
Technical Appendix

1 Introduction

The Hubbard model offers one of the most simple ways to get insight into how the
interactions between electrons can give rise to insulating, magnetic, and even novel
superconducting effects in a solid. It was written down in the early 1960’s and initially
applied to understanding the behavior of the transition metal monoxides (FeO, NiO, CoO),
compounds which are antiferromagnetic insulators, yet had been predicted to be metallic
by methods which treat strong interactions less carefully.

Over the intervening years, the Hubbard model has been applied to the understanding of
many systems, from ‘heavy fermions’ in the 1980’s, to high temperature superconductors in
the 1990’s, to spin-liquid systems and, in multi-orbital variants, to iron-pnictide and
topological materials. Indeed, it is an amazing feature of the model that, despite its
simplicity, it exhibits behavior relevant to many of the most subtle and potentially
technologically useful properties of solid state physics.

The Hubbard model has been studied by the full range of analytic techniques developed by
condensed matter theorists, from simple mean field approaches to field theoretic methods
employing Feynman diagrams, expansions in the degeneracy of the number of ‘flavors’ (spin,
orbital angular momentum), etc. It has also been extensively attacked with numerical
methods like exact diagonalization and quantum Monte Carlo (QMC) [1–24].

The objective of this technical appendix is to provide an introduction to the Hubbard model
and to the quantities of interest to experiment, leaving, however, many of the specific details
of engineered Si to the main body of the report. We focus on reviewing the different
computational approaches. Discussions of analytic methods can be found in [25–28]. For
completeness, we begin with a simple introduction of the model, and a discussion of its
solution in the non-interacting limit, since this emphasizes the structure of the energy bands
and density of states in different geometries which are important as a foundation to the
correlation effects.

2 The Hubbard Hamiltonian

The Hubbard Hamiltonian treats the regular array of nuclear positions in a solid as a fixed set
of lattice sites; in the first of a number of approximations to real solids, it does not account
for lattice vibrations. The atoms are further simplified so as to accomodate only a single
orbital, which can hold either a spin up or a spin down electron, or both. Acknowledging the
screening of the Coulomb potential, the electrons interact with a repulsion U if they sit on the
same site. A number of methods are capable of taking longer-range Coulomb interactions
also into account, however such calculations are often computationally challenging. The
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Correlation Notation Operators Experiment
Greens Function A(p, ω) cp,σ Angle-Resolved Photoemission

Magnetic Structure Factor S̃(p, ω) S+ = c†p,↑c−p,↓ Inelastic Neutron Scattering

Conductivity Λ(p, ω) jx = iJ(c†i+x̂ci − c†i ci+x̂) Optics and Transport
Four Spin correlations R(ω) S+

p · S−
−p Raman Spectroscopy

Table 1: List of the correlation functions of interest in the Hubbard model (Eqs. 2-6) and
their connection to experiment.

kinetic energy consists of an expression which allows electrons to move from one site to its
neighbors. The energy scale J which governs this ‘hopping’ is determined by the overlap of
two wavefunctions on the pair of atoms. Since wavefunctions die off exponentially, hopping
often is allowed only between the near neighbor sites.

Defining c†jσ(cjσ) to be the operators which create (destroy) electrons of spin σ on lattice site
j, the Hubbard Hamiltonian is written as

H = −J
∑

〈j,l〉σ

c†jσclσ + U
∑

j

nj↑nj↓ − µ
∑

j

(nj↑ + nj↓), (1)

where 〈j, l〉 denotes that sites j and l are nearest neighbors. The situation where the filling
is one electron per site is referred to as ‘half-filling’ since the lattice contains half as many
electrons as the maximum number (two per site). On a bipartite lattice, half-filling occurs
at chemical potential µ = U/2. Studies of the Hubbard model often focus on the half-filled
case because it exhibits Mott insulating behavior and antiferromagnetic order.

