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We study three wave function optimization methods based on energy minimization in a variational
Monte Carlo framework: the Newton, linear, and perturbative methods. In the Newton method, the
parameter variations are calculated from the energy gradient and Hessian, using a reduced variance
statistical estimator for the latter. In the linear method, the parameter variations are found by
diagonalizing a nonsymmetric estimator of the Hamiltonian matrix in the space spanned by the wave
function and its derivatives with respect to the parameters, making use of a strong zero-variance
principle. In the less computationally expensive perturbative method, the parameter variations are
calculated by approximately solving the generalized eigenvalue equation of the linear method by a
nonorthogonal perturbation theory. These general methods are illustrated here by the optimization of
wave functions consisting of a Jastrow factor multiplied by an expansion in configuration state
functions �CSFs� for the C2 molecule, including both valence and core electrons in the calculation.
The Newton and linear methods are very efficient for the optimization of the Jastrow, CSF, and
orbital parameters. The perturbative method is a good alternative for the optimization of just the
CSF and orbital parameters. Although the optimization is performed at the variational Monte Carlo
level, we observe for the C2 molecule studied here, and for other systems we have studied, that as
more parameters in the trial wave functions are optimized, the diffusion Monte Carlo total energy
improves monotonically, implying that the nodal hypersurface also improves monotonically. ©
2007 American Institute of Physics. �DOI: 10.1063/1.2437215�

I. INTRODUCTION

Quantum Monte Carlo �QMC� methods �see, e.g., Refs.
1–3� constitute an alternative to standard ab initio methods
of quantum chemistry for accurate calculations of the elec-
tronic structure of atoms, molecules, and solids. The two
most commonly used variants, variational Monte Carlo
�VMC� and diffusion Monte Carlo �DMC�, rely on an explic-
itly correlated trial wave function, generally consisting for
atoms and molecules of a Jastrow factor multiplied by a
short expansion in configuration state functions �CSFs�, each
consisting of a linear combination of Slater determinants, a
form capable of encompassing most of the electron correla-
tion effects. To fully benefit from the considerable flexibility
in the form of the wave function, it is crucial to be able to
efficiently optimize the parameters in these wave functions.

Variance minimization in correlated sampling4–6 has be-
come the most frequently used method in QMC for optimiz-
ing wave functions because it is far more efficient than
straightforward energy minimization on a finite Monte Carlo
sample. However, while the method works relatively well for
the optimization of the Jastrow factor, it is much less effec-
tive for the optimization of the determinantal part of the
wave function �though still possible4,7,8�. Furthermore, there

is some evidence that energy-optimized wave functions give
on average better expectation values for other observables
than variance-optimized ones �see, e.g., Refs. 9 and 10�. As a
result, a lot of effort has recently been devoted to developing
efficient methods for the optimization of QMC wave func-
tions by energy minimization. On the other hand, it should be
mentioned that variance-minimized wave functions often
have a smaller time-step error in DMC.

We now summarize some of the major approaches that
have been proposed for energy minimization in VMC. The
most efficient method to minimize the energy with respect to
linear parameters, such as the CSF coefficients, is to solve
the associated generalized eigenvalue equation using a non-
symmetric estimator of the Hamiltonian matrix.11 The energy
fluctuation potential �EFP� method12–16 is very efficient for
optimizing some nonlinear parameters and has been applied
very successfully to the optimization of the orbitals13,16 and
CSF coefficients.15,16 It has also been applied to the optimi-
zation of Jastrow factors in periodic solids.14 The perturba-
tive EFP method, a simplification of the EFP method, retains
the same convergence rate for the optimization of the orbitals
and CSF coefficients while decreasing the computational
cost.17 The stochastic reconfiguration �SR� method, origi-
nally developed for lattice systems,18 has been applied to the
full optimization of atomic and molecular wave functions
consisting of an antisymmetrized geminal power part multi-
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plied by a Jastrow factor.19,20 It is related to the perturbative
EFP method and is simpler but less efficient.16,17 The New-
ton method is a conceptually simple and general optimiza-
tion method but a straightforward implementation of it in
QMC is rather inefficient.21,22 However, an improved version
of it, making use of a reduced variance estimator of the Hes-
sian matrix,23 is very efficient for the optimization of Jastrow
factors. Another modified version of the Newton method
with an approximate Hessian, named stochastic reconfigura-
tion with Hessian acceleration �SRH�, has been applied to
lattice models.24

In this work, we investigate the three best energy mini-
mization methods for the optimization of the Jastrow, CSF,
and orbital parameters of QMC wave functions: the Newton,
linear and perturbative methods. The Newton method has
already been applied very successfully to the optimization of
Jastrow factors by Umrigar and Filippi,23 and in this paper it
is also applied to the optimization of the determinantal part
of the wave function. The linear method is an extension of
the zero-variance generalized eigenvalue equation approach
of Nightingale and Melik-Alaverdian11 to arbitrary nonlinear
parameters: at each step of the iterative procedure, the wave
function is linearized with respect to the parameters and the
optimal values of the parameters are found by diagonalizing
the Hamiltonian in the space spanned by the current wave
function and its derivatives with respect to the parameters.
This method is briefly presented in Ref. 25. The perturbative
method coincides with the perturbative EFP method of Sce-
mama and Filippi17 for the optimization of the CSF and or-
bital parameters. Here, we put this approach on more general
grounds by recasting it as a simplification of the linear
method where the generalized eigenvalue equation is solved
approximately by a nonorthogonal perturbation theory. The
Newton and linear methods are very efficient for the optimi-
zation of the Jastrow, CSF, and orbital parameters. The per-
turbative method is a good alternative for the optimization of
just the CSF and orbital parameters.

The paper is organized as follows. In Sec. II, the param-
etrization of the trial wave function is presented. The energy
minimization procedures are discussed in Sec. III, and their
realizations in VMC are discussed in Sec. IV. Section V
contains computational details of the calculations performed
on the C2 molecule to test the optimization methods, and
in Sec. VI we present the results. Section VII contains our
conclusions.

Hartree atomic units are used throughout this work.

II. WAVE FUNCTION PARAMETRIZATION
AND DERIVATIVES

We begin by describing the form of the wave function
used, the actual parametrization chosen for the optimization,
and the corresponding derivatives of the wave function with
respect to the parameters.

A. Form of the wave function

We use an N-electron wave function of the usual
Jastrow-Slater form that is denoted at each iteration of the
optimization procedure by

��0� = Ĵ��0���0� , �1�

where Ĵ��0� is a Jastrow operator depending on the current
parameters �i

0 and ��0� is a multideterminantal wave func-
tion. For notational convenience, we assume that the wave
function ��0� is always normalized to unity, i.e., ��0 ��0�
=1. In practice, ��0� can have arbitrary normalization.

The wave function ��0� is a linear combination of NCSF

orthonormal configuration state functions, �CI�, with current
coefficients cI

0,

��0� = �
I=1

NCSF

cI
0�CI� . �2�

Each CSF is a short linear combination of products of
spin-up and spin-down Slater determinants, �Dk

↑� and �Dk
↓�,

�CI�=�kdI,k�Dk
↑��Dk

↓�, where the coefficients dI,k are fully de-
termined by the spatial and spin symmetries of the state con-
sidered �see, e.g., Ref. 26�. The use of CSFs is important to
decrease the number of coefficients to be optimized and to
ensure the correct symmetry of the wave function after opti-
mization in the presence of statistical noise. The N↑-electron
and N↓-electron spin-assigned Slater determinants are gener-
ated from a set of current orthonormal orbitals, �Dk

↑�
= âk1↑

† âk2↑
†

¯ âkN↑
↑

† �vac� and �Dk
↓�= âkN↑+1↓

† âkN↑+2↓
†

¯ âkN↓
† �vac�,

where âk�
† �with �= ↑ ,↓� is the fermionic creation operator

for the spatial orbital ��k
0� in the spin-� determinant, and

�vac� is the vacuum state of second quantization. The �occu-
pied and virtual� spatial orbitals are written as linear combi-
nations of Nbas basis functions ���� �e.g., Slater or Gaussian
functions� with current coefficients �k,�

0 , ��k
0�=��=1

Nbas�k,�
0 ����.

The N-electron Jastrow operator, Ĵ��0�, is defined by its
matrix elements in the N-electron position basis �R�
= �r1 ,r2 , . . . ,rN�,

�R�Ĵ��0��R�� = J��0;R�	�R − R�� , �3�

where J��0 ;R� is the spin-assigned Jastrow factor, a real
positive function of R which is symmetric under the ex-
change of two same-spin electrons. Its action on an arbitrary

N-electron state ��� is given by �R�Ĵ��0����
=J��0 ;R���R�, where ��R�= �R ���. The Jastrow operator

is Hermitian, Ĵ��0�†= Ĵ��0�. We use flexible Jastrow factors
consisting of the exponential of the sum of electron-nucleus,
electron-electron, and electron-electron-nucleus terms, writ-
ten as systematic polynomial or Padé expansions27 �see also
Refs. 7 and 28�.

