factors 

or a given candidate model. Therefore, a crucial component here 

s the existence of fast solvers for the direct scattering problem. In 

any cases, this component is the bottleneck; however, methods 

or treating a large class of quantum magnets have recently been 

eveloped that generalize semiclassical Landau–Lifshitz dynamics 

o SU( N) [190–192] . These kinds of solvers have enabled the suc- 

essful extraction of model parameters for Dy 2 Ti 2 O 7 [189] and α- 

uCl 3 [193] from inelastic neutron scattering data. Achieving a sim- 

lar level of success for resonant inelastic X-ray scattering experi- 

ents, with its more complex and challenging cross-section, will 

equire additional work. 

Another popular approach for obtaining model parameters re- 

ies on down-folding ab initio electronic structure calculations onto 

ow-energy target subspaces. These calculations typically project 

he bands near the Fermi level onto a minimal set of maxi- 

ally localized Wannier functions to obtain tight-binding param- 

ters [194] . A set of constrained random phase approximation cal- 

ulations can then be conducted to compute the corresponding in- 

eraction parameters [195,196] . ML and AI methods can also play 

 role here [197] . For example, techniques from these fields have 

een used to construct functionals [198] and accelerate density 

unctional theory simulations [199] . They have also been applied 

owards extracting tight-binding [200] and interaction [201] pa- 

ameters, as well as impurity and defect parameters [202] . These 

ethods thus provide an alternative route towards deriving the ap- 

ropriate effective models for many-body simulations. 

. Accelerated Monte Carlo simulations 

The term “self-learning” Monte Carlo (SLMC) algorithms refers 

o a powerful class of ML–accelerated MCMC methods that have 

een developed and refined in recent years. These methods were 

rst introduced by Liu et al. [76,203] in the context of classical MC 

imulations of the Ising model. Since then, the method has been 

xpanded to a much broader class of correlated electron models, 

ifferent flavors of classical and quantum MC algorithms, and ML 

rameworks [185,204–213] . 

.1. Overview of self-learning Monte Carlo method 

The objective of an SLMC algorithm is to learn an accurate 

roxy function for the transition probabilities between different 

C configurations. In other words, the algorithm learns an effec- 

ive energy E eff such that 

 

−β�E eff ({ X } , { X ′ } ) ≈ P ({ X } → { X 

′ } ) = 

W ({ X 

′ } ) 
W ({ X } ) , 

here W ({ X} ) is the true MC weight of the system for a given

onfiguration { X} (see Section 3 ). 

If the proxy energy E eff ({ X} ) can be evaluated more efficiently 

han W ({ X} ) , then it can be used to quickly evolve the Markov

hain between largely uncorrelated configurations. Most implemen- 

ations to date perform this task through a series of local updates 

n the configuration space, following the standard Metropolis–

astings scheme. Specifically, one sweeps through all sites in con- 

guration space proposing local updates to the MC configuration 

hat are accepted or rejected with a probability estimated by the 

earned effective model 

p l = min 

[
1 , e −β�E eff ({ X } , { X ′ } ) ]. 

fter many sweeps through configuration space, this procedure 

hould produce a new MC configuration { X ′ } that is very far re- 

oved from the starting one. This procedure can thus be viewed 

s a means for constructing non-trivial global updates of the MC 

onfigurations. However, to maintain detailed balance [76] , a final 
16 
cumulative) acceptance step is required where the entire move 

 X} → { X ′ } is accepted with probability 

p c = min 

[
1 , 

W ({ X } ) 
W ({ X 

′ } ) e 
−β�E eff ({ X } , { X ′ } ) 

]
. (23) 

hile this final step requires evaluating the proper MC weights, it 

ccurs infrequently enough that a considerable algorithm speedup 

an often be obtained, assuming p c is not too small. A large p c will 

e achieved when e −β�E eff ({ X } , { X ′ } ) is close to W ( { X ′ } ) /W ( { X} ) . 
To illustrate this procedure, consider an MC simulation of a 

pin-Fermion model, where itinerant fermions are coupled to a 

lassical spin S i [203] 

 = −
∑ 

i, j,σ

t i, j c 
† 
i,σ

c 
j,σ

− J 
∑ 

i,σ,σ ′ 
S i · c † 

i,σ
τσ,σ ′ c i,σ ′ , (24) 

here τ is a vector of Pauli matrices. For a given configuration of 

he classical spins { S i } , Eq. (24) can be diagonalized exactly to ob- 

ain the energy E({ S i } ) , which is an order O (N 

3 ) operation. One

hen samples the classical spin configurations by proposing up- 

ates of S i → S ′ 
i 

at each site such that the total computational cost 

f a full Monte Carlo sweep is O (N 

4 ) . 