The physics of the Hubbard model is encoded in various two particle correlation functions,
in particular the space and imaginary time dependent spin-spin correlations,

Cij(τ) = 〈S−
i+j(τ)S

+
i (0)〉 S+

i (τ) = eτĤ c†i↑ci↓ e
−τĤ , (2)

and analogous observables for the charge and pairing,

Dij(τ) = 〈ρi+j(τ)ρi(0)〉 − 〈ρi+j(0)〉〈ρi(0)〉 ρi(τ) = eτĤ(c†i↑ci↑ + c†i↓ci↓)e
−τĤ (3)

Pij(τ) = 〈∆i+j(τ)∆
†
i (0)〉 ∆†

i (τ) = eτĤ c†i↑c
†
i↓ e

−τĤ . (4)

On a translationally invariant lattice these correlation functions depend only on the difference
j. In the presence of randomness, averaging over different disorder realizations restores
translation invariance. These real space quantities can be summed to obtain the structure
factors at momenta p. One often focuses on the uniform [p = (0, 0)] and antiferromagnetic
[p = (π, π)] values.

The correlation functions in imaginary time τ can be integrated to yield magnetic, charge,
pairing, and transport susceptibilities. Dynamical properties like the spectral function
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A(p, ω) can be obtained through analytic continuation with the maximum entropy method
[18] in cases where the methodology provides data as a function of imaginary time, or more
directly with techniques like exact diagonalization. In the former case, for A(p, ω), we
compute the imaginary time dependent Green’s function and then invert:

G(p, τ) = 〈 cp(τ) c†p(0) 〉 G(p, τ) =

∫

dω
e−ωτ

eβω + 1
A(p, ω) . (5)

For the dynamical spin susceptibility,

S(p, τ) = −
∫ +∞

−∞

dω
Im S̃(p, ω) e−τω

1− e−βω
(6)

with analogous expressions for charge ImΠ(ω), pairing ImP(p, ω), and current Λ(p, ω). The
relative sizes of the charge, spin, pairing, and current gaps can be used to distinguish between
different types of insulating phases [29].

The more direct procedure for dynamics is described later when details of the exact
diagonalization approach are provided.

These quantities directly connect to experimental probes of materials, emphasizing the need
to measure dynamics. See Table 1.

3 Limit of No Interactions

In the case of translationally invariant lattices, the Hubbard Hamiltonian is solved
analytically by defining creation and destruction operators in momentum space.

c†pσ =
1√
N

∑

j

eip·jc†jσ. (7)

Depending on the lattice geometry, there are different dispersion relations which reflect the
energy ǫ(p) associated with momentum p. For example, in the commonly studied case of a
square lattice

ǫ(p) = −2 J
(

cos px + cos py
)

The dispersion relation determines the density of states N(E) which counts the number of
ways in which the system can have a given energy E.

N(E) =
1

N

∑

p

δ
(

E − ǫ(p)
)

.

The ‘spectral function,’ Eq. 5, is the generalization of the density of states to the situation
when interactions are turned on (U 6= 0) and is one of the central quantities characterizing
the metal-insulator transition.
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Figure 1: The density of states,
N(E) of the square lattice
Hubbard model (left) and the
honeycomb lattice (right). Note
the special features at half-
filling (E = 0): the van-Hove
singularity in the former, and
the semi-metallic behavior in the
latter.

In many cases, the behavior of the density of states forms the basis of the simplest
understanding of the physics of the Hubbard Hamiltonian. On the square lattice, for
example, N(E) has a van-Hove singularity (Figure 1, left) at half-filling (E = 0) which
plays a fundamental role in the critical value of U for which magnetic order onsets. This
singularity, along with Fermi surface nesting, was also suggested to have implications for
high temperature (cuprate) superconductivity. The density of states of other geometries is
also the foundation for determining the properties of associated materials. As an example,
the honeycomb lattice of graphene has a linearly vanishing N(E) (see Figure 1, right)
associated with the Dirac cones of its dispersion relation. The ‘Lieb lattice’ which forms
the basis of a somewhat more sophisticated description of the CuO2 sheets of the cuprates
hosts a ‘flat band’ and topologically localized states. In this way, even the simple lattice
structure of the Hubbard Hamiltonian can reflect basic band structure of materials, and
hence be an appropriate starting point for an understanding of the deeper effects of
electron-electron correlations.