B. Wave function parametrization

We want to optimize the Jastrow parameters �i, the CSF
coefficients cI, and the orbital coefficients �k,�. Some param-
eters in the Jastrow factor are fixed by imposing the electron-
nucleus and electron-electron cusp conditions29 on the wave
function; the other Jastrow parameters are varied freely. Due
to the arbitrariness of the overall normalization of the wave
function, only NCSF−1 CSF coefficients need be varied, e.g.,
the coefficient of the first configuration can be kept fixed.
The situation is more involved for the orbital coefficients
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which are not independent due to the invariance properties of
determinants under elementary row operations. To easily re-
tain only unconstrained, nonredundant orbital parameters in
the optimization, it is convenient to vary the orbital coeffi-
cients by performing rotations among the �occupied and vir-
tual� orbitals with a unitary operator parametrized as an ex-
ponential of an anti-Hermitian operator. This parametrization
is used in multiconfiguration self-consistent-field �MCSCF�
calculations �for a recent and general review of MCSCF
theory, see Ref. 30�. More specifically, we use the following
parametrization of the wave function depending on NJas

opt Ja-
strow parameters �, NCSF

opt =NCSF−1 free CSF coefficients
c �c1 is fixed�, and Norb

opt orbital rotation parameters �,

����,c,��� = Ĵ���e
̂��� �
I=1

NCSF

cI�CI� , �4�

where e
̂��� is the unitary operator that performs rotations in
orbital space �see, e.g., Refs. 31 and 32�. More elaborate
parametrizations of the CSF coefficients, such as a unitary
parametrization,33 are often used in the MCSCF theory �see,
e.g., Ref. 32�, but we have not found any decisive advantage
to using them for our purpose.

The rotations in orbital space are generated by the anti-
Hermitian real singlet orbital excitation operator34


̂��� = �
k�l


klÊkl
− , �5�

where the sum is over all nonredundant orbital pairs, Êkl
−

= Êkl− Êlk, and Êkl= âk↑
† âl↑+ âk↓

† âl↓ is the singlet excitation op-
erator from orbital l to orbital k. In Eq. �4�, the action of the
operator e
̂��� is to rotate each occupied orbital in the Slater
determinants as

��k� = e
̂�����k
0� = �

l

�e��kl��l
0� , �6�

where the sum is over all �occupied and virtual� orbitals, and
�e��kl are the elements of the orthogonal matrix e� con-
structed from the real antisymmetric matrix � with elements

kl. More generally, any unitary matrix can be written as an
exponential of an anti-Hermitian matrix, the off-diagonal up-
per triangular part of the anti-Hermitian matrix realizing a
nonredundant parametrization of the unitary matrix. To
maintain the orthonormality of the entire set of orbitals, the
operator e
̂��� is applied to the virtual orbitals as well. For a
single Slater determinant wave function, the orbitals can be
partitioned into three sets referred to as closed �i.e., doubly
occupied�, open �i.e., singly occupied�, and virtual �i.e., un-
occupied�. The nonredundant excitations to consider are then
closed→open, closed→virtual, and open→virtual. For a
multiconfiguration wave function, the orbitals can be parti-
tioned into three sets referred to as inactive �i.e., occupied in
all determinants�, active �i.e., occupied in some determinants
and unoccupied in the others�, and secondary �i.e., unoccu-
pied in all determinants�. For a multiconfiguration complete
active space �CAS� wave function,35 the nonredundant exci-
tations are then inactive→active, inactive→secondary, and
active→secondary. For a single-determinant and multideter-
minant CAS wave function, the action of the reverse excita-

tion from orbital k to l �Êlk� in Êkl
− = Êkl− Êlk is always zero.

For a general multiconfiguration wave function �not CAS�,
some active→active excitations must also be included. Con-

sequently, the action of the reverse excitation Êlk in Êkl
−

= Êkl− Êlk does not generally vanish. Only excitations be-
tween orbitals of the same spatial symmetry have to be con-
sidered. In the superconfiguration interaction approach36

where the orbitals are optimized by adding the single excita-
tions of the �multiconfiguration� reference wave function to
the variational space, pioneered in QMC by Filippi and
co-workers,16,17 an alternative linear parametrization of the

orbital space is chosen, ��k�= �1̂+ 
̂������k
0�, instead of the

unitary parametrization of Eq. �6�. In that case, the optimized
orbitals are not orthonormal.

In the following, we will collectively refer to the Ja-
strow, CSF, and orbital parameters as p= �� ,c ,��. The wave
function of Eq. �1� is thus simply ��0�= ���p0��, where p0

= ��0 ,c0 ,�0=0� are the current parameters. We will desig-
nate by Nopt=NJas

opt+NCSF
opt +Norb

opt the total number of param-
eters to be optimized.

C. First-order wave function derivatives

We now give the expressions for the first-order deriva-
tives of the wave function ���p�� of Eq. �4� with respect to
the parameters pi at p=p0,

��i� = 	 ����p��
�pi



p=p0

, �7�

which collectively designate the derivatives with respect to
the Jastrow parameters

���i
� =

�Ĵ��0�
��i

��0� , �8�

with respect to the CSF parameters

��cI
� = Ĵ��0��CI� , �9�

and with respect to the orbital parameters

��
kl
� = Ĵ��0�Êkl

− ��0� . �10�

The first-order orbital derivatives are thus generated by the
single excitations of orbitals out of the state ��0�.

D. Second-order wave function derivatives

The second-order derivatives with respect to the param-
eters pi at p=p0, which are needed only for the Newton
method, are

��ij� = 	 �2���p��
�pi�pj



p=p0

, �11�

which collectively designate the Jastrow-Jastrow derivatives

���i�j
� =

�2Ĵ��0�
��i�� j

��0� , �12�

the Jastrow-CSF derivatives
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���icI
� =

�Ĵ��0�
��i

�CI� , �13�

the Jastrow-orbital derivatives

���i
kl
� =

�Ĵ��0�
��i

Êkl
− ��0� , �14�

the CSF-orbital derivatives

��cI
kl
� = Ĵ��0�Êkl

− �CI� , �15�

and the orbital-orbital derivatives

��
kl
mn
� = Ĵ��0�Êkl

− Êmn
− ��0� . �16�

Notice that the wave function form of Eq. �4� is linear in the
CSF parameters and therefore the CSF-CSF derivatives are
zero, ��cIcJ

�=0. The orbital-orbital derivatives correspond to
double excitations of orbitals out of the state ��0�. Since we
usually start the optimization with reasonably good initial
orbitals coming from a standard MCSCF calculation, we set
these second derivatives to zero, ��
kl
mn

�=0, in order to
reduce the computational cost per iteration during Newton
minimization. Nevertheless, it takes only a few steps to
optimize the orbitals as discussed in Sec. VI.

III. ENERGY MINIMIZATION PROCEDURES

In this section, we present the three methods investigated
in this work to minimize the variational energy with respect
to the wave function parameters p,

E = min
p

E�p� , �17�

where E�p�= ���p��Ĥ���p�� / ���p� ���p�� and Ĥ= T̂+Ŵee

+ V̂ne is the electronic Hamiltonian, including the kinetic,
electron-electron interaction, and nuclei-electron interaction
terms. The Hamiltonian can also include a nonlocal pseudo-
potential, enabling one to avoid the explicit treatment of core
electrons. The energy corresponding to the current param-
eters p0 will be denoted by E0=E�p0�.

A. Newton optimization method

The Newton method was first applied to the optimization
of QMC wave functions by Rappe and co-workers.21,22 It has
been considerably improved by Umrigar and Filippi,23 and
by Sorella,24 by making use of a lower variance statistical
estimator of the Hessian matrix and by employing stabiliza-
tion techniques. In Ref. 23 the correct Hessian was used,
whereas in Ref. 24 an approximate Hessian, which reduces
to the exact Hessian for parameters that are linear in the
exponent, was used. We now recall the basic working equa-
tions.

The energy E�p� is expanded to second order in the pa-
rameters p around p0,

E�2��p� = E0 + �
i=1

Nopt

gi�pi + 1
2 �

i=1

Nopt

�
j=1

Nopt

hij�pi�pj , �18�

where the sums are over all the parameters to be optimized,
�pi= pi− pi

0 are the components of the vector of parameter
variations �p,

gi = 	 �E�p�
�pi



p=p0

�19�

are the components of the energy gradient vector g, and

hij = 	 �2E�p�
�pi�pj



p=p0

�20�

are the elements of the energy Hessian matrix h. Imposition
of the stationary condition on the expanded energy expres-
sion, �E�2��p� /�pi=0, gives the following standard solution
for the parameter variations:

�p = − h−1 · g , �21�

where h−1 is the inverse of the Hessian matrix. In practice,
the energy gradient and Hessian are calculated in VMC with
the statistical estimators given in Sec. IV A, yielding the pa-
rameter variations �p of Eq. �21� that are used to update the
current wave function, ��0�→ ���p0+�p��. It simply re-
mains to iterate until convergence.

