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The phaseless auxiliary-field quantum Monte Carlo �AF QMC� method �S. Zhang and H. Krakauer, Phys.
Rev. Lett. 90, 136401 �2003�� is used to carry out a systematic study of the dissociation and ionization energies
of second-row group 3A–7A atoms and dimers: Al, Si, P, S, and Cl. In addition, the P2 dimer is compared to
the third-row As2 dimer, which is also triply bonded. This method projects the many-body ground state by
means of importance-sampled random walks in the space of Slater determinants. The Monte Carlo phase
problem, due to the electron-electron Coulomb interaction, is controlled via the phaseless approximation, with
a trial wave function ��T�. As in previous calculations, a mean-field single Slater determinant is used as ��T�.
The method is formulated in the Hilbert space defined by any chosen one-particle basis. The present calcula-
tions use a plane wave basis under periodic boundary conditions with norm-conserving pseudopotentials.
Computational details of the plane wave AF QMC method are presented. The isolated systems chosen here
allow a systematic study of the various algorithmic issues. We show the accuracy of the plane wave method
and discuss its convergence with respect to parameters such as the supercell size and plane wave cutoff. The
use of standard norm-conserving pseudopotentials in the many-body AF QMC framework is examined.

DOI: 10.1103/PhysRevB.75.245123 PACS number�s�: 71.15.�m, 02.70.Ss, 31.25.�v, 31.15.Ar

I. INTRODUCTION

Achieving accurate solutions of the electronic many-body
Schrödinger equation is a challenging problem for calcula-
tions of the properties of real materials. For many systems,
density functional theory �DFT�, in a variety of approxima-
tions, has been applied with great success. In DFT, the many-
body interactions are replaced by a single particle interacting
with the mean field generated by the other particles, similar
in spirit to the Hartree-Fock �HF� method. Unfortunately,
these methods have well-known limitations and often fail at
describing the properties of materials with large electron-
electron correlation.

A more accurate approach is the quantum Monte Carlo
�QMC� method,1–4 which has been shown to be among the
most effective methods for many-electron problems. Unlike
other correlated methods, QMC calculation times scale as a
low power of the system size.5 The fixed-node diffusion
Monte Carlo �DMC� approach, which samples the many-
body wave function in real space, has been the most widely
used QMC method in electronic structure calculations.2,3

The recently developed phaseless auxiliary-field quantum
Monte Carlo �AF QMC� method4 is an alternative and
complementary QMC approach, which samples the many-
body wave function in the space of Slater determinants. This
method has several attractive features. The fermionic anti-
symmetry of the wave function is automatically accounted
for, since it is sampled by Slater determinants. This provides
a different route to controlling the sign problem6–8 from
fixed-node DMC and has shown promise in reducing the
dependence of the systematic errors on the trial wave
function.9–11 The orbitals in the Slater determinants are ex-
pressed in terms of a chosen single-particle basis �e.g., plane
waves, Gaussians, etc.�, so AF QMC shares much of the
same computational machinery with DFT and other
independent-particle-type methods. AF QMC can, thus,
straightforwardly incorporate many of the methodological

advances from mean-field methods �such as pseudopotential
and fast Fourier transforms� while systematically improving
on mean-field accuracy.

Using a plane wave basis, tests of the phaseless AF QMC
method for a few simple atoms and molecules4,12 as well as
for the more correlated TiO and MnO molecules9 yielded
excellent results. More systematic applications of the phase-
less AF QMC method to atoms and molecules have been
carried out using Gaussian basis sets. These include all-
electron calculations for first-row systems10 and effective-
core potential calculations in post-d group elements.11 The
results also showed excellent agreement with near-exact
quantum chemistry results and/or experiment.

The plane wave AF QMC method is well adapted for
correlated calculations of extended bulk systems, where
plane-wave-based methods have been the standard choice in
traditional electronic structure calculations. It is, therefore,
important to systematically study its algorithmic issues and
to characterize its performance. In this paper, we use the
plane wave phaseless AF QMC method to carry out a sys-
tematic study of the dissociation and ionization energies of
second-row atoms and dimers in groups 3A–7A, namely, Al,
Si, P, S, and Cl. The interesting case of the triply bonded P2
dimer is also compared to the third-row As2 dimer. The prin-
cipal goal of this study is to further benchmark the AF QMC
method across more systems and across different basis sets
and to compare the results with those from other methods
and experiment. While the use of localized basis sets, such as
Gaussians, is generally more efficient for isolated atoms and
molecules, it is straightforward to apply plane wave methods
using periodic boundary conditions and large supercells.
Plane wave methods have several desirable features. A plane
wave basis provides an unbiased representation of the wave
functions, since convergence to the infinite basis limit is con-
trolled by a single parameter, the kinetic-energy cutoff Ecut.
Plane waves are algorithmically simple to implement and
operations with plane waves can be made very efficient using
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fast Fourier techniques as in DFT methods. To keep the plane
wave basis size tractable, pseudopotentials must be used to
eliminate the highly localized core electron states and to pro-
duce relatively smooth valence wave functions. The present
choice of isolated atomic and molecular systems permits di-
rect comparisons with Gaussian-based AF QMC and with
well-established quantum chemistry all-electron and pseudo-
potential calculations.

The remainder of this paper is organized as follows. In
Sec. II, we describe computational details of the phaseless
AF QMC method in the plane wave–pseudopotential frame-
work. In Sec. III, we discuss calculation parameters, such as
supercell �simulation cell� size, cutoff energy, and AF QMC
time step size, and the algorithm’s convergence behavior
with respect to these parameters. Section IV presents the
calculated dissociation and ionization energies and compari-
sons with other theoretical results and with experiment. In
Sec. V, we discuss systematic errors due to the use of the
phaseless approximation and use of norm-conserving
pseudopotentials. We then conclude with some general re-
marks in Sec. VI.