With that background, we now turn to methods which can address the effects of those
interactions. When possible, we frame our discussion in the language of engineered silicon
systems.

4 Exact Diagonalization

For small enough lattices (in particular for small dopant arrays under consideration in this
report), the method of choice for solving the Hubbard model is exact diagonalization (ED).
In this approach, the Hamiltonian matrix is expressed in some basis (usually the many-body
particle number basis for the Fermi-Hubbard model) and is then fully diagonalized. The
access to the exact eigenvalues and eigenvectors of the system allows for the calculation of
any static or time/frequency dependent quantity, including the transport properties. Certain
symmetries of the Hamiltonian and conservation laws, such as the SU(2) symmetry, the
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conservation of total number of particles or spin, are used in practice to block diagonalize the
matrix and reduce the memory and computational time needed for the diagonalization. The
size of the Hilbert space, and hence, the size of the Hamiltonian matrix, grows exponentially
with the size of the system and the full diagonalization is simply not feasible beyond ∼ 10
sites. For a 10-site system, the matrix corresponding to the sector with 10 particles and a
total spin of zero has a dimension of 63504, which would require about 120GB of random
access memory (RAM) and a few tens of hours (depending on the processor) to be fully
diagonalized using an optimized linear algebra package (LAPACK).

Observables like the charge correlation function of Eq. 2 can easily be expressed in terms of
the energy eigenstates |ψα〉 and eigenvalues Eα:

Cij(t) =
〈

S−
i+j(t)S

+
i (0)

〉

= Z−1
∑

α

e−βEα
〈

ψα

∣

∣S−
i+j(t)S

+
i (0)

∣

∣ψα

〉

(8)

= Z−1
∑

α

e−βEα
〈

ψα

∣

∣ eitH S−
i+j(0) e

−itH S+
i (0)

∣

∣ψα

〉

= Z−1
∑

α,β

e−βEα
〈

ψα

∣

∣ eitHS−
i+j(0)

∣

∣ψβ

〉

〈ψβ

∣

∣ e−itHS+
i (0)

∣

∣ψα

〉

= Z−1
∑

α,β

e−βEα eit(Eα−Eβ) 〈ψβ

∣

∣S+
i (0)

∣

∣ψα

〉

〈ψα

∣

∣S+
i+j(0)

∣

∣ψβ

〉

where Z =
∑

α e
−βEα is the partition function and β = 1/T is the inverse temperature.

The appearance of Eα − Eβ emphasizes connection of the expression for the correlation
function to the excitation energy scales in the system. The other key components are the
matrix elements of the operators to be measured. The strength of the exact diagonalization
approach is the ability to access these quantities directly, without recourse to methods like
analytic continuation.

For large diagonalizations such as the one mentioned above for a 10-site system, one may
take advantage of multi-threaded features in Intel’s math kernel library (MKL) in case of
large number of processors per node, or distributed-memory linear algebra packages, such as
ScaLAPACK, which can employ massively parallel environments to reduce the computational
time, and get around memory issues by distributing the Hamiltonian and other large matrices
between nodes during the calculation.

Full diagonalization scales as O(N3), where N is the matrix dimension. The same scaling
applies to the calculation of the dynamical correlation functions after the diagonalization
step, often with a much larger prefactor. In those cases, parallel schemes, such as message
passing interface (MPI) or OpenMP can be utilized to distribute the computation load.

Results for the Hubbard model on system sizes that can be exactly diagonalized are expected
to vary significantly depending on the size and geometry of the clusters considered. Those
changes are expected to be especially notable in the weak-coupling region where the strength
of the interaction strength is smaller than the noninteracting bandwidth. However, this can
be advantageous in comparing with experiments on dopant arrays since currently available
systems are far from the thermodynamic limit and each can have a unique geometry and set
of model parameters. Another advantage of exact diagonalization over most other numerical
methods for the Hubbard model is that any geometry and virtually any variant of the model
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can be simulated. This is especially useful for dopant arrays since hopping amplitudes or
Coulomb interactions are expected to extend up to a few dopant sites in range.