Stabilization. As explained in Ref. 23, the stabilization
of the Newton method is achieved by adding a positive con-
stant, adiag
0, to the diagonal of the Hessian matrix h, i.e.,
hij→hij +adiag	ij. As adiag is increased, the parameter varia-
tions �p become smaller and rotate from the Newtonian di-
rection to the steepest descent direction. A good value of adiag

is automatically determined at each iteration by performing
three very short Monte Carlo calculations using correlated
sampling with wave function parameters obtained with three
trial values of adiag and predicting by parabolic interpolation
the value of adiag that minimizes the energy25 with some
bounds imposed. The use of correlated sampling makes it
possible to calculate energy differences with much smaller
statistical error than the energies themselves. This procedure
helps convergence if one is far from the minimum or if the
statistical noise is large in the Monte Carlo evaluation of the
gradient and Hessian.

We have found that adding in a multiple of the unit
matrix to the Hessian as described above works well, but
there exist other possible choices of positive definite matri-
ces that could be added in. For instance, Sorella24 adds in a
multiple of the overlap matrix of the first-order derivatives of
the wave function. Another possible choice is a multiple of
the Levenberg-Marquardt approximation to the Hessian of
the variance of the local energy.

B. Linear optimization method

The most straightforward way to energy optimize linear
parameters in wave functions, such as the CSF parameters, is
to diagonalize the Hamiltonian in the variational space that
they define, leading to a generalized eigenvalue equation.
This has been done in QMC, for example, in Refs. 11 and 37.
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The linear method that we present now is an extension of the
approach of Ref. 11 to arbitrary nonlinear parameters. This
method is also presented in Ref. 25, using slightly different
but equivalent conventions.

For notational convenience, we first introduce the nor-
malized wave function

��̄�p�� =
���p��

����p����p��
. �22�

The idea is then to expand this normalized wave function

��̄�p�� to first order in the parameters p around the current
parameters p0,

��̄lin�p�� = ��0� + �
i=1

Nopt

�pi��̄i� , �23�

where the wave function at p=p0 is simply ��̄�p0��= ��̄0�
= ��0� �chosen to be normalized to 1� and, for i
1, ��̄i� are

the derivatives of ��̄�p�� that are orthogonal to ��0�,

��̄i� = 	 ���̄�p��
�pi



p=p0

= ��i� − S0i��0� , �24�

where S0i= ��0 ��i�. The minimization of the energy calcu-
lated with this linear wave function

Elin = min
p

Elin�p� , �25�

where

Elin�p� =
��̄lin�p��Ĥ��̄lin�p��

��̄lin�p���̄lin�p��
, �26�

leads to the stationary condition of the associated Lagrange
function

�p���̄lin�p��Ĥ��̄lin�p�� − Elin��̄lin�p���̄lin�p��� = 0, �27�

where Elin acts as a Lagrange multiplier for the normalization
condition. The Lagrange function is quadratic in p and Eq.
�27� leads to the following generalized eigenvalue equation:

H̄ · �p = ElinS̄ · �p , �28�

where H̄ is the matrix of the Hamiltonian Ĥ in the
�Nopt+1�-dimensional basis consisting of the current normal-
ized wave function and its derivatives

���̄0� , ��̄1� , ��̄2� , . . . , ��̄Nopt�
, with elements H̄ij = ��̄i�Ĥ��̄ j�,
S̄ is the overlap matrix of this �Nopt+1�-dimensional basis,

with elements S̄ij = ��̄i ��̄ j� �note that S̄00=1 and S̄i0= S̄0i=0
for i
1�, and �p is the �Nopt+1�-dimensional vector of pa-
rameter variations with �p0=1. The linear method consists
of solving the generalized eigenvalue equation of Eq. �28�,
for the lowest �physically reasonable� eigenvalue and associ-
ated eigenvector denoted by �p̄. The overlap and �nonsym-
metric� Hamiltonian matrices are computed in VMC using
the statistical estimators given in Sec. IV B. Although we
focus here on the optimization of the ground-state wave
function, solving Eq. �28� also gives upper bound estimates

of excited state energies of states with the same spatial and
spin symmetries.

However, there is an arbitrariness in the previously de-
scribed procedure: we have found the parameter variations

�p̄ from the expansion of the wave function ��̄�p�� of Eq.
�22�, but another choice of the normalization of the wave
function will lead to different parameter variations. To see
that, consider a differently normalized wave function

��� �p�� = N�p���̄�p�� , �29�

where the normalization function N�p� is chosen to satisfy
N�p0�=1 so as to leave unchanged the normalization at p
=p0, i.e., ��� �p0��= ��0�. The derivatives of this new wave
function are

��� i� = 	 ���� �p��
�pi



p=p0

= ��̄i� + Ni��0� , �30�

where Ni= ��N�p� /�pi�p=p0, i.e., their projections onto the
current wave function ��0� depend on the normalization.
Consequently, the first-order expansion of this new wave
function

��� lin�p�� = ��0� + �
i=1

Nopt

�pi��� i� , �31�

leads, after optimization of the energy, to different optimal

parameter variations �p� . As the two wave functions ��̄lin�p��
and ��� lin�p�� lie in the same variational space, they must be
proportional after minimization of the energy, which implies
that the new optimal parameter variations �p� are actually
related to the original optimal parameter variations �p̄ by a
uniform rescaling

�p� =
�p̄

1 − �i=1
Nopt

Ni�p̄i

. �32�

Any choice of normalization does not necessarily give good
parameter variations. For the CSF parameters, it is obvious
that the best choice is the normalization of the wave function
of Eq. �4� in order to keep the linear dependence on these
parameters, ensuring convergence of the linear method in a

single step. This is achieved by choosing ��� i�= ��i� which
gives

Ni = Si0 for linear parameters. �33�

For the nonlinear Jastrow and orbital parameters, several cri-
teria are possible. We have found that a good one is to
choose the normalization by imposing that, for the variation

of the nonlinear parameters, each derivative ��� i� is orthogo-

nal to a linear combination of ��0� and ��̄lin�, i.e.,

��� i ���0+ �1−���̄lin / ��̄lin��=0, where � is a constant be-
tween 0 and 1, resulting in
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Ni = −
�1 − ��� j

nonlin�p̄jS̄ij

�1 − �� + ��1 + � j,k
nonlin�p̄j�p̄kS̄jk

�34�

for nonlinear parameters, where the sums are only over the
nonlinear Jastrow and orbital parameters. The simple choice
�=1 first used by Sorella18 in the context of the SR method
leads in many cases to good parameter variations, but in
some cases can result in parameter variations that are too
large. The choice �=0 making the norm of the linear wave

function change ��� lin−�0� minimum is safer but in some
cases can yield parameter variations that are too small. In

those cases, the choice �=1/2, imposing ��� lin�= ��0�,
avoids both too large and too small parameter variations. In

particular, if �p̄=�, meaning that �̄lin is orthogonal to �0, it
follows from Eqs. �32� and �34� that �p� is zero for �=0 but
�p� is nonzero and finite for �=1/2. In practice, all these
three choices for � usually lead to a very rapid convergence
of the nonlinear parameters. In contrast, choosing the origi-
nal derivatives, i.e., Ni=Si0, leads to slowly converging or
diverging Jastrow parameters.

Stabilization. Similarly to the procedure used for the
Newton method, we stabilize the linear method by adding a

positive constant, adiag
0, to the diagonal of H̄ except for

the first element, i.e., H̄ij→ H̄ij +adiag	ij�1−	i0�. Again, as
adiag becomes larger, the parameter variations �p become
smaller and rotate toward the steepest descent direction. The
value of adiag is then automatically adjusted in the course of
the optimization in the same way as in the Newton method.

Note that if instead we were to add adiag to S̄−1 ·H̄, then it
would be the “level-shift” parameter commonly used in di-

agonalization procedures. We prefer to add to H̄, in part,

because it is not necessary to compute S̄−1 ·H̄ in order to
solve Eq. �28�.