II. PLANE WAVE AUXILIARY-FIELD QUANTUM MONTE
CARLO METHOD: COMPUTATIONAL DETAILS

A. Hamiltonian

It is convenient to express, within the Born-Oppenheimer
approximation, the electronic Hamiltonian in second quan-
tized form in terms of a chosen orthonormal one-particle
basis

Ĥ = �
ij

M

Hij
�1�ci

†cj +
1

2�
ijkl

M

Hijkl
�2� ci

†cj
†clck + VII, �1�

where M is the number of basis functions, ci
† and ci are the

corresponding creation and annihilation operators, and the
electron spins have been subsumed in the summations. Hij

�1�

and Hijkl
�2� are the one- and two-body matrix elements, and VII

is the classical Coulomb interaction of the point ions.13

Atomic units are used throughout this paper. We use periodic
boundary conditions �i.e., �-point calculations� and a plane
wave basis

�r�G� 	 �r�cG
† �0� =

1

�

exp�iG · r� , �2�

where � is the volume of the simulation cell and G is a
reciprocal lattice vector. As in plane-wave-based density
functional calculations, the number of plane waves M in the
basis is determined by G2 /2�Ecut, where Ecut is the kinetic-
energy cutoff.

The one-body operators in the Hamiltonian include the
kinetic energy,

K̂ =
1

2�
G

G2cG
† cG, �3�

and nonlocal pseudopotential, which describes the electron-
ion interaction

V̂ei = �
G,G�

VL�G − G��cG
† cG� + �

G,G�

VNL�G,G��cG
† cG�, �4�

where VL�G−G�� and VNL�G ,G�� are the matrix elements of
local and nonlocal parts of the pseudopotential, respectively.
It is convenient to rewrite the local part of the pseudopoten-
tial and to define following quantities:

V̂ei = V̂ei,L + V̂ei,NL + NVL�0� , �5a�

V̂ei,L =
1

2 �
Q�0

VL�Q���̂�Q� + �̂†�Q�� , �5b�

V̂ei,NL = �
G,G�

VNL�G,G��cG
† cG�, �5c�

where N is the number of electrons, and the one-body density
operator �̂�Q� in this equation is given by

�̂�Q� 	 �
G,�

cG+Q,�
† cG,���Ecut −

�G + Q�2

2
� , �6�

where the step function ensures that �G+Q� lies within the
plane wave basis, and the summation over electron spins
��=1,2� has been made explicit.

The electron-electron interaction is given by

V̂ee =
1

2
N	 +

1

2�
�
ijkl

�
4


�Gi − Gk�2
�Gi−Gk,Gl−Gj

��i,�k
��j,�l

ci
†cj

†clck.

�7�

The primed summation indicates that the Gi=Gk singular
term is excluded, due to charge neutrality. The first term in
this equation is a constant due to the self-interaction of an
electron with its periodic images. It depends only on the
number of electrons in the simulation cell and the Bravais
lattice associated with the periodic boundary conditions. The
standard Ewald expression for 	 is given by14

	 =
1

�
�

G�0

exp�− 
2G2/�2�

G2 −




�2�
+ �

R�0

erfc��R�
R

−
2�




, �8�

where R is a direct lattice vector and 	 is independent of the
Ewald constant �, which only controls the relative conver-
gence rates of the direct and reciprocal space summations.
For the discussion below, we rewrite the two-body contribu-
tion in Eq. �7�:

V̂ee =
1

2
N	 +

1

2�
�

Q�0

4


Q2 �̂†�Q��̂�Q�

−
1

2�
�
�

�
G,G�

4


�G − G��2
cG,�

† cG,�. �9�

The third term in Eq. �9� is a sum of diagonal one-body
operators arising from the anticommutation of the fermion
creation and destruction operators.

Finally, we can regroup the contributions to the Hamil-
tonian into constant, one-body, and two-body parts,

Ĥ = H�0� + Ĥ�1� + Ĥ�2�, �10�
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where

H�0� =
1

2
N	 + VII + NVL�0� , �11a�

Ĥ�1� = K̂ + V̂ei,L + V̂ei,NL −
1

2�
�
�

�
G,G�

4


�G − G��2
cG,�

† cG,�,

�11b�

Ĥ�2� =
1

2�
�

Q�0

4


Q2 �̂†�Q��̂�Q� . �11c�

It is convenient to express the two-body part as a qua-
dratic form of one-body operators �this can always be done,
and such forms are not unique�. We use the identity �̂�−Q�
= �̂†�Q� to write

Ĥ�2� = �
Q�0




�Q2 ��̂�Q��̂†�Q� + �̂†�Q��̂�Q�� . �12�

Defining Hermitian operators Â�Q� and B̂�Q� as

Â�Q� 	
 2


�Q2 ��̂�Q� + �̂†�Q�� , �13a�

B̂�Q� 	 i
 2


�Q2 ��̂�Q� − �̂†�Q�� , �13b�

the two-body contribution becomes a simple sum of qua-
dratic operators,

Ĥ�2� =
1

4 �
Q�0

�Â2�Q� + B̂2�Q�� . �14�

�Q→−Q� symmetry can be used in Eq. �14� to reduce the
number of terms by a factor of 2.

B. Ground-state projection and the Hubbard-Stratonovich
transformation

The ground state of Ĥ��0�=E0��0� is obtained by
imaginary-time projection from a trial wave function ��T�

lim
n→

�e−���Ĥ−E0��n��T� = ��0� , �15�

provided ��T ��0��0. In the present calculations, ��T� is a
single Slater determinant obtained from a mean-field calcu-
lation. Expressing the imaginary-time projection in terms of
the small discrete time step �� facilitates the separation of
the one- and two-body terms, using the short-time Trotter-
Suzuki decomposition15,16

e−��Ĥ = e−�1/2���Ĥ�1�
e−��Ĥ�2�

e−�1/2���Ĥ�1�
+ O���3� . �16�

The application of the one-body propagator e−�1/2���Ĥ�1�
on a

Slater determinant ��� simply yields another Slater determi-

nant: ����=e−�1/2���Ĥ�1�
���. The two-body propagator is ex-

pressed as an integral of one-body propagators using the
Hubbard-Stratonovich transformation17,18

