Assignment Five (part A), Due Friday, May 26, 5:00 pm.

[1.] Compute the scattering cross section from a small dielectric sphere (radius $a \ll \lambda$).

[2.] Compute the scattering cross section from a small, highly conducting sphere. Here you need to consider the fields due to both the induced electric and magnetic dipoles.

[3.] A Lorentz transformation from Frame S to Frame S' is described by the rapidity parameter θ where $\cosh \theta = \gamma = 1/\sqrt{1 - \beta^2}$ and $\beta = v/c$. A second, parallel, Lorentz transformation from Frame S' to Frame S'' is done along the same axis and is described by rapidity parameter θ'. How is the rapidity parameter θ'' for the Lorentz transformation from Frame S to Frame S'' related to θ and θ'?