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When you flip a coin to decide an issue, you assume that the coin will not
land on its side and, perhaps less consciously, that the coin is flipped end
over end. What happens if those assumptions are relaxed?
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Why is the outcome of a coin toss random? That is, why
is the probability of heads 1/2 for a fair coin? Since the coin toss
is a physical phenomenon governed by Newtonian mechanics,
the question requires one to link probability and physics via a
mathematical and statistical description of the coin’s motion.
However, that is not typically how one approaches the ques-
tion. An empirical approach based on repeated experiments
might suggest that the result is approximately correct. Another
route is based on symmetry; since a coin of zero thickness can
land on either of two equivalent faces, the probabilities for
each must be the same. But such is clearly not always true. For
example, a coin that does not flip even once will end up the
same way it started. And even if it flips, it might not do so fre-
quently; instead, it could wobble like a Frisbee and thus still
be biased to land with its starting side up.

Randomness defined
The considerations noted above raise a fundamental issue in
probability, termed Bertrand’s paradox. The idea is that in a
random process, probabilities are ill-defined unless one spec-
ifies the nature of the process that leads to the random vari-
able. To illustrate the principle in the context of a coin toss,
we pose the following question: How thick should a coin be
to have a 1/3 chance of landing on edge? John von Neumann
is said to have solved the problem instantly on hearing of it,
giving 0.354 for the aspect ratio (thickness divided by 
diameter)—a three-decimal approximation of 1/(2√2‾). 

But how did he answer the question? Presumably, he
 assumed that all possible orientations of the coin are equally
likely. Then the question boils down to asking what the thick-
ness of the coin should be so that the areas of its sides and
the faces are equal when projected onto the circumscribing
sphere that characterizes the possible orientations; figure 1a
shows the geometry. But von Neumann’s mathematically
plausible interpretation is impossible for a real tossed coin,
which must conserve angular momentum and thus cannot
explore all possible orientations. For example, the possible
orientations of a coin spun end over end about a diameter are
limited to a circle, not a sphere. Consequently, the condition
of fairness leads to a different answer, as shown in figure 1b.
Clearly, the process underlying the generation of a random
variable matters.

Get physical
Endowing probability with an underlying physical basis is a
natural way to build in a mechanism for randomness. The
approach has antecedents going back to Pierre Simon
Laplace and more directly to Henri Poincaré, who analyzed
the game of roulette. Poincaré addressed the question of how
small variations in initial conditions and the physics of colli-
sions determine the game’s probabilistic outcomes. Later
Eberhard Hopf showed how the nearly constant observed
frequencies of an event—frequencies consistent with statisti-
cal inference—can naturally arise from the underlying 
physical processes. 
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Figure 1. Bertrand’s paradox and the 
toss of a thick coin. The question “What is
the aspect ratio ξ—the ratio of height to
diameter—for a fair, thick coin?” can lead
to different answers depending on the
 underlying assumptions associated with
the mechanism that leads to the genera-
tion of possible outcomes. (a) If the coin
can assume all possible orientations in
three-dimensional space with equal prob-
ability, the probability of heads is Ωs/4π,
the ratio of the solid angle Ωs subtended
by the head face of the coin to the total
solid angle of the circumscribing sphere.
For a fair coin, Ωs = 4π/3 = 2π(1 − cos θ).
Given that cos θ = ξ/(1 + ξ2)1/2, ξ = 1/(2√2‾).

(b) For the dynamical case of a coin flipped end over end the probability of heads changes since the geometry of orientation space
changes. Here, the probability of heads is s/2πr, the ratio of the arc length s subtended by the heads face and the circumference of
the circle. For a fair three-sided coin, s = 2πr/3 and so ξ = 1/√3‾.
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Exactly how physics and probability come together in
the coin-toss problem was analyzed by Joseph Keller, who
studied a coin of zero thickness that spins end over end with-
out air resistance and lands without bouncing. Keller proved
mathematically that the idealized coin becomes fair only in
the limit of infinite vertical and angular velocity. His elegant
argument is summarized in the caption for figure 2a.