5 The Lanczos Algorithm

Current experiments with dopant arrays on Si can be done at extremely low temperatures,
one of their major potential advantages over optical lattices. In cases where only the ground
state, or even a few excited states, are sufficient to estimate properties at experimentally
relevant temperatures, one can take advantage of the Lanczos algorithm to go to larger system
sizes. The Lanczos algorithm offers an iterative method to diagonalize huge matrices,

H
∣

∣Φ1

〉

= e1
∣

∣Φ1

〉

+ b2
∣

∣Φ2

〉

· · ·
H

∣

∣Φn

〉

= en
∣

∣Φn

〉

+ bn+1

∣

∣Φn+1

〉

+ bn
∣

∣Φn−1

〉

(9)

based on the recurrent procedure

en =
〈

Φn

∣

∣H
∣

∣Φn

〉

∣

∣Φn+1

〉

= H
∣

∣Φn

〉

− en
∣

∣Φn

〉

− bn
∣

∣Φn−1

〉

. (10)

By keeping only a few arrays of size N during the calculation, one can access a limited, but
nevertheless highly useful portion of the spectrum- the ground state and low-lying excited
states. Through the successive operation of the Hamiltonian on an initially random state
in Eq. 9, the basis is transformed to the basis for a Krylov subspace in which the matrix is
tridiagonal, much smaller in dimension, and with a spectrum that approaches that of the
original matrix starting at the ground state as the number of iterations increases. A simple
QR algorithm can then diagonalize the tridiagonal matrix to obtain the lowest eigenvalues.

There are well-known stability issues associated with the Lanczos algorithm, preventing one
from continuing the iterative process to obtain the full spectrum. Often these issues are
caused by the loss of orthogonalization between basis vectors of the new subspace, which
can be overcome by keeping more vectors of size N during the calculation and adding an
increasingly expensive re-orthogonalization step as the number of iterations is increased.
Nevertheless, the algorithm remains a powerful one for the low-temperature physics of
quantum lattice models.

6 Numerical Linked Cluster Expansions

In numerical linked-cluster expansions (NLCEs) [30–33] an extensive property of the model
on a finite or infinite lattice is expressed as a sum over contributions from all the clusters
that can be embedded in the lattice.

P =
1

L

∑

c

WP (c), (11)
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where P is the extensive property per site, L is the system size (can be infinity), and WP (c)
is the contribution to property P from cluster c. The system is either in the thermodynamic
limit or is larger than what can be treated exactly, for example using exact diagonalization.
In the case of infinite lattice size, the factor 1

L
can be removed if we consider the contributions

only from those clusters that are not related through translational symmetry. If the model
retains the underlying point-group symmetries of the lattice, the contributions from all the
clusters that are related by point-group symmetry transformations can also be combined.

The contribution of each clusterWP (c) is calculated through the inclusion-exclusion principle
and using the exact knowledge of the property on that cluster and smaller clusters via ED.

p(c) =
∑

s⊆c

WP (s) WP (c) = p(c)−
∑

s⊂c

WP (s), (12)

where the sum runs over the cluster c and all of its sub-clusters s. Starting from the smallest
cluster in the expansion (typically a single site) for which

∑

s⊂cWP (s) = 0, one can obtain
WP (c) for larger clusters up to a certain size until p(c) can no longer be exactly known.
Exact diagonalization is used to calculate p(c).

NLCEs can enjoy many of the advantages of the ED, e.g., virtually any model can be
simulated and one has access to the full partition function and all the static and time-
dependent correlation functions. The series, in its region of convergence, also produces
exact results with no systematic or statistical errors. That is especially useful when it is
written for the lattice model in the thermodynamic limit. The main disadvantage can be
the limitation in temperature. For models with divergent correlations in the ground state,
the convergence of the series is lost below the temperature where the correlation length
grows beyond the order of the largest clusters in the series. For the uniform Hubbard model
in the thermodynamic limit with a repulsive interaction, the dominant correlations at low
temperatures are antiferromagnetic with an exchange constant that is inversely proportional
to the interaction U in the strong-coupling regime. Therefore, the lowest convergence
temperature in the NLCE decreases with increasing U at half filling and can be lower than
what quantum Monte Carlo methods can reliably access due to sampling issues that arise at
large U [34–36].