Connection to the EFP method. The generalized eigen-
value equation of Eq. �28� can be rewritten as an eigenvalue

equation H̄� ·�p=Elin�p, where H̄�= S̄−1 ·H̄, i.e., with matrix

elements H̄ij� =�k=0
Nopt

�S̄−1�ik��̄k�Ĥ��̄ j�. This form is useful to
establish the connection with the EFP optimization method
for the CSF and orbital parameters.13,15,16 This latter ap-
proach consists of solving at each iteration the effective ei-

genvalue equation H̄EFP·�p=EEFP�p, where the EFP effec-

tive Hamiltonian has matrix elements H̄ij
EFP= ��i�Ĥ��i�	ij

+�k=1
Nopt

�S̄−1�ik��̄k�Ĥ��̄0���1−	i0�	0j +	i0�1−	0j��, where ��i�
designates the current wave function and its derivatives with-

out the Jastrow factor, i.e., ��i�= Ĵ��0���i�, and ��̄k�Ĥ��̄0�
are just the components of half the gradient of the energy.
Hence, in the EFP method, only the off-diagonal elements in
the first column and first row calculated from the compo-

nents of the energy gradient are retained in H̄EFP.
Connection to the Newton and SRH methods. In the lin-

ear method, the energy expression that is minimized at each
iteration, Elin�p�, contains all orders in the parameter varia-
tions because of the presence of the denominator in Eq. �26�,
though only the zeroth- and first-order terms match those of
the expansion of the exact energy E�p�. In contrast, in the

Newton method, the energy expression of Eq. �18�, E�2��p�,
is truncated at second order in �p but is exact up to this
order. Now, if instead of solving the generalized eigenvalue
equation �Eq. �28��, one expands the energy expression of
Eq. �26� to second order in �p, one recovers the Newton

method with an approximate �symmetric� Hessian hij
lin= H̄ij

+ H̄ji−2E0S̄ij corresponding exactly to the SRH method with
�=0 of Ref. 24. The SRH method is much less stable and
converges more slowly than either our linear method or our
Newton method for the systems studied here.

C. Perturbative optimization method

The perturbative method discussed next is identical to
the perturbative EFP approach of Scemama and Filippi17 for
the optimization of the CSF and orbital parameters, provided
that the same choice is made for the energy denominators
�see below�. We give here an alternate proof without intro-
ducing the concept of energy fluctuations that in principle
extends the method to other kinds of parameters as well.

Instead of calculating the optimal linearized wave func-

tion ��̄lin� by diagonalizing the Hamiltonian Ĥ in the sub-

space spanned by ���̄0� , ��̄1� , ��̄2� , . . . , ��̄Nopt�
, we formu-

late a nonorthogonal perturbation theory for ��̄lin�. The
textbook formulation of perturbation theory starts from the

Hamiltonian Ĥ whose eigenstates we wish to compute and a

zeroth-order Hamiltonian Ĥ�0� whose eigenstates are known.

Instead, here we start with Ĥ and the states

���̄0� , ��̄1� , ��̄2� , . . . , ��̄Nopt�
 and define a zeroth-order op-

erator Ĥ�0� for which these states are right eigenstates. To do

this, we introduce ���̃i�
, the dual �biorthonormal� basis of

the basis ���̄i�
, i.e., ��̃i ��̄ j�=	ij, given by �see, e.g., Ref.
38�

��̃i� = �
j=0

Nopt

�S̄−1�ij��̄ j� , �35�

where �S̄−1�ij are the elements of the inverse of the overlap

matrix S̄, and we introduce the non-Hermitian projector op-
erator onto this subspace

P̂ = �
i=0

Nopt

��̄i���̃i� . �36�

The optimal linearized wave function, minimizing the energy
�Eq. �25��, satisfies the projected Schrödinger equation

P̂Ĥ��̄lin� = ElinP̂��̄lin� , �37�

with the normalization condition ��̃0 ��̄lin�=1, ensuring that

the coefficient of ��̄lin� on ��̄0�= ��0� is 1 as in Eq. �23�.
To construct the perturbation theory, we now introduce a

fictitious projected Schrödinger equation depending on a
coupling constant �,
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P̂Ĥ���̄lin
� � = Elin

� P̂��̄lin
� � , �38�

with the normalization condition ��̃0 ��̄lin
� �=1 for all �, so

that, for �=1, Eq. �38� reduces to Eq. �37�, Ĥ�=1= Ĥ,

��̄lin
�=1�= ��̄lin�, Elin

�=1=Elin, and we partition the Hamiltonian

Ĥ� as follows:

Ĥ� = Ĥ�0� + �Ĥ�1�. �39�

In this expression, Ĥ�0� is a zeroth-order non-Hermitian
operator

Ĥ�0� = �
i=0

Nopt

Ei��̄i���̃i� , �40�

where Ei are arbitrary energies. Clearly, Ĥ�0� admits ��̄i� as

right eigenstate and ��̃i� as left eigenstate, with common
eigenvalue Ei. The non-Hermitian perturbation operator is

obviously defined as Ĥ�1�= Ĥ− Ĥ�0�. We expand ��̄lin
� � and

Elin
� in powers of �: ��̄lin

� �=�k=0
� �k��̄lin

�k�� and Elin
�

=�k=0
� �kElin

�k�. The zeroth-order �right� eigenstate and energy

are simply ��̄lin
�0��= ��̄0� and Elin

�0�=E0. The first-order correc-
tion to the wave function is determined by the equation

P̂�Ĥ�0� − E0���̄lin
�1�� = − P̂�Ĥ�1� − Elin

�1����̄0� . �41�

To solve this equation, we define the non-Hermitian projec-

tor operator R̂=�i=1
Nopt

��̄i���̃i� which, in comparison with the

projector P̂, also removes the component parallel to ��̄0�.
Note that R̂P̂= R̂, R̂ commutes with Ĥ�0�−E0 and R̂��̄lin

�1��
= ��̄lin

�1�� �since ��̃0 ��̄lin
� �=1 and ��̃0 ��̄0�=1, implying

��̃0 ��̄lin
�1��=0�, so that applying R̂ on Eq. �41� leads to

��̄lin
�1�� = −

R̂

Ĥ�0� − E0

�Ĥ�1� − Elin
�1����̄0�

= − �
i=1

Nopt

��̄i�
��̃i�Ĥ − E0 − Elin

�1���̄0�
Ei − E0

= − �
i=1

Nopt

�
j=1

Nopt

�S̄−1�ij

��̄ j�Ĥ��̄0�
Ei − E0

��̄i� , �42�

where E0 and Elin
�1� in the numerator and the term j=0 have

been dropped since, for i�0, ��̃i ��̄0�=0 and �S̄−1�i0=0, re-
spectively. Therefore, the parameter variations in this first-
order perturbation theory are

�p̄i
�1� = −

1

�Ei
�
j=1

Nopt

�S̄−1�ijH̄j0, �43�

where H̄j0= ��̄ j�Ĥ��̄0�= �� j�Ĥ−E0��0�=gj /2 is just half the
gradient of the energy and �Ei=Ei−E0. The perturbative
method consists of calculating the parameter variations �p̄�1�

according to Eq. �43�, updating the current wave function,
��0�→ ���p0+�p̄�1���, and iterating until convergence. It is
apparent from Eq. �43� that the perturbative method can be

viewed as the Newton method with an approximate Hessian,

hij
pert= �S̄−1�ij /�Ei, as also noted in Ref. 17.

The energy denominators �Ei in Eq. �43� remain to be

chosen. Since perturbation theory works best when Ĥ�0� is

“close” to Ĥ, we choose Ĥ�0� to have the same diagonal

elements as Ĥ, resulting in

�Ei =
��̄i�Ĥ��̄i�

��̄i��̄i�
− E0 =

H̄ii

S̄ii

− H̄00. �44�

In practice, only rough estimates of the �Ei’s are necessary
for the optimization so that one can compute them for just
the initial iteration and keep them fixed for the following
iterations. Therefore, for these iterations, only the inverse

overlap matrix, S̄−1, and the gradient of the energy, gj

=2H̄j0, need to be calculated in the perturbative method,
leading to an important computational speedup per iteration
in comparison with the linear method.

Stabilization. Similarly to the linear method, the pertur-
bative method can be stabilized by adding an adjustable posi-
tive constant, adiag
0, to the energy denominators, i.e.,
�Ei→�Ei+adiag, which has the effect of decreasing the pa-
rameter variations �p̄�1�.

Connection to the perturbative EFP and SR methods.
For the CSF and orbital parameters, if the energy denomina-

tors are chosen to be �Ei= ��i � Ĥ ��i� / ��i ��i�
− ��0 � Ĥ ��0� / ��0 ��0� �i.e., without the Jastrow factor�, Eq.
�43� exactly reduces to the perturbative EFP method.17 Also,
Eq. �43� reduces to the SR optimization method18–20 if the
energy denominators are all chosen equal, �Ei=�E for all i.

IV. VARIATIONAL MONTE CARLO REALIZATION

When the previously described energy minimization pro-
cedures are implemented in VMC, it is important to pay
attention to the statistical fluctuations. Expressions that are
equivalent in the limit of an infinite Monte Carlo sample can,
in fact, have very different statistical errors for a finite
sample. We provide prescriptions for low variance estimators
in this section.

We also note that, in order to reduce round-off noise, it
can help to rescale the elements of the gradient vector, and
the hessian, Hamiltonian and overlap matrices using the
square root of the diagonal of overlap matrix.

At each step of the optimization, the quantum-
mechanical averages are computed by sampling the probabil-
ity density of the current wave function �0�R�2. We will
denote the statistical average of a local quantity, f�R�, by
�f�R��= �1/M��k=1

M f�Rk�, where the M electron configura-
tions Rk are sampled from �0�R�2.