Get real, get thick
Real coins spin in three dimensions and have finite thickness.
Building on Keller’s work, Persi Diaconis, Susan Holmes, and
Richard Montgomery analyzed the three-dimensional dy-
namics of a spinning, tumbling rigid body as applied to coins
with zero thickness but arbitrary angular momentum M.
Conservation of angular momentum implies that the vector
normal to the heads face of the coin precesses, and allowed
the three researchers to derive simple explicit formulas for
the probability distribution of heads and tails in the limit of
large spin and speed. They predicted and experimentally
verified that a vigorously flipped coin is biased by its initial
state and is truly fair only when it spins end over end—in
other words, only when it follows the Keller flip.

Adding a finite thickness to the coin allowed us to revisit
the question of a fair three-sided coin in a dynamical setting.
As expected, the normal vector precesses around M, as illus-
trated in figure 2b. A simple analysis essentially following
that of Diaconis and company enabled us to calculate the
probability of heads as a function of the aspect ratio of the
coin and the angle between M and the initial orientation of
the normal vector. We found that vigorously tossed coins are
biased to come up as they have started unless flipped end
over end, and we verified that a fair three-sided coin should
have an aspect ratio of 1/√3‾. 

Our experiments with thick coins that are spun vigor-
ously and allowed to land inelastically confirm our predic-
tion for the geometry of a fair coin. The phase space of initial
conditions in this case is decomposed into regions shown in

figure 2c and tiled by the three possibilities of heads, tails,
and sides; the sides regions occur twice as often as those for
heads and tails, but they have only half the area.

Clearly, one could add more physical realism and fun to
a description of the coin toss by accounting for fluid resis -
tance, bouncing, rolling, and so forth. For example, the effect
of fluid resistance is relevant for the parlor game of dropping
a coin toward a target at the bottom of a water-filled jar, and
it increases the complexity of the problem enormously. The
rolling of a polygonal object such as a pencil provides a sim-
ple model for the dynamics of bouncing and has interesting
connections to the physics of footfall in robots. Many riches
remain to be mined by the study of coin tosses and other
“simple” mechanical games of chance. And there may be lit-
eral riches too. Tom Stoppard’s play Rosencrantz and Guilden-
stern Are Dead gets off to an incredible start when Rosen-
crantz wins 92 bets in a row by wagering on heads. But
learning how to toss a coin so that it looks like it is flipping
even as it only wobbles can make the feat a reality.
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Figure 2. Geometry, dynamics, and probability in a coin toss. (a) In 1986 Joseph Keller analyzed the end-over-end spinning of 
a zero-thickness coin launched heads up with spin ω and vertical speed u that lands without bouncing. The phase space of initial
conditions for ω and u (scaled by the gravitational acceleration g) is tiled into heads (blue) and tails (red). The hyperbolas bounding
the tiles satisfy the equations ω = (2n ±1/2) • πg/2u, with n = 0, 1, 2, . . . , which follow from the solution of the equations of motion.
As ω and u/g become large, any disk representing a probability distribution of initial conditions is very finely tiled by heads and tails
regions that occupy a fixed, equal fraction of the disk. Thus vigorously spinning coins show no bias, and the probabilities for heads
and tails become equal. (b) For a spinning, precessing coin whose heads face has a normal vector N, conservation of angular
 momentum M dictates that N precesses about M, sweeping out a circle on the circumscribing sphere. Only when N and M are
 perpendicular can the coin be fair as discussed in figure 1b. (c) For a fair thick coin, the hyperbolas analogous to those given in
panel a separate the phase space into regions of heads (purple), sides (gray), and tails (pink). As ω and u/g become large, any disk
representing a probability distribution of initial conditions is tiled finely and equally, now by regions associated with heads, tails,
and sides.