NLCEs can be utilized to calculate thermodynamic as well as transport properties (see
Sec. 10) of the dopant arrays in Si for sizes larger than those that can be solved using ED.
Since there can be significant disorder in the model parameters, leading to an entanglement
that will likely remain short ranged even at the lowest temperatures, it would not be
unexpected to find that the NLCE with a finite number of terms converges in a wide range
of temperatures, perhaps including the ground state.

7 Determinant Quantum Monte Carlo

In the determinant QMC method [1], a path integral for the partition function Z is
constructed by discretizing the inverse temperature β = L∆τ , so that the full imaginary
time evolution operator can be written as the product of L terms. The small parameter ∆τ
allows for the ‘Trotter approximation’ to separate the exponential of the kinetic K̂ (the

terms including the hopping J and chemical potential µ) and potential V̂ (involving the

7



on-site Hubbard interaction U) energies:

Z = Tr
[

e−βĤ
]

= Tr
[

e−∆τĤ · · · e−∆τĤ
]

≈ Tr
[

e−∆τK̂e−∆τV̂ · · · e−∆τK̂e−∆τV̂
]

(13)

On every site j and imaginary time slice τ , the terms e−∆τV̂ are rewritten via the discrete
Hubbard-Stratonovich transformation [37]

e−U∆τ n↑ n↓ =
1

2
e−U∆τ (n↑+n↓) /2

∑

S=±1

eλS (n↑−n↓) (14)

so that up and down fermions no longer couple to each other but instead move in a space and
imaginary time dependent auxiliary field S(j, τ). The coupling constant λ obeys coshλ =
eU∆τ/2. This transformation converts Eq. 13 into a trace over quadratic forms of the fermion
opperators, and allows them to be integrated out analytically, resulting in the product of
the determinants of two matrices Mσ, one for each spin species. The partition function

Z = Tr e−βĤ is then a sum over all configurations of the Hubbard-Stratonovich field, which
is sampled stochastically with both single spin flip moves [1] and ‘global’ updates which
decrease autocorrelation time [38].

DQMC allows the exact solution of tight binding Hamiltonians like Eq. 1 on finite spatial
clusters, up to statistical errors generated by the Monte Carlo sampling. Systematic ‘Trotter
errors’ from the discretization of β can be extrapolated to zero [39–41]. Continuous time
methods also exist, in related algorithms. These methods are advantageous since there is
no Trotter error [42–44], especially when quantities of very high precision such as energy
and double occupancy are being measured. DQMC currently allows simulations of several
hundred up to one thousand spatial sites, depending on the strength of U and the inverse
temperature [45], and order of magnitude larger than exact diagonalization. The chief
limitation of DQMC is the sign problem [46–52]. Constrained path methods have been
developed to address the sign problem in DQMC. However, they rely on an approximation
in the form of assuming a particular structure for the nodes of the fermion wave function [20].

The matrix inverses Gjσ = M−1
jσ are the single particle fermion Green’s functions. Their

matrix elements directly determine the density and kinetic energy. The double occupancy,
and, indeed all the various spin, charge and pairing correlations of Eqs. 2,4 are obtained by
averaging appropriate product of elements of G↑G↓.

8 Dynamical Mean Field Theory and its Cluster

Extensions

Conventional ‘static’ mean field theory (MFT) was one of the earliest methods used to
solve the Hubabrd Hamiltonian. The approach begins by decoupling the interaction term,
Unj↑ nj↓ → U(nj↑ 〈nj↓〉 + 〈nj↑〉nj↓ − 〈nj↑〉 〈nj↓〉 ). After making a specific ansatz for the
averages 〈njσ〉, the resulting Hamiltonian is then quadratic in the fermion operators and
can be diagonalized. The physics is determined by finding the expectation values which
minimize the free energy, or, equivalently, a self-consistent computation of 〈njσ〉. Static
MFT can be used to determine magnetic and charge order (and, indeed, provided some of
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Figure 2: DQMC results
for the equal time
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Ci,j(τ = 0) =
〈 S−

i+j(0)S
+
i (0)〉 for

j = i + (lx, ly) (see
Eq. 2). Simulations were
done on a 20x20 lattice
at U/t = 2 and three
inverse temperatures
β. As β increases, long
range antiferromagnetic
correlations develop.

the first indications of ‘stripe’ formation [53]), but suffers some very serious limitations. It
tends to grossly overestimate the tendency for ordered phases. Even more significantly, since
static MFT reduces the problem to noninteracting electrons coupled to average densities,
the resulting excitations have infinite lifetime.