In an SLMC implementation, one assumes that the itinerant 

lectrons mediate an effective RKKY-like spin-spin interaction of 

he form 

 eff = J 0 + 

∑ 

〈 i, j〉 n 
J n S i · S j + . . . , (25) 

here J n is the effective coupling between pairs of n th-neighbor 

pins. To determine the coefficients, one fits Eq. (25) to a large set 

f training data obtained using standard MCMC simulations of the 

riginal Hamiltonian. Once trained, the proxy energy provided by 

q. (25) can be evaluated in O (N) operations as opposed to the 

riginal O (N 

3 ) operations that are necessary to evaluate the DQMC 

eterminant ratios in W ({ X ′ } ) / W ({ X} ) . The effective Hamiltonian 

an also be easily extended to include more complicated three- 

nd four-body interactions [76] . One can also enforce specific sym- 

etries into the form of H eff if these are known [209] . 

The efficiency of the SLMC approach depends crucially on the 

ccuracy of the underlying effective model. For example, if the ef- 

ective model is not sufficiently flexible to capture the training data 

atterns, it can be challenging to train an accurate surrogate H eff . 

oreover, a specified effective model’s ability to accurately cap- 

ure the MC weights can depend very strongly on the parameters 

f the full model or the simulation temperature. One might ex- 

ect this limitation to some extent, as different low-energy effec- 

ive models describe different ordered phases. When the effective 

odel cannot describe the true model’s physics, the SLMC algo- 

ithm will attempt to construct updates that the original MCMC 

lgorithm would typically reject. Because of this, the final cumu- 

ative update given Eq. (23) will begin to have a high rejection 

ate. 

In some cases, one can improve the quality of the surrogate 

odel by including longer-range interactions, many-body interac- 

ions, or additional symmetries in the underlying model. However, 

o well-defined procedure exists for systematically deriving the 

orrect effective models. To overcome this shortcoming, several re- 

earch groups have attempted to implement deep learning frame- 

orks where an artificial neural network tries to learn the form of 

he effective model [207,210] . 

.2. Self-learning Monte Carlo for the Holstein model 

To overcome the need to have a priori information about the 

nderlying effective model in SLMC applications, some of the cur- 

ent authors implemented a set of artificial neural networks for 

erforming SLMC simulations of lattice QMC simulations [210] . As 
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Fig. 25. The symmetric functions used to enforce the double-well potential present 

in the Holstein model near half-filling for the case α = −g/ω 

2 
0 = 1 . Adapted from 

Ref. [209] . 
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Fig. 26. A finite-size scaling analysis of the q = (π, π) CDW structure factor 

S(q ) N 
2 γ /ν−2 
x vs T /t . The CDW transition is in the 2D Ising universality class with 

critical exponents γ = 

1 
8 

and ν = 1 . The inset shows the collapse of the data for a 

critical temperature T c = 0 . 244 . Reproduced from Ref. [210] . 

1

t

i

S

n

D

t

s

a

T

m

f

o

i

f

c

L

t

d

s

t

b

t

s

i

n

D

o  

a

w

S

p

f

b

t

c

i

i

i

c

t

b

 proof-of-principle, we applied this approach to simulations of the 

DW transition in the two-dimensional half-filled Holstein model. 

e will, therefore, first give a brief overview of DQMC simulations 

or this challenging model. 

The integral over fields in Eq. (16) is accomplished using MCMC 

ampling; however, two different types of update procedures are 

equired. The first is the standard local updates, where the dis- 

lacements are changed individually at each (i, l) site. This update 

an be performed on a single location with a computational cost 

hat scales like O (N 

2 ) using an efficient Sherman–Morrison updat- 

ng scheme [1] . An entire sweep of single-site updates costs O (N 

3 L )

perations to perform. The second class of updates is so-called 

lock or global updates, where the displacements at all time slices 

re shifted by the same amount in a single update [47] . These up- 

ates are nonlocal in imaginary time and require one to explicitly 

ompute the weights in Eq. (16) . Since this task required evaluat- 

ng a matrix determinant, the nominal cost of performing a block 

pdate at a single site is O (N 

3 ) while an entire sweep costs O (N 

4 ) .

espite their higher computational costs, block updates are needed 

o achieve reasonably short autocorrelation times in simulations of 

he Holstein model. (The same is true for simulations of the Hub- 

ard model whenever Uβ is large [101] ). 