exp�−
1

2
���

i

�ib̂i
2� = ��

i

d�i


2

�

�exp��
i
�−

1

2
�i

2 + �i

− ���ib̂i��

�17�

for any one-body operators �b̂i�. Thus we have

e−��Ĥ�2�
= � 1


2

�dim���  d� e−�1/2��·�e
���·v̂, �18�

where we introduce a vector �	��i�, whose dimensionality,
dim���, is the number of all possible Q vectors satisfying
Q=G−G� for two arbitrary wave vectors G and G� in the

plane wave basis. The operators v̂	�
−�ib̂i� are given by

the iÂ�Q� or iB̂�Q� one-body operators, since all the �i=1.
In the original formulations of the AF QMC method,19,20

the many-dimensional integral over the auxiliary fields � in
Eq. �18� is evaluated by standard Metropolis or heat-bath
algorithms. We instead apply an importance-sampling
transformation4,21,22 to turn the projection into a branching
random walk in an overcomplete Slater determinant space.
The importance sampling helps guide the random walks ac-
cording to the projected overlap with the trial wave function.
More significantly, it allows the imposition of a constraint to
control the phase problem.

A phase problem arises for a general repulsive two-body
interaction, because the �i cannot be made all negative. In
other words, not all components of the operator v̂ can be
made real. �Although this is, in principle, possible by an
overall shift to the potential20 or by introducing many more
auxiliary fields, they both cause large fluctuations.4,23� As the
random walk proceeds, the projection in Eq. �18�

���� ← exp�
��� · v̂���� �19�

by a complex v̂ causes the orbitals in the Slater determinants
��� to become complex. For large imaginary projection
times, the phase of each ��� becomes random, and the sto-
chastic representation of the ground state ��0� becomes
dominated by noise. This leads to the phase problem and the
divergence of the fluctuations. The phase problem is of the
same origin as the sign problem that occurs when the one-
body operators v̂ are real, but is more severe because, instead
of +��� and −��� symmetries,7,21 there is now an infinite set
�ei���� ,�� �0,2
��, among which the Monte Carlo sampling
cannot distinguish.

The phaseless AF QMC method4 used in this paper con-
trols the phase and/or sign problem in an approximate man-
ner using a trial wave function. The method uses a complex
importance function, the overlap ��T ���, to construct pha-
seless random walkers, ��� / ��T ���, which are invariant un-
der a phase gauge transformation. The resulting two-
dimensional diffusion process in the complex plane of the
overlap ��T ��� is then approximated as a diffusion process
in one dimension. Additional implementation details can be
found in Refs. 4, 10, and 24. The phaseless constraint is
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different from the nodal condition imposed in fixed-node
DMC, since the phaseless constraint confines the random
walk in Slater determinant space according to its overlap
with a trial wave function, which is a global property of ���.
Thus, the phaseless approximation can behave differently
from the fixed-node approximation in DMC.

Finally, we describe the use of fast Fourier transform
�FFT� with a plane wave basis to efficiently implement the
random walk projection given by Eqs. �13a�, �14�, �18�, and
�19�. For example,

exp��
Q

��

Q2 ��Q��̂�Q�����

� �
n=0

nmax 1

n!
�
��

Q2 ��Q��̂�Q��n

��� . �20�

Terms in the series can be evaluated as an iterative FFT,
since �̂�Q���� is just a convolution. For typical values of ��,
we find that nmax�4 accurately reproduces the propagator.

C. Ground-state mixed estimator

The ground-state energy E0 can then be obtained by the
mixed estimator

E0 =
��T�Ĥ��0�
��T��0�

= lim
�→

��T�Ĥe−�Ĥ��T�

��T�e−�Ĥ��T�
, �21�

which is evaluated periodically from the ensemble of Slater
determinants generated in the course of the random walks. In
the phaseless AF QMC method, an importance-sampling
transformation4 leads to a stochastic representation of the
ground-state wave function in the form of

��0� = �
�

w�

���
��T���

. �22�

This means that the mixed estimate for the energy is given
by

E0
MC =

�
�

w�EL���

�
�

w�

, �23�

where the local energy is defined as

EL��� 	
��T�Ĥ���
��T���

. �24�

It is important to note that the phaseless AF QMC mixed
energy estimator is not variational.4,10,25

Matrix elements of one-body terms in the local energy
�and other similar estimators� can be expressed in terms of
the one-body Green’s functions21,22

Gji = �cj
†ci� 	

��T�cj
†ci���

��T���
. �25�

The Green’s function can be expressed in terms of the one-
particle orbitals in the ��T� and ��� Slater determinants as

follows. A general Slater determinant ��� can be written as

��� 	 �1
†�2

†
¯ �N

† �0� , �26�

where the �i
† creates an electron in the orbital i

�i
† 	 �

j

cj
†� ji, �27�

and j labels the one-particle orthogonal basis functions,
which are plane waves in the present case. The � ji are the
elements of an M �N dimensional matrix �. Each column
of the matrix � represents a single-particle orbital expressed
as a sum of plane waves. It is a well-known result that the
overlap of two Slater determinants is given by the determi-
nant of the overlap matrix of their one-particle orbitals

��T��� = det��T
†�� . �28�

Finally, it can be shown that the Green’s function can be
expressed as26

Gji = ����T
†��−1�T

†�ij . �29�

Hamiltonian matrix elements of two-body terms in the
mixed estimator are expressed in terms of the two-body
Green’s function, which can be written as products of one-
body Green’s functions using the fermion anticommutation
properties,

�ci
†cm

† cncj� 	
��T�ci

†cm
† cncj���

��T���
= GjiGnm − GniGjm. �30�

Rather than directly implementing Eq. �30�, it is more effi-
cient to use fast Fourier transformations to take advantage of
locality in real space. The computer time to calculate the
mixed estimator then scales as N2M log�M�, where N is the
number of electrons and M is the number of plane waves.