A. Energy gradient and Hessian

In terms of the derivatives �i�R� of the wave function of

Eq. �4�, and using the Hermiticity of the Hamiltonian Ĥ, an
estimator of the energy gradient is39
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gi = 2���i�R�
�0�R�

EL�R�� − ��i�R�
�0�R���EL�R��� , �45�

where EL�R�= �H�R��0�R�� /�0�R� is the local energy. In
the limit that �0�R� is an exact eigenfunction, the local en-
ergy becomes constant, EL�R�=Eexact for all R, and thus the
gradient of Eq. �45� vanishes with zero variance. This leads
to the following zero-variance principle for the Newton and
perturbative methods: in the limit that �0�R� is an exact
eigenfunction, the parameter variations of Eqs. �21� and �43�
vanish with zero variance.

Taking the derivative of Eq. �45� leads to the straightfor-
ward estimator of the energy Hessian of Lin, Zhang, and
Rappe �LZR�,21

hij
LZR = Aij + Bij + Cij , �46�

where

Aij = 2���ij�R�
�0�R�

EL�R�� − ��ij�R�
�0�R� ��EL�R��

− ��i�R�
�0�R�

� j�R�
�0�R�

EL�R��
+ ��i�R�

�0�R�
� j�R�
�0�R���EL�R��� , �47�

involving the second derivatives �ij�R� of the wave func-
tion,

Bij = 4���i�R�
�0�R�

� j�R�
�0�R�

EL�R�� − ��i�R�
�0�R�

� j�R�
�0�R��

��EL�R��� − 2��i�R�
�0�R��gj − 2�� j�R�

�0�R��gi

= 4�	 �i�R�
�0�R�

− ��i�R�
�0�R��


� 	� j�R�
�0�R�

− �� j�R�
�0�R��
�EL�R� − �EL�R���� ,

�48�

and

Cij = 2��i�R�
�0�R�

EL,j�R�� , �49�

where

EL,j�R� = �H�R�� j�R��/�0�R� − �� j�R�/�0�R��EL�R�

is the derivative of the local energy with respect to parameter
j. In this estimator of the Hessian, the term that fluctuates the
most is Cij.

Umrigar and Filippi23 observed that the fluctuations of a
covariance �ab�− �a��b� are much smaller than those of �ab�
if the fluctuations of a are much smaller than the average of
a, i.e., ��a2�− �a�2� ��a��, and a is not strongly correlated
with 1/b. In Eq. �49�, �i�R� /�0�R� is always of the same
sign for parameters in the exponent and in practice its fluc-
tuations are much smaller than its average. Furthermore, it
follows from the Hermiticity of the Hamiltonian that

�EL,j�R�� vanishes in the limit of an infinite sample.21 Using
these two observations, Umrigar and Filippi23 provided an
estimator of the Hessian,

hij
UF = Aij + Bij + Dij , �50�

that fluctuates much less than the straightforward LZR esti-
mator, where the symmetrized estimator,

Dij = ��i�R�
�0�R�

EL,j�R�� − ��i�R�
�0�R���EL,j�R��

+ �� j�R�
�0�R�

EL,i�R�� − �� j�R�
�0�R���EL,i�R�� , �51�

has the same average as the term Cij in the limit of an infinite
sample, but being a covariance has much smaller fluctua-
tions. We note that Aij is already a covariance and Bij is a
tricovariance.

Although the Aij and Bij terms vanish with zero variance
in the limit that �0�R� is an exact eigenfunction �the Dij

term does not�, in practice for the Jastrow parameters, far
from the minimum, the Bij fluctuates more than the Dij term
for the Jastrow parameters in the Hessian of Eq. �50�. With
the form of the Jastrow factors that we use, we have ob-
served that the ratio �Bij +Dij� /Dij is roughly independent of
i and j for most i and j though it changes during the Monte
Carlo iterations. It is typically between 1.2 and 2.5 at the
initial iteration and between 0.9 and 1.1 at the final iteration.
We exploit this to decrease the fluctuations by defining a
new, approximate Hessian partially averaged over the
Jastrow parameters

hij
TU = Aij +

���Bij + Dij���
���Dij���

Dij , �52�

where TU are the initials of the present authors, and
the average over the Jastrow parameter pairs are defined

by ��Xij��= �2/NJas
opt�NJas

opt+1���i=1
NJas

opt
� j=i

NJas
opt

Xij. The average is
calculated as ���Bij +Dij��� / ���Dij��� and not as
����Bij +Dij � � / �Dij��� to avoid possible numerical divergences
of this ratio for small Dij. In Eq. �52�, i and j refer only to
Jastrow parameters. For all the terms related to the other
parameters �including all the mixed terms�, the Hessian of
Eq. �50� is used without further modification.

Exact or approximate wave functions such as �0�R� go
linearly to zero with the distance d between R and their
nodal hypersurface, i.e., �0�R��d for d→0. The local en-
ergy EL�R� generally diverges as 1/d for d→0 for approxi-
mate wave functions. In contrast to the case of the Jastrow
parameters, the derivatives �i�R� for the CSF and orbital
parameters have a different nodal hypersurface than �0�R�
and the ratio �i�R� /�0�R� thus also diverges as 1/d, even if
the wave function �0�R� is exact. Consequently, the deriva-
tive of the local energy EL,i�R� generally diverges as 1/d2

for approximate wave functions. In the expression
of the Hessian, the leading divergence at the nodes
of the approximate wave function �0�R� thus comes
from the terms ��i�R� /�0�R���� j�R� /�0�R��EL�R�,
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��i�R� /�0�R��EL,j�R�, and �� j�R� /�0�R��EL,i�R� that be-
have as 1/d3. It is, however, easy to check that these third-
order divergences cancel exactly in Eq. �50�.

B. Overlap and Hamiltonian matrices

The elements of the symmetric overlap matrix S̄ are

S̄00 = 1 �53a�

and, for i , j�0,

S̄i0 = S̄0j = 0, �53b�

and

S̄ij = ��i�R�
�0�R�

� j�R�
�0�R�� − ��i�R�

�0�R���� j�R�
�0�R�� . �53c�

The elements of the Hamiltonian matrix H̄ are

H̄00 = �EL�R�� , �54a�

and, for i , j�0,

H̄i0 = ��i�R�
�0�R�

EL�R�� − ��i�R�
�0�R���EL�R�� , �54b�

H̄0j = ��� j�R�
�0�R�

EL�R�� − �� j�R�
�0�R���EL�R���

+ �EL,j�R�� , �54c�

which are two estimators of half of the energy gradient, and

H̄ij = ���i�R�
�0�R�

� j�R�
�0�R�

EL�R�� − ��i�R�
�0�R���� j�R�

�0�R�
EL�R�� − �� j�R�

�0�R����i�R�
�0�R�

EL�R��
+ ��i�R�

�0�R���� j�R�
�0�R���EL�R��� + ���i�R�

�0�R�
EL,j�R�� − ��i�R�

�0�R���EL,j�R��� . �54d�

We do not use the Hermiticity of the Hamiltonian Ĥ to

symmetrize the matrix H̄. In fact, as shown by Nightingale

and Melik-Alaverdian,11 using the nonsymmetric matrix H̄
of Eqs. �54� leads to a stronger zero-variance principle than
the one previously described for the Newton and perturbative
methods: in the limit that the states

���̄0� , ��̄1� , ��̄2� , . . . , ��̄Nopt�
 span an invariant subspace of

the Hamiltonian Ĥ, i.e., in the limit that the linear wave

function �̄lin�R� of Eq. �23� after optimization is an exact

eigenfunction, the matrix S̄−1 ·H̄ and consequently the eigen-
vector solution �p̄ have zero variance. In practice, even if

we do not work in an invariant subspace of Ĥ, using the

nonsymmetric matrix H̄ leads to smaller statistical errors on
a finite sample than using its symmetrized analog. Although
in principle diagonalization of a nonsymmetric matrix leads
to complex eigenvalues, in practice the physically reasonable
�i.e., with large overlap with the current wave function� low-
est eigenvectors have usually real eigenvalues. Of course, in

the limit of an infinite sample M→� a symmetric matrix H̄
is recovered.

As noted in the previous subsection for the Hessian, al-
though the terms ��i�R� /�0�R���� j�R� /�0�R��EL�R� and
��i�R� /�0�R��EL,j�R� in the expression of the Hamiltonian
matrix of Eq. �54d� display a third-order divergence 1/d3 as
the distance d between R and the nodal hypersurface of
�0�R� goes to zero, again these divergences cancel exactly.

C. Comparison of computational cost per iteration

At each optimization iteration, besides the calculation
the current wave function �0�R� and the local energy EL�R�,
the Newton method requires the computation of the first-
order and second-order wave function derivatives, �i�R� and
�ij�R�, and the first-order derivatives of the local energy
EL,i�R�. The linear method requires the calculation of �i�R�
and EL,i�R� but not of the second-order derivatives of the
wave function with respect to the parameters. In principle,
this decreases the computational cost per iteration, especially
if the many orbital-orbital second-order derivatives were to
be computed in the Newton method. In practice, since our
implementation of the Newton method neglects these orbital-
orbital derivatives, the computational cost per iteration of the
Newton and linear methods is very similar.