Reference [209] was the first to attempt to conduct SLMC simu- 

ations of the Holstein model. In this approach, the authors defined 

n effective model in the spirit of Eq. (25) but with terms de- 

igned to reflect the known Z 2 ( X → −X) symmetry of the model. 

pecifically, they adopted 

βH eff = J k 
∑ 

i,l 

(X i,l+1 − X i,l ) 
2 (26) 

+ J p 
∑ 

i,l 

(
1 

4 

(X − α) 4 − α2 

2 

(X − α) 2 
)

+ J ′ p 
∑ 

i,l 

(
1 

6 

(X − α) 6 − α2 

4 

(X − α) 4 
)

+ J nn 

∑ 

〈 i, j〉 ,l 

(
X i,l − α

)(
X j,l − α

)
+ J nn 

∑ 

i, 〈 l ,l ′ 〉 

(
X i,l − α

)(
X i,l ′ − α

)
, 

here α = − g 

ω 2 
0 

. The first term reflects the usual kinetic energy of 

he phonon fields, while the fourth and fifth terms reflect nearest- 

eighbor interactions between the lattice fields in both space and 

maginary time. The second and third terms, plotted in Fig. 25 , 

llow for the presence of a double-well potential in the Holstein 

odel, which can become deep in the strong coupling limit. 

Chen et al. [209] used this effective model to study the CDW 

ransition in the half-filled Holstein model for ω 0 = t/ 2 on large 
17
6 × 16 lattices, large enough to perform reliable scaling analysis 

o estimate T CDW 

. The authors also reported a significant reduction 

n the autocorrelation time of the CDW structure factor using the 

LMC method compared to the conventional DQMC algorithm. We 

ote, however, that the authors defined a full MC sweep in the 

QMC case as proposing single-site updates at all spacetime points 

ogether with four block updates at (presumably) randomly cho- 

en sites. In the SLMC case, however, they defined an MC sweep 

s a sweep of local updates followed by a Wolff-cluster update. 

he sampling procedures differ, so it is unclear what the ultimate 

echanisms of the autocorrelation reduction were. 

Li et al. [210] later employed artificial neural networks to per- 

orm SLMC simulations of the Holstein model, where the form 

f the effective Hamiltonian was learned directly from the train- 

ng data. In this case, the authors trained two neural networks: a 

ully connected network to perform local single-site updates and a 

onvolutional neural network to act as a proxy for global moves. 

ike the effective model of Chen et al. [209] , both networks used 

he proposed change in displacement �X i,l (or �X for global up- 

ates) together with local nearest neighbor information about the 

urrounding fields as input features. The networks could thus be 

rained using data generated using cheaper small clusters before 

eing deployed on larger systems. For example, Li et al. trained 

heir networks on 6 × 6 clusters before deploying them on system 

izes up to 16 × 16 . 

Li et al. [210] , benchmarked their method for the challeng- 

ng half-filled model with ω 0 = t/ 2 . They found that the neural 

etworks were able to reproduce the results of the conventional 

QMC algorithm accurately and obtained a thermodynamic value 

f T CDW 

similar to Chen et al. [209] (see Fig. 26 ). Li et al. also ex-

mined the autocorrelation time for their approach. Because they 

ere able to perform both global and local updates within the 

LMC framework, the authors could make more meaningful com- 

arisons with DQMC by defining an MC sweep in the same way 

or each case (a full sweep of single-site updates, followed by a 

lock update performed at every site). In doing so, they found 

hat the SLMC approach produced identical autocorrelation times 

ompared to the conventional algorithm. This result makes intu- 

tive sense. Suppose the SLMC algorithm is accurately reproduc- 

ng the accept/reject steps of the DQMC algorithm. In that case, 

t should produce the same autocorrelations in the Monte Carlo 

onfigurations, provided the SLMC and DQMC algorithms perform 

he same updates. This notion was reinforced by the observed 

ehavior in the cumulative acceptance rates. For the neural net- 
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orks, the cumulative acceptance rate remained near 100%, inde- 

endent of the temperature of the simulation. On the other hand, 

hen et al. [209] obtained cumulative acceptance rates that fell off

apidly as the temperature was lowered. 