D. Trial wave function

The trial wave function ��T� determines the systematic
accuracy of our calculations using the phaseless approxima-
tion. Its quality also affects the statistical precision. We use a
single Slater determinant as the trial wave function, which is
obtained either from a DFT calculation or HF calculation.
The DFT wave functions were generated self-consistently
with ABINIT,27 using a plane wave basis and the local density
approximation �LDA�. The HF wave functions were obtained
from an in-house plane-wave-based Hartree-Fock program.
In both cases, identical setup is used in the independent-
electron calculation as in the corresponding AF QMC
calculations.

E. Pseudopotentials

Norm-conserving pseudopotentials28 are used in the
present calculations. Pseudopotentials are necessary to keep
the basis size tractable by eliminating the highly localized
core states. Pseudopotential transferability is a source of po-
tential errors, however, especially since the pseudopotentials
used here are generated from independent-electron calcula-
tions. Such pseudopotentials are quite routinely employed in
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QMC and other many-body calculations and have proven
very useful. However, their transferability is not nearly as
extensively quantified and studied as in standard
independent-electron calculations. Thus one of our goals
here is to examine the use of such pseudopotentials in the
many-body AF QMC framework.

The pseudopotential has been adapted to take the
Kleinman-Bylander28 �KB� form suitable for plane wave cal-
culations,

V̂ei
�KB��r� = V̂ei,L

�KB��r� + V̂ei,NL
�KB� �r� , �31a�

V̂ei,NL
�KB� �r� = �

l,m

�Vl�lYlm��Vl�lYlm�
��l�Vl��l�

, �31b�

where �l is the pseudo-orbital for the lth angular momentum
component. In our case, we use the neutral atomic reference
state �with a LDA-type Hamiltonian� to generate the pseudo-
orbitals.

To examine the effects of pseudopotentials on the accu-
racy of the AF QMC calculations, we employ two pseudo-
potentials in this study: the optimized LDA-based
pseudopotential29 generated using the OPIUM30 package, and
the HF-based effective-core potential developed by
Ovcharenko, Aspuru-Guzik, and Lester �OAL�.31,32 We will
subsequently refer to these pseudopotentials as OPIUM and
OAL, respectively. The semilocal OAL pseudopotentials
were converted to the fully nonlocal KB form, using the
atomic LDA ground-state wave function as the reference
state. The OAL pseudopotential is not used in molecules,
because it lacks a d projector. An illustration of this point is
given in Table VII.

Table I gives parameters describing the OPIUM pseudopo-
tentials. The second column shows the cutoff energy for each
atomic species. The same cutoff energies are also used in our
calculations with OAL pseudopotentials. �The parameters of
OAL pseudopotentials have been published in Ref. 31. A
cutoff energy of 7.5 hartree was determined for the Al OAL
pseudopotential.� These were tested for convergence with
LDA and then verified with AF QMC calculations.

III. CONVERGENCE STUDIES

To achieve high accuracy and to minimize the computa-
tional cost, one should optimize the calculations with respect

to the number of basis functions, the supercell size, and the
magnitude of the Trotter time step. In this section, we illus-
trate the convergence of our method with respect to these
parameters.

Ionization energies are defined as IP	E�N−1�−E�N� and
IIP	E�N−2�−E�N�, for the singly and doubly ionized at-
oms, respectively, where N is the number of electrons in the
neutral atom. The dissociation energy De is calculated as the
difference between the total energy of the dimer at the ex-
perimental equilibrium bond length and the energy of the
isolated atoms, De	2Eatom−Edimer.

A. Plane wave convergence

Convergence with respect to the plane wave cutoff energy

Ecut depends on both Ĥ�1� and Ĥ�2� in Eq. �11�. The Ĥ�1�

dependence is similar to that in independent-electron calcu-
lations. Convergence requires that Ecut is sufficient for the
“hardness” of the pseudopotential and the electronic density

variations. The Ĥ�2� dependence has to do with the scattering
matrix elements in the two-body interaction. In the uniform

electron gas, for example, Ĥ�1� requires an Ecut given by the

Fermi energy EF �for restricted HF�, while Ĥ�2� will lead to a
finite convergence error for any finite Ecut, which decreases
as Ecut is increased and, for a fixed Ecut /EF, becomes more
pronounced as the electronic density is decreased.

Figure 1 shows the phosphorus atom total energy as a
function of the plane wave cutoff energy Ecut for both AF
QMC and LDA. The calculations were done for a fixed su-
percell size and a pseudopotential whose design cutoff en-
ergy is 18 hartree. In LDA the total energy was converged to
within 5 meV at this cutoff. The energy decreases monotoni-
cally with increasing Ecut in both calculations. We see that
the AF QMC convergence behavior is similar to LDA, indi-

cating that the AF QMC convergence error from Ĥ�2� is much

smaller here than that from Ĥ�1�. Thus, for example, the de-
pendence of Ecut �the basis set cutoff� on the electron-
electron cusp is smaller than its dependence on the density
variation in these calculations. This trend was found to be
typical of the systems studied in this paper with the chosen
pseudopotentials. Table I shows the cutoff energy for each
atomic species. In subsequent calculations for phosphorus,

TABLE I. Optimized Ecut and OPIUM pseudopotential parameters used in the calculations. Each angular
component �l� of the pseudopotential has its own cutoff radius �rc�.

Species
Ecut

�Ha�

rc

�units of a0�

Reference
configurationl=0 l=1 l=2

Si 6.13 2.20 2.20 2.50 �Ne� 3s23p2

P 18.00 1.75 1.75 2.50 �Ne� 3s23p2.53d0.5

S 19.00 1.75 1.75 1.75 �Ne� 3s23p3.53d0.5

Cl 18.00 1.75 1.75 2.50 �Ne� 3s23p4.53d0.5

As 18.00 1.80 1.80 2.50 �Ar� 4s24p2.54d0
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for example, we used Ecut=18 hartree in the AF QMC, as
indicated by the vertical dashed line in Fig. 1.

