[1.] If you insert “appropriate” numbers into the London formula for the penetration length, \(\lambda_L^2 = \frac{m}{(ne^2 \mu_0)} \), what sorts of lengths do you get? Assume all the conduction electron density \(n \) is available to form the superfluid, and pick values for \(n \) of a typical metal. The different materials you looked at in Problem Set 1 have different values of \(n \). Is there any rough consistency between the \(\lambda_L \) values you obtain for these different \(n \) and the experimental values for the penetration length?

[2.] In class we discussed the fact that the suppression of \(C(T) \) at low \(T \) from a linear to exponential behavior which occurs as a result of the superconducting transition should be accompanied by an enhancement of \(C(T) \) for some other \(T \) range in order to keep \(S(\infty) = \int_0^\infty dT \frac{C(T)}{T} \) fixed. Sketch \(C(T) \) for the two level system \(E = 0, \Delta \) of Problem Set 1 for \(\Delta = 3 \). Where is the peak? Why is it there? Suppose something happens to the system (the analog of a superconducting transition) which shifts \(\Delta \) from \(\Delta = 3 \) to \(\Delta = 7 \). What happens to \(C(T) \)? Is the suppression of a peak for one range of \(T \) accompanied by a reappearance elsewhere? How does \(\int_0^\infty dT \frac{C(T)}{T} \) differ for the two values \(\Delta = 3 \) and \(\Delta = 7 \)?

[3.] In class we saw that the tight binding Hamiltonian describing hopping of electrons between near neighbor sites on a one dimensional lattice in real space,

\[
H = -t \sum_l (c_{l+1}^\dagger c_l + c_l^\dagger c_{l+1}),
\]

could be transformed to momentum space,

\[
H = \sum_k \epsilon(k) c_k^\dagger c_k,
\]

where the “energy band” \(\epsilon(k) = -2tcos(k) \).

Do the same transcription to momentum space for a two dimensional square lattice with near neighbor hopping. What is \(\epsilon(k_x, k_y) \)? What happens if there is an additional next near neighbor hopping \(t' \) across the diagonal of a square? (You can begin to see how the band structure of a material might be fit by assigning appropriate hoppings of various ranges in a tight binding model.)

[4.] Draw the Fermi surface (the curve of constant energy \(E \)) for the two dimensional square lattice of the preceding problem. Sketch the result for \(E = -3t, E = -2t, E = -t \), and \(E = 0 \). We will discuss the significance of the \(E = 0 \) case in class. This model, and the special properties of its Fermi surface, are fundamental to many theories of high temperature superconductors, as we shall discuss in several weeks.