PROBLEM SET 3
Physics 215C- Quantum Mechanics, SPRING 2008

(Due Wednesday, April 30.)

1. (Shankar Exercise 19.3.2) Show that if \(V(r) = -V_0 \theta(r_0 - r) \),

\[
\frac{d\sigma}{d\Omega} = 4r_0^2 \left(\frac{\mu V_0 r_0^2}{\hbar^2} \right)^2 \frac{(\sin qr_0 - qr_0 \cos qr_0)^2}{(qr_0)^6}.
\]

Show that as \(kr_0 \to \infty \) the scattering becomes isotropic and,

\[
\sigma \approx \frac{16\pi r_0^2}{9} \left(\frac{\mu V_0 r_0^2}{\hbar^2} \right)^2.
\]

(Here and in problem 2, recall that for elastic scattering the magnitude of the incoming and outgoing momenta \(k \) is related to the magnitude of the momentum exchanged \(q \) by \(q^2 = 2k^2(1 - \cos \theta) \).)

2. (Shankar 19.3.3) Show that for the Gaussian potential, \(V(r) = V_0 e^{-r^2/r_0^2} \),

\[
\frac{d\sigma}{d\Omega} = \frac{\pi r_0^2}{4} \left(\frac{\mu V_0 r_0^2}{\hbar^2} \right)^2 e^{-q^2r^2/2}
\]

\[
\sigma = \frac{\pi^2}{2k^2} \left(\frac{\mu V_0 r_0^2}{\hbar^2} \right)^2 (1 - e^{-2k^2r_0^2}).
\]

Hint: Since \(q^2 = 2k^2(1 - \cos \theta) \), we have \(d(\cos \theta) = -d(q^2)/2k^2 \).