B. Supercell size convergence

Due to the periodic boundary conditions imposed in the
calculations, the interactions between electrons in the simu-
lation cell and their periodic images give rise to finite-size
errors. To study the behavior of these errors, a series of LDA
and AF QMC calculations were performed using different
system sizes for cubic shaped �and some tetragonal� cells.
Results for the phosphorus atom are shown in Fig. 2 as a
function of supercell size. The AF QMC energies are seen to
converge from below, while the LDA energies converge from
above. This is not surprising, since LDA treats the supercell

Coulomb interaction differently from a many-body approach
such as AF QMC. Figure 3 shows that the total energy from
AF QMC for the sulfur atom is nearly a linear function of
1/� for this range of supercell sizes. At the largest 19�19
�19 a0

3 supercell size, the total energy is converged to within
�0.1 eV.

To demonstrate the supercell size effect on the energy
differences, Fig. 4 shows the calculated dissociation energy
of P2. The top panel shows the supercell size dependence of
the dissociation energy, and the bottom panel illustrates the
convergence error of P and P2 energies for supercells ranging
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FIG. 1. Convergence of the total energy of a phosphorus atom in
a 14�14�14 a0

3 unit cell. The OPIUM pseudopotential is used here.
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such that the converged energies are approximately 0 and 0.5 eV
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from 14�14�14 a0
3 through 18�18�18 a0

3. The total atom
energy from different supercells deviates no more than
0.2 eV from that of the largest supercell. The dimer total
energy, on the other hand, shows stronger finite-size effect.
Most of the finite-size error in the dissociation energy, thus,
arises from the dimer energy. To avoid any irregular depen-
dence of the energy on the aspect ratio �cubic vs tetragonal
supercells�, only the cubic supercells were used in the ex-
trapolation.

In the ionization energy calculations, the supercells are
charged +�e� and +�2e� for the X+ and X++ species, respec-
tively. Charged supercells are ill-defined under periodic
boundary conditions, so an additional neutralizing back-
ground charge is introduced to maintain charge
neutrality.33,34 As discussed by Makov et al.,33,34 a leading
behavior, q2� /2L, arises from the self-interaction of the neu-
tralizing charge with its periodic images, where � is the �su-
percell dependent� Madelung constant, q is the neutralizing
charge, and L3=�. Correction of the total energy by the
leading term leads to more rapid size convergence. Figure 5
illustrates this effect. The bottom panel shows the slow con-
vergence of the total energy with the system size in charged
systems, while the upper panel shows the more rapid conver-
gence after the correction has been made, i.e., the slowly
convergent q2� /2L contribution has been subtracted.

C. Trotter time step error

The Trotter error arises from neglecting higher order

terms of the imaginary-time propagator, e−��Ĥ, when we
apply the Trotter-Suzuki decomposition in Eq. �16�. The
Trotter error can be eliminated by extrapolation, as demon-
strated in Fig. 6 for P, P+, and P++. The results reported in
the next section use a linear extrapolation or a fixed ��
��0.05 hartree−1�, which is sufficiently small so that the
Trotter error is well within the statistical error.

IV. RESULTS

Table II shows dissociation energies from plane wave AF
QMC calculations compared with experimental values and
with LDA, generalized gradient approximation �GGA�, HF,
and DMC calculated results. LDA trial wave functions were
used in the molecular calculations, corresponding to the fol-
lowing electronic configurations: �3s

2 �3s
*2�3p

2 
3p
4 for P2,

�3s
2 �3s

*2�3p
2 
3p

4 
3p
*2 for S2, �3s

2 �3s
*2�3p

2 
3p
4 
3p

*4 for Cl2, and

�4s
2 �4s

*2�4p
2 
4p

4 for As2. All dimers except S2 have

“closed-shell” configurations, in which all occupied orbitals
are filled. All the calculations used OPIUM pseudopotentials.

Both restricted and unrestricted trial wave functions were
tested in the AF QMC calculations, but there were no differ-
ence within statistical errors. �In restricted trial wave func-
tions, the orbitals with minority spin are identical to the cor-
responding majority-spin orbitals.� Unrestricted HF trial
wave functions were also used to calculate the dissociation
energy of S2, which has an open-shell configuration. As
shown in Table II, there is no difference within statistical
errors.

The overall agreement between the AF QMC results and
experiment is very good. The LDA and GGA slightly over-
estimate the dissociation energy, while the HF method sig-
nificantly underestimates it. The heaviest dimer we calcu-
lated, As2, is also in excellent agreement with experiment
and compares favorably with results from other quantum
chemistry methods.38,39

We show in Table III the first and second ionization ener-
gies of Al, Si, P, S, and Cl. For comparison, experimental
values and results from LDA and HF calculations are also
shown. The AF QMC calculations are performed using both
the OPIUM and OAL pseudopotentials together with LDA
trial wave functions, except for sulfur with the OAL pseudo-
potential, where HF trial wave functions are also used.
Again, no statistically significant dependence on the trial
wave function is seen. The tabulated results are converged
with respect to size effects, which are negligible compared to
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the QMC statistical error for supercells larger than 16�16
�16 a0

3.
Ionization energies obtained using the LDA are generally

in very good agreement with experiment, and the present
results are consistent with this, with deviations typically
within 0.1 eV for IP and 0.3 eV for IIP, regardless of which
pseudopotential is used. The HF method results in larger de-
viations of 0.5–1.3 eV compared to the experiment.

AF QMC results for Al and Si are in good agreement with
experiment, and for Si the agreement is comparable to that
obtained using DMC,42 8.166�14� and 24.444�22� eV for IP
and IIP, respectively. For P, S, and Cl, however, the agree-

ment between AF QMC and experiment is not as uniform. In
particular, there is a significant dependence on the choice of
the pseudopotential. For P and S, the AF QMC ionization
energies are better estimated using OAL, while for Cl, OPIUM

pseudopotential gives better results. We will discuss this de-
pendence in the next section. Agreement between the best
AF QMC and experiment values is, in general, very good.