The perturbative method requires the computation of the
same quantities as the linear method. However, since the
method is not very sensitive to having accurate energy de-
nominators �Ei in Eq. �43�, and since the energy denomina-
tors do not undergo large changes from iteration to iteration,
we compute these for the first iteration only. Hence it is not
necessary to compute EL,i�R� for subsequent iterations. This
leads to a computational speedup per iteration in comparison
with the linear method. The precise speedup factor depends
on the wave function used; typically, for the systems studied
here, we have found factors ranging from about 1.5 for a
single-determinant wave function to 5.5 for the largest mul-
tideterminant wave function considered, for the iterations for
which the �Ei’s are not computed.

084102-9 Optimization of quantum Monte Carlo J. Chem. Phys. 126, 084102 �2007�

Downloaded 22 Apr 2008 to 169.237.43.201. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



V. COMPUTATIONAL DETAILS

We illustrate the optimization methods by calculating the
ground-state electronic energy of the all-electron C2 mol-
ecule at the experimental equilibrium interatomic distance of
2.3481 bohr.40 The ground-state wave function is of symme-
try 1�g

+ in the point group D�h. The estimated exact, infinite
nuclear mass, nonrelativistic electronic energy is
−75.9265�8� hartree,41 where the number in parentheses is
an estimate of the uncertainty in the last digit. This system
has a strong multiconfiguration character due to the energetic
near degeneracy of the valence orbitals, making it a challeng-
ing system despite its small size.

We start by generating a standard ab initio wave function
using the quantum chemistry program GAMESS,42 typically a
restricted Hartree-Fock �RHF� wave function or a MCSCF
wave function, using the symmetry point group D4h which is
the largest subgroup of D�h available in GAMESS. We use the
uncontracted Slater basis set form of Clementi and Roetti,43

with exponents reoptimized at the RHF level by Koga et al.44

For carbon, the basis set contains two 1s, three 2s, one 3s,
and four 2p Slater functions, that are each approximated by a
fit to six Gaussian functions45,46 in GAMESS. Specifically, we
consider the following ab initio wave functions: a RHF wave
function, with orbital occupations 1�g

21�u
22�g

22�u
21�u,x

2 1�u,y
2 ;

a CAS�8,5� wave function, containing 6 CSFs in D4h sym-
metry made of 7 Slater determinants generated by distribut-
ing the eight valence electrons over the five active valence
orbitals 2�g2�u1�u,x1�u,y3�g; a CAS�8,7� wave function,
containing 80 CSFs made of 165 determinants with the seven
active orbitals 2�g2�u1�u,x1�u,y3�g1�g,x1�g,y; a CAS�8,8�
wave function, containing 264 CSFs made of 660
determinants with the eight active orbitals
2�g2�u1�u,x1�u,y3�g1�g,x1�g,y3�u, i.e., all the valence or-
bitals originating from the n=2 shell of the C atoms. In ad-
dition, we construct a larger one-electron basis set by adding
to the basis of Koga et al., one d function with an exponent
of 2.13 optimized in RHF, and we consider a wave function
obtained from a restricted active space �RAS� calculation in
this basis that would correspond to a CAS�8,26� calculation,
using all the 26 orbitals originating from the n=2 and n=3
shells of the C atoms, but where only single �S�, double �D�,
triple �T�, and quadruple �Q� excitations are allowed in the
active space. This wave function, that we denote by RAS-
SDTQ�8,26�, contains 110 481 CSFs made of 411 225 deter-
minants.

The standard ab initio wave function is then multiplied
by a Jastrow factor, imposing the electron-electron cusp con-
ditions, but with essentially all other free parameters chosen
to be 0 to form our starting trial wave function. QMC calcu-
lations are performed with the program CHAMP,47 using this
time the true Slater basis set rather than its Gaussian expan-
sion. In comparison with GAMESS, additional symmetries
outside the point group D4h are detected numerically which
allows one to reduce the numbers of CSFs to 5, 50, and 165
for the CAS�8,5�, CAS�8,7�, and CAS�8,8� wave functions,
respectively. For the large RAS-SDTQ�8,26� wave function,
only a fraction of all the CSFs are retained in QMC by ap-
plying a variable cutoff on the CSF coefficients and an ex-

trapolation procedure is used to estimate the QMC result if
all the CSFs had been included �see Sec. VI E�. For the or-
bital optimization, only the single excitations between orbit-
als of the same irreducible representation of D�h are gener-
ated. We, however, impose no restriction inside each of the
two-dimensional irreducible representations �u and �g. Al-
though one can in principle identify the �x and �y compo-
nents and forbid excitations between these two components
to further reduce the number of free parameters, these redun-
dancies appear to cause no problem in practice during the
optimization. Also, we impose the electron-nucleus cusp
condition on each orbital. The parameters of the trial wave
function are optimized by the previously described energy
minimization procedures in VMC, using a very efficient ac-
celerated Metropolis algorithm,48,49 allowing us to simulta-
neously make large Monte Carlo moves in configuration
space and have a high acceptance probability. Once a trial
wave function has been optimized, we perform a DMC cal-
culation within the fixed-node and the short-time approxima-
tions �see, e.g., Refs. 50–53�. We use an imaginary time step
of �=0.01 hartree−1 in an efficient DMC algorithm featuring
very small time-step errors,54 so that the accuracy is essen-
tially limited by the quality of the nodal hypersurface of the
trial wave function.

VI. RESULTS AND DISCUSSION

A. Optimization of the Jastrow factor

We first study the convergence behavior of the energy
minimization methods for the separate optimization of the
Jastrow, CSF, and orbital parameters. To facilitate compari-
sons, we apply the VMC optimization procedures with a
common fixed statistical error of the energy at each step,
namely, 0.5 mhartree. This is not the usual way in which we
routinely perform optimizations which is described later in
Sec. VI D.

Figure 1 shows the convergence of the total VMC en-
ergy during the optimization of the 24 Jastrow parameters in
a wave function composed of the RHF Slater determinant
multiplied by a Jastrow factor. The linear, perturbative, and
Newton methods are compared. For the Newton method, we
present the results obtained with the UF Hessian of Eq. �50�,
already used in Ref. 23, and with the TU Hessian of Eq. �52�.
To compare the fluctuations of these two Hessians, we have

computed the quantity �=1/Nopt�Nopt+1��i=1
Nopt

� j=i
Nopt

���hij��2,
where ���hij��2 is the variance of the element hij of the Hes-
sian averaged over 100 Monte Carlo configurations. For the
initial iteration of the optimization, far from the energy mini-
mum, the UF Hessian fluctuates more than the TU Hessian
by a factor of �UF/�TU=3.6. For comparison, the LZR Hes-
sian of Eq. �46� fluctuates more than the TU Hessian by a
factor of �LZR/�TU=150, more than two orders of magnitude
larger even for this modest system. Near the energy mini-
mum, the factors are �UF/�TU=3.3 and �LZR/�TU=600.
These factors tend to increase with the system size. The
Newton method with the UF Hessian converges reasonably
fast in about six iterations, which is a little faster than the
convergence shown in Figs. 1, 2, and 4 of Ref. 23 due to the
previously described correlated sampling adjustment of the
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stabilizing constant adiag in the course of the optimization
and despite the fact that we are performing an all-electron
rather than a pseudopotential calculation here.55 The Newton
method with the TU Hessian displays an even faster conver-
gence, the energy being essentially converged within the sta-
tistical error at iteration 3 or 4. The linear method has a
similar convergence rate to the Newton method with the TU
Hessian. The Newton method with the TU Hessian and the
linear method are both stable even without stabilization if
sufficiently large Monte Carlo samples are used. When sta-
bilization is employed, the stabilization constant adiag re-
mains small during the optimization, in this example from
10−3 for the initial iteration to 10−7 for the last iterations
which is two or three orders of magnitude smaller than the
values of adiag in the Newton method with the UF Hessian.
The perturbative method, in contrast, converges very slowly.
In fact, it turns out that the energy denominators for the
Jastrow parameters, �E�i

, calculated according to Eq. �44�,
are all of order unity and adiag needs to be increased to as
much as 102 to retain stability. In this case, the perturbative
method essentially reduces to the inefficient SR optimization
technique.

B. Optimization of the CSF coefficients

Figure 2 shows the convergence of the total VMC en-
ergy during the optimization of the 49 CSF parameters in a
wave function composed of a CAS�8,7� determinantal part
multiplied by a previously optimized Jastrow factor, using
the linear, perturbative, and Newton �with the UF Hessian of
Eq. �50�� methods. The linear method converges in one itera-
tion, as it must, and does not require any stabilization. When
stabilization is used, adiag remains as low as 10−6–10−8 dur-
ing the whole optimization. The Newton and perturbative
methods converge in two or three iterations and are not as
intrinsically stable, adiag being a few orders of magnitude

larger for the Newton method and several orders of magni-
tude larger for the perturbative method. The energy denomi-
nators for the CSF parameters in the perturbative method,
�EcI

, calculated according to Eq. �44�, span only one order of
magnitude.

