Quiz 1, Physics 9C, Winter 2016

General Instructions: This quiz is closed book. Only a calculator is allowed. Please show all your work, and give units for all answers and on all graphs. Credit will only be given for complete solutions. The constant \(k \) in Coulomb’s law is \(k = 9 \cdot 10^9 \).

Three point charges lie along a vertical line as shown in the Figure. Find the magnitude and direction of the electric field this combination of charges produces at the point \(P \) on the \(x \) axis. Pay attention to the signs of the charges! If you prefer, you may give your answer in terms of \(\hat{x} \) and \(\hat{y} \) rather than magnitude + direction.

The directions of the 3 electric fields are shown sketched in the figure. Because \(\vec{Q}_1 = \vec{Q}_3 \) and the distances of \(\vec{Q}_1 \) and \(\vec{Q}_3 \) from \(P \) are equal \(|\vec{E}_1| = |\vec{E}_3| \) and it is clear \(\vec{E}_1 + \vec{E}_3 \) will point in the \(-y\) direction. Meanwhile, \(\vec{E}_2 \) is in the \(+x\) direction.

\[
\vec{E}_1 + \vec{E}_3 = -9 \cdot 10^9 \left(7 \cdot 10^{-9}\right) / \left(0.5^2\right) = \frac{3}{5} \hat{y} \text{ to get } y \text{ component}
\]

\[
\vec{E}_2 = 9 \cdot 10^9 \left(4 \cdot 10^{-9}\right) / \left(0.41^2\right) = 2.25 \cdot 10^7 \hat{x} \text{ to get } x \text{ component}
\]

This answer is sufficient.

\[
|\vec{E}_1 + \vec{E}_2 + \vec{E}_3| = 3.77 \cdot 10^7 \text{ N/C}
\]

Direction is \(0.93 \) rad = \(53^\circ \) below \(\hat{x} \) axis

\[
\tan^{-1} \left(\frac{3.02}{2.25} \right)
\]