V. DISCUSSION

For dissociation energies, the agreement between AF
QMC and experiment was uniformly very good. The appear-

TABLE II. Calculated dissociation energies �in eV� using LDA, AF QMC, DMC, HF, and GGA methods.
Experimental values are in the last column �with the zero-point energy removed�. The AF QMC calculations
used LDA trial wave functions, except for sulfur, where we have also used unrestricted HF trial wave
functions. Values from the largest supercell are shown here, since convergence has been reached. The
statistical errors are given in parentheses. The HF results are obtained from an in-house plane-wave-based
code. The AF QMC result for Si2 is taken from Ref. 4.

LDA AF QMC �LDA� DMCa HF GGAb Expt.c

Si2 3.88 3.12�8� 3.21�13�
P2 5.97 5.19�16� 4.73�1� 1.74 5.22 5.08

S2 5.61 4.63�17� 4.31�1� 2.29 4.94 4.41

4.48�19�d

Cl2 3.12 2.78�10� 2.38�1� 0.67 2.76 2.51

As2 5.04 3.97�17� 3.96

aReference 35.
bReference 36.
cReference 37.
dUsing HF trial wave function.

TABLE III. First and second ionization energies for several atoms, in eV. We employ two pseudopotentials, the LDA-based OPIUM

pseudopotential and HF-based effective-core potential �OAL�. In most cases, we use LDA trial wave functions �see text�. The LDA
calculations were done using ABINIT. The HF results were obtained using an in-house HF program for OPIUM pseudopotential and GAUSSIAN

�Refs. 40 and 41� for OAL. Experimental values are taken from Ref. 37. The quantity �IP below is the difference between the AF
QMC-calculated and experimental ionization energies, for which we show the average and rms average over all the species shown here.

Pseudo

IP �X→X+� IIP �X→X+�

HF LDA AF QMC Expt. HF LDA AF QMC Expt.

Al OAL 5.88 5.88�2� 5.99 24.46 24.66�2� 24.81

Si OPIUM 8.18�2� 8.15 24.59�4� 24.50

P OPIUM 9.97 10.57 10.74�6� 10.49 29.41 30.42 30.79�6� 30.26

OAL 9.94 10.41 10.61�3� 29.11 29.97 30.28�6�

S OPIUM 9.33 10.45 10.09�7� 10.36 32.42 33.85 34.16�7� 33.67

OAL 9.21 10.35 10.08�2� 32.06 33.51 33.61�2�

Cl OPIUM 11.69 13.12 12.96�11� 12.97 34.36 36.92 36.76�10� 36.78

OAL 11.76 13.02 12.89�6� 34.30 36.64 36.25�6�

��IP�OPIUM�� 0.00 0.27

��IP�OPIUM��rms 0.19 0.36

��IP�OAL�� −0.09 −0.18

��IP�OAL��rms 0.16 0.28
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ance of larger discrepancies between AF QMC and experi-
ment for ionization energies is somewhat surprising. The AF
QMC calculations above were systematically converged with
respect to finite-size effects, Trotter time step error, and plane
wave basis size. Two remaining possibilities, errors arising
from the use of the phaseless approximation and errors due
to the use of pseudopotentials, are discussed in this section.

Our overall experience with the phaseless AF
QMC4,9,10,12,24 suggests that the error due to the phaseless
approximation itself is typically small. Recent AF QMC cal-
culations using a Gaussian basis10 show that, in a variety of
atoms and molecules, the AF QMC agrees well with experi-
ment or high-level quantum chemistry methods such as the
coupled cluster with single and double excitations and per-
turbative corrections for triple excitations �CCSD�T��.43–46

Open-shell systems such as P+, P++, S, S++, Cl, and Cl+,
where the p shell is neither half nor fully filled, tend to be
more difficult to treat in general.47 In these cases, a single-
determinant trial wave function breaks the symmetry by us-
ing only one of the degenerate states, and the phaseless ap-
proximation could affect the accuracy of the results. Some
indication of this may be present in our results �see Table
III�, where larger errors are observed for energy differences
between half-filled and open-shell systems, such as the P+

ionization energy. It is possible to use multideterminant trial
wave functions in these cases. We have done several tests, in
which we “symmetrize” the trial wave function, resulting in
a linear combination of three different determinants. This is
designed to equally treat the px, py, and pz orbitals in the
open shell. However, there seems to be no observable im-
provement over the single-determinant trial wave function at
the level of statistical accuracy in this paper.

To isolate and quantitatively evaluate the errors due to the
phaseless approximation on the second-row atoms studied
here, we performed calculations with both AF QMC and
CCSD�T� methods for Cl, Cl+, and Cl++, using identical
Gaussian basis sets and the OAL pseudopotential. �The OAL
pseudopotential was chosen since its form is already compat-
ible with standard quantum chemistry programs.� Thus, both
the AF QMC and CCSD�T� methods are applied to the same
many-body Hamiltonian, expressed in the Hilbert space
spanned by the selected Gaussian basis set. The CCSD�T�
method is approximate, but is known to be very accurate in
atoms and in molecules near equilibrium. For the compari-
son, we employed an uncontracted aug-cc-pVDZ48,49 basis
set, where Gaussian functions with exponents larger than 98
are removed, resulting in a �7s7p2d� basis set. As shown in
Table IV, the AF QMC and CCSD�T� absolute total energies
agree to within 0.07 eV, and their ionization energies agree
to within 0.04 eV. These results indicate that the intrinsic
error due to the phaseless approximation in the above plane
wave calculations is likely also small, consistent with previ-
ous experience with phaseless AF QMC.4,9,10,12,24 This sug-
gests that errors due to the use of pseudopotentials are
largely responsible for the deviations in ionization energies
noted above.

The pseudopotentials used here were generated using
independent-electron HF or DFT mean-field-type calcula-
tions of atomic reference systems. While the transferability

of these pseudopotentials to HF or DFT calculations of mol-
ecules or solids is well understood, their accuracy in many-
body calculations is more problematic.42,50 The dependence
of the AF QMC results in Table III on the choice of pseudo-
potentials is consistent with this.