C. Optimization of the orbitals

Figure 3 shows the convergence of the total VMC en-
ergy during the optimization of all the 44 orbital parameters
in a wave function composed of a single Slater determinant
multiplied by a previously optimized Jastrow factor, using
the linear, perturbative, and Newton �with the UF Hessian of
Eq. �50�� methods. The three methods display very similar
convergence rates, the energy being converged within the
statistical error in one iteration using any of the three meth-

FIG. 1. Convergence of the VMC total energy EVMC of the all-electron C2

molecule during the optimization of the 24 Jastrow parameters in a wave
function composed of the RHF Slater determinant multiplied by a Jastrow
factor. The linear, perturbative, and Newton energy minimization methods
are compared. For the Newton method, the results obtained with the UF
Hessian of Eq. �50� and the TU Hessian of Eq. �52� are shown. The statis-
tical error on the energy at each iteration is 0.5 mhartree. The inset is an
enlargement of the last six iterations.

FIG. 2. Convergence of the VMC total energy EVMC of the all-electron C2

molecule during the optimization of the 49 CSF parameters in a wave func-
tion composed of a CAS�8,7� part multiplied by a previously optimized
Jastrow factor. The linear, perturbative, and Newton �with the UF Hessian of
Eq. �50�� energy minimization methods are compared. The statistical error
on the energy at each iteration is 0.5 mhartree.

FIG. 3. Convergence of the VMC total energy EVMC of the all-electron C2

molecule during the optimization of the 44 orbital parameters in a wave
function composed of a single Slater determinant multiplied by a previously
optimized Jastrow factor. The linear, perturbative, and Newton �with the UF
Hessian of Eq. �50�� energy minimization methods are compared. The sta-
tistical error on the energy at each iteration is 0.5 mhartree.
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ods. In this example, the linear and perturbative methods
converged even without stabilization, whereas the Newton
method required stabilization. The energy denominators for
the orbital parameters in the perturbative method, �Ekl, cal-
culated according to Eq. �44�, typically span two orders of
magnitude from 1 to 100.

In the previous orbital optimization, we have considered
a full optimization of all the orbital parameters, i.e., all the
allowed excitations from the 6 closed occupied orbitals to the
30 virtual orbitals were included in the calculation. One may
also consider a partial orbital optimization by restricting the
excitations to the lowest several virtual orbitals, as also pro-
posed within the EFP or perturbative EFP approaches.56 This
allows one to reduce the computational effort and also to

decrease the statistical noise in the calculation since it is the
excitations to the highest-lying virtual orbitals that modify
the most nodal structure of the wave function, leading to
large fluctuations of the ratio �i�R� /�0�R�. Figure 4 shows
the total VMC energy with respect to the number of virtual
orbitals included in the optimization for a wave function
composed of a single Slater determinant multiplied by a pre-
viously optimized Jastrow factor. Two sets of starting orbitals
are compared: orbitals obtained from a RHF calculation and
orbitals obtained from a restricted Kohn-Sham �RKS� calcu-
lation with the hybrid exchange-correlation functional
B3LYP,57,58 using the ordering given by the orbital energies.
In both cases, as expected, the energy decreases monotoni-
cally within the statistical error as the number of virtual or-
bitals included in the optimization increases. However, the
slope of the energy does not change monotonically and it is
necessary to include almost all the orbitals to get close to the
optimal energy. From Fig. 4 we see that for the C2 molecule
the B3LYP orbitals provide a better starting point than the
RHF orbitals. In our experience, this is often but not always
the case. It is possible that the selection of the virtual orbitals
adopted here, based on the orbital energy ordering, may not
be the best choice and other selections based on symmetry or
chemical intuition could lead to a more rapid convergence.

Note that Fig. 4 was obtained by just optimizing the
orbital parameters for a fixed, previously optimized Jastrow
factor. If instead the Jastrow and orbital parameters are opti-
mized simultaneously a significantly lower energy is ob-
tained, e.g., including all 30 virtual orbitals gives an energy
of −75.8069�5� hartree �see Table I� as opposed to
−75.7845�5� hartree in Fig. 4.

To summarize, the Newton and the linear methods con-
verge very rapidly when optimizing any kind of parameter,
though the linear method is more stable for the optimization
of the determinantal part of the wave function. The perturba-

FIG. 4. Total VMC energy EVMC of the all-electron C2 molecule with re-
spect to the number of virtual orbitals included in the optimization of the
orbital parameters in a wave function composed of a single Slater determi-
nant multiplied by a previously optimized Jastrow factor, using RHF and
RKS B3LYP starting orbitals. The orbitals are ordered according to their
energies. The statistical error on the energy is 0.5 mhartree.

TABLE I. Total VMC and DMC energies, EVMC and EDMC, and VMC standard deviation of the local energy �VMC of the C2 molecule for different trial wave
functions and different levels of optimization. The kind and number of optimized parameters are indicated. When not optimized in VMC, the CSF and orbital
coefficients have been fixed at their RHF values for the single-determinant case and at their CAS MCSCF values for the multiconfiguration cases. For the large
Jastrow�RAS-SDTQ�8,26� wave function, the VMC and DMC values are obtained by an extrapolation procedure �see Sec. VI E and Fig. 8�. For the
energies, the numbers in parentheses are estimates of the statistical error on the last digit. All units are hartree.

Wave function form Parameters optimized in VMC EVMC EDMC �VMC

Jastrow�determinant Jastrow �24� −75.7648�5� −75.8570�5� 1.4
Jastrow �24�+orbitals �44� −75.8069�5� −75.8682�5� 1.1

Jastrow�CAS�8,5� Jastrow �24� −75.8045�3� −75.8750�5� 1.3
Jastrow �24�+CSFs �6� −75.8094�5� −75.8807�5� 1.3
Jastrow �24�+CSFs �6�+orbitals �52� −75.8374�5� −75.8882�5� 1.0

Jastrow�CAS�8,7� Jastrow �24� −75.8469�5� −75.8973�5� 1.2
Jastrow �24�+CSFs �49� −75.8546�5� −75.9032�5� 1.2
Jastrow �24�+CSFs �49�+orbitals �64� −75.8769�5� −75.9092�5� 0.9

Jastrow�CAS�8,8� Jastrow �24� −75.8462�5� −75.8999�6� 1.1
Jastrow �24�+CSFs �164� −75.8562�5� −75.9050�6� 1.1
Jastrow �24�+CSFs �164�+orbitals �70� −75.8801�6� −75.9099�5� 0.9

Jastrow�RAS-SDTQ�8,26� Jastrow+CSFs+orbitals �extrapolation� −75.9016�5� −75.9191�5� ¯

Exact −75.9265�8�
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tive method is a good, less expensive alternative for the op-
timization of the orbital parameters and, to a lesser extent,
for the optimization of the CSF parameters, but is very
slowly convergent for the Jastrow parameters.

It is clear from Eq. �43� that the perturbative method can
be viewed as a Newton method with an approximate Hes-
sian. The poor behavior of the perturbative method for the
Jastrow parameters means that this Hessian is a bad approxi-
mation to the exact Hessian, whose eigenvalues span more
than ten orders of magnitude for these parameters. In fact,
any method based on an approximate Hessian that is not able
to reproduce all these orders of magnitude, such as the steep-
est descent method, is bound to converge very slowly. On the
other hand, the eigenvalues of the Hessian for the CSF and
orbital parameters span only a couple of orders of magnitude
and the approximate Hessian of the perturbative method is
sufficient to allow rapid convergence.

D. Optimization of all the parameters: Simultaneous
or alternated optimization?

After having studied the behavior of the energy minimi-
zation methods for the optimization of each kind of param-
eter, we now move on to the more practical problem of how
to optimize all the parameters.

The most obvious possibility is to optimize simulta-
neously the Jastrow, CSF, and orbital parameters using the
linear method, the method having the best overall efficiency
for all these parameters. In practice, we proceed as follows.
We start an optimization run with a short Monte Carlo simu-
lation with a large statistical error �e.g., 0.02 hartree for the
C2 molecule�, and we decrease progressively the statistical
error at each iteration until the energy is converged to
10−3 hartree for three consecutive iterations. We choose the
optimal parameters to be those from the iteration with the
smallest value of EVMC plus three times the statistical error
of EVMC, which is often but not always the last iteration. A
typical example of the convergence of the total VMC energy
and of the standard deviation �VMC is shown in Fig. 5 for the
simultaneous optimization of the Jastrow, CSF, and orbital
parameters in a wave function composed of a CAS�8,7� de-
terminantal part multiplied by a Jastrow factor. In this case,
the energy converges in four or five iterations. The standard
deviation typically converges a little slower than the energy
since we are optimizing just the energy here. A faster con-
vergence, to a somewhat smaller value of the standard devia-
tion, can be achieved by optimizing a linear combination of
the energy and variance as in Ref. 23.