This latter problem is rectified by Dynamical Mean Field Theory (DMFT) [54–63]. The
basic idea of DMFT is to replace the full lattice problem of Eq. 1 with a single-site ‘impurity’
problem in which the local Green’s function is determined self-consistently. The mean field
with which the impurity couples is allowed to fluctuate in imaginary time so that DMFT
better models the effects of the electron-electron interaction U .

The Anderson Impurity Model (AIM) onto which DMFT maps the Hubbard Hamiltonian is
given by,

H =
∑

p

ǫp a
†
pap +

∑

pσ

Vpσ
(

a†pσcσ + c†σapσ
)

+ Un↑n↓ − µ(n↑ + n↓) (15)

which describes a single electron mode (cσ) hybridized with a bath (apσ). This AIM can be
solved via a variety of techniques including the numerical renormalization group, iterated
perturbation theory, the non-crossing approximation, and continuous time QMC, the last of
which being the most challenging computationally, but at the same time the least biased.
These methods yield the impurity Greens function Gimp(τ) = 〈 T c(τ)c†(0) 〉 (where T is the
imaginary time ordering operator) whose Fourier transform is,

Gimp(iωn) =
∑

p

1

iωn + µ− ǫ(p)− Σ(p, iωn)
(16)

The DMFT approximation is the replacement of Σ(p, iωn) by Σ(iωn), i.e. ignoring the
momentum dependence of the self-energy. The DMFT equations are solved self-consistently
from a starting guess for Σ(iωn). DMFT can be shown to provide an exact solution of the
Hubbard Hamiltonian in the limit of infinite dimension [54,58].
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Although we focus here on the use of DMFT to solve the Hubbard Hamiltonian, it is
important to note that it has also revolutionized electronic structure calculations (the so-
called ‘LDA+DMFT’ method [64]), since realistic band structures can be incorporated into
ǫ(p) in Eq. 16.

The underlying approximation of DMFT, that the self-energy is independent of momentum,
can be systematically improved via extensions such as the Dynamic Cluster Approximation
(DCA) [65, 66] and Cluster DMFT [67]. Within the DCA, the self-energy is evaluated on a
grid of Nc momentum points. Since they build upon the method as described above, we will
not review the details here. However, we do show in Fig. 4 some state-of-the-art results for
the d-wave superconducting transition in the 2D Hubbard model [68].

DMFT and its cluster extensions have several very significant advantages over real-space
methods like DQMC. Specifically, they have a much better ‘sign problem’ (although this
becomes less true as the cluster size increases) and they work directly in the thermodynamic
limit. The latter fact enables them to extract transition temperatures via divergences
of appropriate susceptibilities (Fig. 4) without having to make recourse to a laborious
finite size scaling analysis as is required in, for example, DQMC [45]. For these reasons,
much of our most reliable knowledge of the physics of the Hubbard Hamiltonian in the
thermodynamic limit, including the question of the existence of a superconducting state
with d-wave symmetry, has been through these approaches.
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9 Diagrammatic Quantum Monte Carlo

Diagrammatic QMC [21,69–73] begins with a perturbative expansion of the partition function

Z = Tr e−βH = Tr T e−βH0 exp
[

−
∫ β

0

dτH1(τ)
]

=
∑

k

(−1)k
∫ β

0

dτ1 · · ·
∫ β

τk−1

dτk Tr
[

e−βH0H1(τk) · · ·H1(τ1)
]

(17)

where H0 and H1 are the Hubbard model kinetic and potential energy terms respectively.
In contrast to DQMC, which samples a Hubbard-Stratonovich or phonon field with a
weight given by fermion determinants, diagrammatic QMC instead samples the Feynman
diagrams and integration variables (momentum-energy) with which they are constructed.
The numbers and positions of the vertices are also sampled through insertion and removal
of {τl}, effectively sampling the variable k in Eq. 17. For a given temperature and
interaction strength, there is a peak in the distribution of the order of the diagrams
contributing to Eq. 17, which allows for efficient sampling.