To estimate the pseudopotential errors in our AF QMC
calculations and to obtain insight into their origin, we have
carried out several additional calculations. We first per-
formed pseudopotential and all-electron �AE� CCSD�T� cal-
culations to estimate the transferability of the pseudopoten-
tial in a many-body context. First and second ionization
energies for P, S, and Cl atoms were calculated using both
methods. The coupled-cluster calculations were performed
using the GAUSSIAN98 and GAUSSIAN03 packages.40,41 To
eliminate basis set convergence errors, we performed a series
of AE calculations using the aug-cc-pwCVxZ basis
sets,48,49,51 where x=D, T, and Q for double, triple, and qua-
druple zeta basis sets, respectively. The infinite-basis esti-
mate of the total energy, E, is then obtained using
extrapolation52

E � Ex − be−cx, �32�

where x is 2, 3, and 4 for double, triple, and quadruple zeta
basis sets, respectively, and b and c are fitting parameters.
We then take the difference of the extrapolated energies as
the ionization potential shown in Table V. For the pseudopo-
tential calculations, the OAL effective-core potential �ECP�
is used. Here, we use the aug-cc-pVxZ basis sets48,49 that are
fully uncontracted, and again we use the extrapolation
scheme in Eq. �32�.

The CCSD�T� results for AE and OAL calculations are
presented in Table V. AE CCSD�T� ionization energies are
seen to be in excellent agreement with experimental values.
�We note that AE calculations using aug-cc-pCVxZ basis set
�a variation of aug-cc-pwCVxZ� yield almost identical result,
where the estimated IP differs by �0.03 eV, and IIP by
�0.07 eV.� The difference between the AE and OAL results
provides an estimate of the error due to the pseudopotential
in many-body calculations. The results in Table V indicate
that the OAL pseudopotential tends to underestimate the

TABLE IV. Calculated total energies �E� and ionization energies
�IP� for Cl, using AF QMC with a Gaussian basis together with the
corresponding CCSD�T� results, using identical basis sets. The
OAL pseudopotential is used with a double-zeta quality �7s7p2d�
Gaussian basis set. All energies are in eV. Since CCSD�T� is known
to be accurate for atoms, differences compared to Gaussian-based
AF QMC provide an estimate of errors due to the phaseless ap-
proximation in AF QMC.

AF QMC CCSD�T�

E IP E IP

Cl −403.91�1� −403.96

Cl+ −391.37�1� 12.54�2� −391.44 12.51

Cl++ −368.43�1� 35.49�2� −368.43 35.53

PHASELESS AUXILIARY-FIELD QUANTUM MONTE CARLO… PHYSICAL REVIEW B 75, 245123 �2007�

245123-9



ionization energies. The rms error attributable to the pseudo-
potential is about 0.12 eV. This is not negligible compared to
the overall AF QMC error, which is ��IP�OAL��rms

=0.25 eV for P, S, and Cl first and second ionization
energies.

An additional possible source of pseudopotential error in
the plane wave AF QMC calculations is the use of the fully
nonlocal, separable KB construction of the pseudopotential.
For example, the OAL ECP is defined in the usual semilocal
form, which is used in quantum chemistry programs:

V̂ei
�SL��r� = �

l,m
�Ylm�Vl�r��Ylm� , �33�

where Vl�r� is the angular-momentum-dependent potential.
For efficient use in the plane wave calculations, it is common
to express this pseudopotential in the fully nonlocal sepa-
rable KB form shown in Eq. �31a�. While the KB and
semilocal forms are identical when they act on the reference
atomic state, the KB form can differ for other states.

To investigate the effect of pseudopotential KB formation,
we perform LDA53 calculations with the OAL pseudopoten-
tial: �1� plane wave basis calculations with the KB form of
the OAL using the ABINIT package �calculations are con-
verged with respect to Ecut and box size� and �2� local basis
calculations with the semilocal form of the OAL using
GAUSSIAN98 �again we use the sequence of aug-cc-pVxZ ba-
sis sets to extrapolate to the infinite-basis limit�. The OAL
pseudopotential was converted to the KB form using pseudo-
orbitals obtained in a LDA calculation for the neutral atom.
For the purpose of constructing the fully nonlocal projectors,
the effects of using LDA rather than HF pseudo-orbitals are
not expected to be significant. In both methods, the total
energies are converged to within 0.5 mhartree ��0.01 eV�.

Table VI presents the results for the Cl ionization energies.
The OAL pseudopotential expressed in the KB form tends to
underestimate the LDA total energies, with the discrepancy
increasing with the ionization state. Ionization energies are,
thus, underestimated by up to 0.15 eV. The same trend is
observed in the calculated plane wave AF QMC ionization
energies compared to experiment, which indicates that the
KB form may contribute errors of the order of 0.1–0.2 eV
for Cl using the OAL pseudopotential. It is clear that the
quality of the pseudopotential is crucial for obtaining accu-
rate results with AF QMC.

These test calculations are limited in scope. Small system-
atic errors may still be present, for example, from the plane
wave size extrapolations, from Gaussian basis set extrapola-
tions, and from approximations inherent in coupled-cluster
calculations at the CCSD�T� level. They suggest, however, a
rather consistent picture for understanding the AF QMC re-
sults in Table III. Pseudopotential errors due to different ori-
gins appear to be the main cause for the discrepancies with
experimental values. When such errors are removed, it seems
that the accuracy of the plane wave AF QMC is at the level
of 0.1 eV.