Another possibility is to alternate between the optimiza-
tion of the different kinds of parameters until global conver-
gence. This has the advantage of allowing one to use differ-
ent optimization methods for the various parameters, e.g.,
optimization of the Jastrow factor and the CSF coefficients
with the Newton or linear method and optimization of the
orbitals with the less expensive but still very efficient pertur-
bative method. Figure 6 shows the convergence of the total
VMC energy and of the standard deviation during the alter-
nated optimization of the Jastrow parameters and of the or-
bital parameters in a wave function composed of a single
Slater determinant multiplied by a Jastrow factor for the all-

electron C2 molecule. The convergence of the energy is sur-
prisingly very slow; the convergence of the standard devia-
tion is even worse. This is an indication of the presence of a
strong coupling between some Jastrow and orbital param-
eters. This situation is in sharp contrast with the case where
a pseudopotential is used to remove the core electrons. Fig-
ure 7 shows the convergence of the total VMC energy during
the alternated optimization of the Jastrow parameters and of
the orbital parameters in a wave function composed of a
single Slater determinant multiplied by a Jastrow factor for
the C2 molecule with a Hartree-Fock pseudopotential59 and
an adequate Gaussian one-electron basis set. The conver-
gence is very fast, the energy being essentially converged
within the statistical error in one macroiteration. This favor-
able behavior has already been observed in other systems
with pseudopotentials,56 but we have also found pseudopo-
tential systems for which the convergence is not as fast.

For the all-electron case, it thus seems that simultaneous
optimization of the parameters is much preferable. The cou-
pling between the different parameters seems to be too

FIG. 5. Convergence of the VMC total energy EVMC �upper plot� and of the
VMC standard deviation of the local energy �VMC �lower plot� of the all-
electron C2 molecule during the simultaneous optimization of the 24 Jastrow
parameters, 49 CSF parameters, and 64 orbital parameters in a wave func-
tion composed of the CAS�8,7� determinantal part multiplied by a Jastrow
factor, using the linear energy minimization method. The statistical error on
the energy is initially of 0.2 hartree and is decreased by a factor of 2 at each
iteration until 0.5 mhartree. The insets are enlargements of the last five
iterations.
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strong to allow an efficient alternated optimization. For large
systems most of the wave function parameters are orbital and
CSF parameters for which the perturbative method works
well. It seems then promising to simultaneously optimize all
the parameters with the Newton or the linear methods, using
for the part of the Hessian or the Hamiltonian matrices in-
volving the CSF and orbital coefficient rough approxima-
tions inspired by the perturbative method.60

E. Systematic improvement by wave function
optimization

Table I reports the total VMC and DMC energies, EVMC

and EDMC, and the VMC standard deviation of the local en-
ergy �VMC=��EL�R�2�− �EL�R��2 for the different trial wave
functions considered. For the single-determinant, CAS�8,5�,
CAS�8,7�, and CAS�8,8�, wave functions, we present the re-
sults for three levels of optimization. At the first level, only

the Jastrow factor is optimized. At the second level, the Ja-
strow factor and the CSF coefficients are optimized together.
At the third level, the Jastrow factor, the CSF coefficients,
and the orbitals are all optimized together. Going from one
level to the next one improves the accuracy of the wave
function but also increases the computational cost of the op-
timization. We note that it is important to reoptimize the
determinantal �CSF and orbital� parameters, along with the
Jastrow parameters, rather than keeping them fixed at the
values obtained from the MCSCF wave functions. For each
wave function, the effect of reoptimizing the determinantal
part is to lower the VMC energy by about 0.03–0.04 hartree,
and the standard deviation of the energy by about
0.2–0.3 hartree. More remarkably, even though the optimi-
zation is performed at the VMC level, the DMC energy also
goes down by about 0.01 hartree implying that the nodal
hypersurface of the trial wave function also improves. In
addition, one observes a systematic improvement of the
VMC and DMC energies when the size of the CAS in-
creases, provided that at least the CSF coefficients are reop-
timized with the Jastrow factor.

Including all the 110 481 CSFs of the RAS-SDTQ�8,26�
wave function is too costly in quantum Monte Carlo, but one
can use a series of truncated wave functions obtained by
retaining only small numbers of CSFs with coefficients
larger in absolute value than a variable cutoff and then esti-
mate the energy by extrapolation to the limit that all the
CSFs are kept. Figure 8 shows the VMC and DMC energies
obtained with these truncated, fully reoptimized multideter-
minantal wave functions with respect to the sum of the
squares of the MCSCF CSF coefficients retained,
�i=1

NCSF�ci
MCSCF�2. Since the RAS-SDTQ�8,26� wave function

is normalized, the latter quantity is equal to 1 in the limit
where all the CSFs are kept in the wave function. Experience

FIG. 6. Demonstration of the slow convergence of the VMC total energy
EVMC �upper plot� and of the VMC standard deviation of the local energy
�VMC �lower plot� of the all-electron C2 molecule during the alternated
optimization of the 24 Jastrow parameters and 44 orbital parameters in a
wave function composed of a single Slater determinant multiplied by a
Jastrow factor. The half-integer macroiteration numbers correspond to the
optimization of the Jastrow factor and the integer macroiteration numbers
correspond to the optimization of the orbitals. The statistical error on the
energy is always 0.5 mhartree. The simultaneous optimization of the Jastrow
and orbital parameters gives an energy of −75.8069�5� hartree and a stan-
dard deviation of 1.1 hartree, indicated on the plots by horizontal lines.

FIG. 7. Convergence of the VMC total energy EVMC of the C2 molecule
with a pseudopotential removing the core electrons during the alternated
optimization of the 24 Jastrow parameters and 42 orbital parameters in a
wave function composed of a single Slater determinant multiplied by a
Jastrow factor. The half-integer macroiteration numbers correspond to the
optimization of the Jastrow factor and the integer macroiteration numbers
correspond to the optimization of the orbitals. The statistical error on the
energy is always 0.5 mhartree. The simultaneous optimization of the Jastrow
and orbital parameters gives an energy of −11.0030�5� hartree, indicated on
the plot by horizontal lines.
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shows that the energies are well extrapolated by quadratic
fits. The extrapolated DMC energy is −75.9191�5� which
amounts for 98.6% of the correlation energy �using the HF
energy of −75.406 20 hartree calculated in Ref. 40�.

On the other hand, to calculate accurate well depths �dis-
sociation energy+zero-point energy� it is often sufficient to
rely on some partial cancellation of error between the atom
and the molecule by employing atomic and molecular wave
functions that are consistent with each other. For example,
using the DMC energy of the C2 molecule given by the
Jastrow-Slater full-valence CAS�8,8� wave function and the
DMC energy of the C atom given by the consistent Jastrow-
Slater full-valence CAS�4,4� wave function with the same
one-electron basis leads to a well depth of 6.46�1� eV, in
perfect agreement within the uncertainty with the exact, non-
relativistic well depth estimated at 6.44�2� eV.41,61 In con-
trast, the well depth calculated from MCSCF with the mo-
lecular CAS�8,8� and atomic CAS�4,4� wave functions
�without Jastrow factor� is 5.62 eV, in poor agreement with
the exact value.

VII. CONCLUSIONS

We have studied three wave function optimization meth-
ods based on energy minimization in a VMC context: the
Newton, linear, and perturbative methods. These general
methods have been applied here to the optimization of wave
functions consisting of a multiconfiguration expansion mul-
tiplied by a Jastrow factor for the all-electron C2 molecule.
The Newton and linear methods are both very efficient for
the optimization of the Jastrow, CSF, and orbital parameters,
the linear method being generally more stable. The less com-
putationally expensive perturbative method is efficient only
for the CSF and orbital parameters. We have used the linear
method to simultaneously optimize the Jastrow, CSF, and
orbital parameters, a much more efficient procedure than al-
ternating between optimizing the different kinds of param-

eters. The linear method is capable of yielding not only
ground-state energies but excited state energies as well.11

Although the optimization is performed at the VMC
level, we have observed for the C2 molecule studied here, as
well as for other systems not discussed in the present paper,
that as more parameters are optimized the DMC energies
decrease monotonically, implying that the nodal hypersur-
face also improves monotonically. In fact, a sequence of trial
wave functions consisting of multiconfiguration expansions
of increasing sizes multiplied by a Jastrow factor, with all the
Jastrow, CSF, and orbital parameters optimized together, al-
lows one to systematically reduce the fixed-node error of
DMC calculations for the systems studied.

Future directions for this work include optimization of
the exponents of the one-electron basis functions �either
Slater or Gaussian functions�, direct optimization of the
DMC energy, and optimization of the geometry.
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