Note 1: Only one lab this week!

Note 2: No class Tuesday!

Due date/time Saturday, March 11, 9 pm.

[HW8-1] Make a second version of the program jacobi_test so that rather than reading the matrix in, the matrix is set up in the code itself. For a small matrix you could just define each element. For example, replace the read statements from jacobi_test with these lines:

```c
A[0][0]=2.0;
A[0][1]=3.0;
A[0][2]=0.0;
A[1][0]=3.0;
A[1][1]=2.0;
A[1][2]=0.0;
A[2][0]=0.0;
A[2][1]=0.0;
A[2][2]=7.0;
```

and reproduce the results of [HW7-2].

[HW8-2] For a big matrix you will not want to define each matrix element individually as above in HW8-1. Instead, make a third version of the program jacobi_test which uses a loop to set up the dynamical matrix (see notes on coupled-mass-spring systems) for a system of \(N \) masses. Write your code so that it asks you to enter the number of masses \(N \) and the spring constant \(k \). Note that you will have to be careful with the first and last rows of the matrix since they are different from the others.

[HW8-3] Are the eigenvalues that jacobi prints out sorted, e.g. from lowest to highest? If not, write a code in python or C to sort the eigenvalues.

[HW8-4] Run your code from HW8-2 for \(k = 3 \) and \(N = 32 \). Make a plot of the sorted eigenvalues. Do the same for \(k = 3 \) and \(N = 64 \) and \(k = 3 \) and \(N = 128 \). Comment on how the plot is changing with \(N \). Do you recognize the function you are getting? (We will talk about it on Thursday.)