Since the quality of a pseudopotential within HF and
LDA can be easily determined �by its ability to reproduce AE
results�, it is interesting to see how well this correlates with
the performance of the pseudopotential in a many-body cal-
culation. In Table VII, we show various energies obtained
from LDA, HF, AF QMC, and CCSD�T� calculations in
phosphorus. �Similar trends also hold for sulfur and chlo-
rine.� Results are shown using the OPIUM and OAL pseudo-
potentials, together with AE results for independent-electron
and CCSD�T� methods. In the LDA calculations, the LDA-
based OPIUM potential performs uniformly better for all
quantities. In the HF calculations, the HF-based OAL

TABLE V. Estimates of pseudopotential errors: CCSD�T� results for the first and second ionization
energies of P, S, and Cl. All energies are in eV. OAL and AE results are shown together with the error in the
ionization energy due to the pseudopotential, �IPpsp.

IP �X→X+� IIP �X→X++�

OAL AE �IPpsp Expt. OAL AE �IIPpsp Expt.

P 10.48 10.47 0.01 10.49 30.13 30.18 −0.05 30.26

S 10.24 10.29 −0.05 10.36 33.64 33.64 0.00 33.67

Cl 12.92 13.05 −0.13 12.97 36.51 36.77 −0.26 36.78

TABLE VI. LDA calculations of chlorine energies, the Kleinman-Bylander �KB� and semilocal �SL�
forms of the OAL pseudopotential. The programs used are indicated in parentheses, and all energies are in eV.

System

Kleinman-Bylander
�ABINIT�

Semilocal
�GAUSSIAN98�

�EKB−ESL�E IP E IP

Cl −403.798 −403.752 −0.05

Cl+ −390.842 12.956 −390.701 13.051 −0.14

Cl++ −367.217 36.581 −367.021 36.731 −0.20
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pseudopotential performs well, except for the dissociation
energy. �As mentioned earlier, the OAL pseudopotential
‘lacks a d projector in its construction, which results in poor
molecular energies.� Overall, the HF method appears to give
a better indication of pseudopotential performance with AF
QMC. In the chlorine second ionization energy, for example,
HF predicts that the OPIUM pseudopotential performs better
than the OAL pseudopotential: IIPHF,OPIUM=34.37 eV,
IIPHF,OAL=34.30 eV, compared to IIPHF,all-electron=34.36 eV.
AF QMC results in Table III show a similar trend. We also
note in Table III that the LDA-based OPIUM pseudopotentials
tend to overestimate the ionization energies, while the OAL
pseudopotentials do the opposite. The tabulated rms averages
suggest that the performance of AF QMC with the LDA-
generated OPIUM pseudopotential varies more widely across
different atomic species, especially in the second ionization
energies. The HF-generated OAL ECP, on the other hand,
performs more consistently and yields better agreement with
experiment in the majority of species studied here. Testing
pseudopotentials using Hartree-Fock calculations may, there-
fore, be a useful predictor of their performance in the many-
body AF QMC method.

We list some computing times to give an indication of the
computational cost of the calculation. In Fig. 6, the P atom
result at ��=0.05 Hartree−1 took 32 h on four Alpha EV67
processors. The S atom results in Fig. 3 for 14�14�14 a0

3

�18�18�18 a0
3� supercell took 215 h �428 h� on four �six�

3.2 GHz Pentium Xeon processors. Clearly, for isolated at-
oms and molecules, the plane wave approach is computation-
ally unfavorable54 compared to AF QMC using a localized
basis, or similarly, compared to DMC. This was not the pri-
mary concern of the present paper. As mentioned, our goal
here was to benchmark the plane wave method, especially in
terms of systematic errors.

VI. SUMMARY

We have presented electronic structure calculations in at-
oms and molecules using the phaseless AF QMC method
with a plane wave basis and norm-conserving pseudopoten-
tials. Various algorithmic issues and characteristics were de-
scribed and discussed in some detail, and we have illustrated
how the AF QMC method can be implemented by utilizing
standard DFT plane wave techniques. The structure of the
AF QMC calculation is an independent collection of random
walker streams. Each stream resembles a LDA calculation,
which makes the overall computational scaling of the
method similar to LDA calculation with a large prefactor.
This makes the AF QMC approach more efficient than ex-
plicit many-body methods. All of the reported results were
obtained using single-determinant trial wave functions, di-
rectly obtained from either LDA or HF calculations. This
reduces the demand for wave function optimization in QMC
and is potentially an advantage. The method also offers a
different route to the sign problem by carrying out the ran-
dom walks in Slater determinant space. Because our method
is based in Slater determinant space, any single-particle basis
can be used.

Results for the dissociation and ionization energies of
second-row atoms and dimers in groups 3A–7A, Al, Si, P, S,
Cl, as well as the As2 dimer, were presented using the plane-
wave-based phaseless AF QMC method. The effects of the
phaseless approximation in AF QMC were studied, and the
accuracy of the pseudopotentials were examined. Compari-
sons were made with experiment and with results from other
methods including the DMC and CCSD�T�. Errors due to the
phaseless approximation were found to be small, but non-
negligible pseudopotential errors were observed in some
cases. In addition to pseudopotential errors that arise due to
their construction in mean-field-type DFT or HF calcula-

TABLE VII. Phosphorus ionization and dissociation energies for P+, P++, and P2 computed using LDA,
HF, AF QMC, and CCSD�T� methods, shown below in eV. AE results are provided to benchmark the
pseudopotentials. The numbers shown in boldface are those closest to the AE results �for LDA and HF� or the
experimental values �for AF QMC�.

PSP LDA HF AF QMC CCSD�T�

IP �P→P+� Expt.=10.49

OPIUM 10.57 9.97 10.74�6�
OAL 10.41 9.94 10.61(3) 10.48

AE 10.53 9.91 10.47

IIP �P→P++� Expt.=30.26

OPIUM 30.42 29.41 30.79�6�
OAL 29.97 29.11 30.28(6) 30.13

AE 30.37 29.08 30.18

De�P2→2P� Expt.=5.08

OPIUM 5.97 1.74 5.19(16)

OAL 5.29 0.98 3.88�8� 4.39

AE 6.18 1.65 4.98a

aFrozen-core calculation.
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tions, possible errors in ionization energies arising from the
separable Kleinman-Bylander form of the pseudopotentials
were also observed. With the appropriate pseudopotentials,
the method yielded consistently accurate results.
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