Despite these successes near half-filling, it is essential to note 

hat the neural-network-based method has not yet been general- 

zed to the metallic state that appears with doping. This failure 

ccurs even though the networks often accurately reproduce the 

alidation data sets. We speculate that this issue might be related 

o longer-range effective interactions in space or imaginary time 

hat are not captured by the local input features used in the neu- 

al networks. For example, it is possible that no local models like 

q. (26) or Eq. (25) exists for this problem. One possible solu- 

ion would be to develop neural networks that use the entire set 

f auxiliary fields as input features. While costly, modern GPU re- 

ources would make this feasible. Additional research is needed to 

ush this technology further. 

. Outlook and conclusions 

From this short perspective, we hope it is clear that over the 

ast several years, methods in artificial intelligence, machine learn- 

ng, and data science have leaped from novel tools for studying 

lassical phase transitions to providing powerful new means to 

olve quantum many-body problems. Moreover, these methods can 

rovide a pathway forward to solving new and challenging fore- 

ront questions in strongly correlated materials. However, we also 

elieve it is important to take a step back and remind ourselves 

hat there remains work to be done in this area. 

The first issue concerns the ‘value added’. For example, it is 

lear that PCA can capture phase transitions of many interesting 

uantum models of interacting fermions. However, it is important 

o consider whether it (or other ML and AI methods) can do so 

ore effectively than data analysis tools that have been refined over 

he last several decades centered on sophisticated finite-size scal- 

ng (FSS) of appropriate correlation functions. That is, in what ways 

o ML and AI ‘revolutionize’ the field of computational quantum 

any-body physics? In the examples noted above, the characteri- 

ations of the critical points with ML and AI are less precise . Part 

f this is, of course, due to the time frames of the approaches; 

L and AI have not yet matured in these investigations. There is 

oughly an order of magnitude difference in the time frames over 

hich “traditional” and ML approaches have been under develop- 

ent. It seems likely that, given the opportunity, ML will approach 

he accuracy of FSS-based methods, but it is too soon to know if 

hey will surpass them. 

More promising, ML and AI-based methods can provide addi- 

ional information, such as the ordering patterns in experimen- 

al images of fermions or identifying the presence of broken sym- 

etries in MCMC simulations without having to know which ob- 

ervable to measure in advance. This problem is one area where 

hese methods can provide new insights; similarly, one can en- 

ision hybrid approaches where a ML method quick surveys the 

odel phase space to identify promising areas that are then ex- 

anded on using conventional methods. 

We believe that a particularly important set of opportunities 

nvolves deploying ML and AI to attack the bottlenecks of quan- 

um simulations. These include 1) speeding up the generation of 

ndependent samples in regimes of long autocorrelation times, 2) 

dentifying complex intertwined orders, and 3) (possibly) helping 

o mitigate the sign problem. ML applications to address the first 

re perhaps the most mature with the rapid development of the 

LMC method. Nevertheless, SLMC methods have yet to be widely 

dopted by QMC practitioners. This is likely because the approach 

as only been validated on a small subset of problems and model 

arameters and often fails to generalize to other regimes. Addi- 
18 
ional research will be needed to develop robust design and de- 

loyment methods. For example, determining ways to quantify the 

evel of trust in the model proxy’s ability to sample the entire con- 

guration space would be crucial. For example, it is entirely pos- 

ible that the effective model used in an SLMC simulation can in- 

roduce more local minima in the MCMC configuration space that 

ould introduce ergodicity issues. Another promising line of re- 

earch involves the extension of matrix product states and tensor 

etworks using CNNs or restricted Boltzmann machines [214–217] . 

Finally, using ML and AI-methods to solve the inverse scatter- 

ng problem, where model parameters are extracted from inelas- 

ic neutron and X-ray scattering data, is a growing and promising 

venue of research. This application, however, urgently needs fast 

ethods for solving the direct scattering problem. Of course, such 

olvers can be AI-accelerated, but other avenues should also be ex- 

lored [104,191,192] . 
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