As with other numerical methods, significant improvements since its first introduction have
been made to diagrammatic QMC, including the analytic summation of all connections to
vertices, which reduces the phase space to be explored stochastically and also reduces or even
eliminates, in some cases, the sign problem. The replacement of bare interaction vertices by
exact two-body scattering amplitudes likewise is a way to perform parts of the diagrammatic
sum analytically.

Applications of diagrammatic QMC have been made to the Hubbard model and also to
electron-phonon systems [72] and frustrated spin systems [73]. Like DMFT, diagrammatic
QMC can be combined with electronic structure theory [74, 75] to provide more accurate
modeling of real materials.
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10 Transport Properties

Spin and charge transport can be studied using the numerical methods discussed in this
report. These properties will have the most relevance to the dopant array experiments at
first as measurement capabilities in those measurements are limited.

To study transport properties numerically, we look at the system’s response to an external
electric or magnetic field that is in general a function of both space and frequency. We
calculate the alternating current (AC) in the linear response regime through Kubo’s formula,
which relates this current to the correlation functions in the unperturbed system [76, 77].
For example, in the absence of any coherent response (Drude weight), the AC conductivity
can be written as

σxx(q, ω) =
i

ω
Λxx(q, ω), (18)

where ω is the frequency, and Λxx(q, w) is the Fourier transform of the retarded correlation
function of the current operator

Λxx(q, t− t′) = −iΘ(t− t′) 〈 [jx(−q, t), jx(q, t
′)] 〉 (19)

where t and t′ are time, Θ is the step function, and jx(q, t) = eitHjx(q)e
−itH is the time-

dependent current operator at wavevector q (we have taken ~ = 1). The charge current
operator can be obtained via the continuity equation and takes the following form for the
Hubbard model:

jx(q) = iJ
∑

l,σ

eiq·rl(c†l+xσclσ − c†lσcl+xσ), (20)

where J is again the hopping amplitude. Taking the uniform limit q = 0, the real part of
the AC conductivity, which is a quantity likely measured in the engineered Si experiments,
can be simplified to

Re σxx(ω) = − 2

ω
Im

∫ ∞

0

dt eiωt Im 〈jx(t)jx(0)〉 (21)

Other equivalent expressions for Re σ(ω) that use only the real part or both the real and
imaginary parts of the current-current correlation function can be derived as well. For
example, one can show that [76, 78,79]

Re σxx(ω) =
(1− e−βω)

ω
Re

∫ ∞

0

dt eiωt 〈jx(t)jx(0)〉 (22)

whose direct current (DC) limit (ω → 0), takes a simple form of

Re σDC
xx = β Re

∫ ∞

0

dt 〈jx(t)jx(0)〉 (23)

In principle, the time-dependent current correlator can be calculated in the ED or the
NLCE in order to obtain the conductivity [79]. However, in the ED for small clusters, the
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Figure 5: Taken from Ref. [79]. The real time spin current correlation functions and the AC
spin conductivity of the Hubbard model are shown for U/J = 8 at half filling. The AC spin
conductivity is obtained from Eq. 22 (solid lines) and Eq. 21 (dashed lines) at the various
temperatures.

correlator is expected to exhibit significant fluctuations at all times due to the boundaries,
and therefore, any Fourier transform of the finite-time correlation function can lead to
uncertainties in the conductivity. For this reason, it may be advantageous to take the
Fourier transform first by explicitly expressing the time dependence of the current
correlator [76]. The resulting formula takes the following form, often used in the ED study
of the conductivity [80]:

Re σxx(ω) = π
(1− e−βω)

ωZ

∑

n,m

e−βEn| 〈n|jx(0)|m〉 |2δ(ω + En − Em), (24)

where Z is the partition function, En is the eigenenergy of the nth eigenstate of the
Hamiltonian, and δ is the delta function. This expression is of course directly analogous to
Eq. 22.

In the NLCE, we can work with real time current correlation functions [79]. Even though
the convergence of the series at a given temperature can now be lost beyond some maximal
time, in the absence of boundary effects for the system in the thermodynamic limit, the
fluctuations in time are expected to die off eventually and a Fourier transform of the Green’s
function in the converged region can still provide a good estimate for the AC conductivity,
especially away from the zero frequency limit.

In Fig. 5, we show the AC spin conductivity for the Hubbard model in the thermodynamic
limit. The spin current is defined similar to the charge current in Eq. (20) and is obtained
by including the spin σ/2 as a multiplying factor inside the sum [79].

Even though the real time dependent quantities are not accessible in equilibrium quantum
Monte Carlo methods, such as DQMC, DMFT, DCA, and diagrammatic QMC described
earlier, the retarded current Green’s function of Eq. (19) can be calculated on the imaginary
time axis:

Λxx(q, τ) = −〈T jxx(q, τ)jxx(q, 0)〉 . (25)

The AC conductivity can be obtained by Fourier transforming the imaginary-time Green’s
function to the Matsubara frequency space and then analytically continuing the imaginary
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frequency quantity to the real frequency axis (iωn → ω + δ), a process that is numerically
ill-defined, but can be accomplished using, e.g., the maximum entropy method. It amounts
to taking the inverse of an integral such as an analog of Eq. 6, [81]

Λxx(τ) =

∫ ∞

−∞

dω

π

−e−τω

1− e−βω
Im Λxx(ω) (26)

An approximate form for the DC conductivity can be worked out for temperatures much
lower than a characteristic frequency scale in the system below which the AC conductivity
is essentially constant. Starting from Eq. (26), it can be shown that in this regime

σDC
xx ≈ β2

π
Λxx(β/2), (27)

a form that can be used as a proxy for the actual DC conductivity of the system. Similar
expressions have been used for the electronic spectral function, spin susceptibility, as well as
conductivity [81–83]

Another arguably more robust proxy can be derived for the same temperature regime by
incorporating information from the curvature of the current Green’s function [84,85].

σDC
xx ≈ 2πΛxx(β/2)

2

Λ′′

xx(β/2)
(28)

Figure 6 shows some DQMC results for the transport in a system with several weakly
interacting (metallic) layers, connected to a Mott insulator via an interfacial hopping V .
σ−1 is the conductivity (obtained via Eq. 27) in the metallic layer most proximate to the
insulator. σ−2 is the conductivity in the next deepest metallic layer. For V larger than four
times the intralayer hopping J , the conductivity σ−1 right at the boundary vanishes as a
consequence of the formation of magnetic singlets across the boundary. The conductivity
deeper within the metal (σ−2) then recovers.
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11 Conclusions

Here we have very briefly reviewed some of the technical details of the powerful set of
computational approaches developed to solve the Hubbard Hamiltonian over the last three
decades. These methods have given tremendous insight into the physics of the model.
Unfortunately, one lesson has been that the Hubbard Hamiltonian supports a diverse set
of possible low temperature phases, and that these often have free energies which differ
by rather small amounts. As a consequence, there is the ongoing concern that seemingly
innocuous approximations or finite size effects might affect the conclusions. This observation
has driven more and more accurate algorithms, and also attempts such as optical lattice
emulation and, potentially, the engineered materials approach of this report. The objective
is a careful comparison of theory and experiment which will conclusively determine the strong
correlation physics of the Hubbard model.

Of the methods described there, exact diagonalization, Lanczos, the Numerical Linked
Cluster Expansion, and Determinant Quantum Monte Carlo all work directly in real space,
and have the capability of modeling uncertainties in atomic placement and on-site
interaction strength. In addition, they have complementary capabilities in terms of lattice
sizes, accessible energy and temperature scales, and ability to draw out transport
properties. They therefore are likely to partner well with the first generation of engineered
materials experiments. Once the initial testing and comparisons are done, one would
expect the full panoply of techniques to be crucial.
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