Phase Diagram and Visibility of Optically Trapped Bosons

- Optically Trapped Atoms and Boson Hubbard Model
- Matter Wave Interference Experiment
- Equilibrium Phase Diagram: Uniform System
- Equilibrium Phase Diagram: Confined System
- Visibility
- “Pause” in Evolution with U
- Conclusions
Collaborators

G. Batrouni, F. Hébert (INLN)
M. Rigol, V. Rousseau, R.T.S. (UC Davis)
M. Troyer (ETH Zurich)
A. Muramatsu (Stuttgart)
P. Denteneer (Leiden)
P. Sengupta (UCR)

Funding
National Science Foundation
Optical lattice in a trap

The lattice sites are the nodes of the standing wave.
Lattice spacing \(a = \lambda / 2 \)
The model

The Hamiltonian for bosonic atoms in external trap:

\[H = \int d^3x \, \psi^\dagger(x) \left(-\frac{\hbar^2}{2m} \nabla^2 + V_0(x) + V_T(x) \right) \psi(x) \]

\[+ \frac{1}{2} \frac{4\pi a_s \hbar^2}{m} \int d^3x \, \psi^\dagger(x) \psi^\dagger(x) \psi(x) \psi(x) \]

\[\psi(x) : \text{boson field operator, } V_T(x) : \text{confining potential} \]

\[a_s : \text{scattering length } V_0(x) : \text{optical lattice potential} \]

Simplest case:

\[V_0(x) = \sum_{j=1}^{d} V_{j0} \sin^2(kx_j) \]

\[k = \frac{2\pi}{\lambda} \]

\[a = \frac{\lambda}{2} \]
The bosonic Hubbard model

Well described by the tight-binding bosonic Hubbard model,\(^1\)

\[
H = -J \sum_{\langle i,j \rangle} (b^\dagger_i b_j + b^\dagger_j b_i) + \sum_i V_T(x_i) \hat{n}_i + U \sum_i \hat{n}_i (\hat{n}_i - 1)
\]

where

\[
[b_i, b_j^\dagger] = \delta_{ij}, \quad \hat{n}_i = b_i^\dagger b_i
\]

Model parameters can be tuned.
A great deal is known about this model without trap including its phase diagram

Absorption images (in 3D) of multiple matter wave interference patterns. (a) $U = 0E_r$, (b) $U = 3E_r$, (c) $U = 7E_r$, (d) $U = 10E_r$, (e) $U = 13E_r$, (f) $U = 14E_r$, (g) $U = 16E_r$, (h) $U = 20E_r$ ($E_r = \frac{\hbar^2 k^2}{2m}$)

The claim: Quantum phase transition SF \rightarrow Mott Insulator for $U \approx 12E_r$

Several recent experiments produced MI on 1D optical lattices in traps

Review 1D uniform ($V_T(x) = 0$) model
One dimensional uniform Hubbard model in the ground state2

\[H = -J \sum_{\langle i,j \rangle} (b_i^\dagger b_j + b_j^\dagger b_i) + U \sum_i \hat{n}_i (\hat{n}_i - 1) - \mu \sum_i n_i \]

No hopping limit: $J/U = 0$

\[H = U \sum_i \hat{n}_i (\hat{n}_i - 1) - \mu \sum_i \hat{n}_i \]

Ground state is obtained by minimizing the energy,

\[\epsilon(n) = U n(n - 1) - \mu n \]

where $n \geq 0$ is the occupation of the site. For

\[2(n - 1) < \frac{\mu}{U} < 2n \]

The energy is minimized by having n bosons on each site.

μ can be changed in this interval and n does not change:

Excitation energy gap, incompressible Mott Insulator.

Perturbation shows that this Mott Insulator extends into the finite J/U region.

World-Line Quantum Monte Carlo Simulations

Inverse Temperature discretized: \(\beta = L\Delta \tau \)

\[
Z = \text{Tr} e^{-\beta H} = \text{Tr} [e^{-\Delta \tau H}]^L
\]

Checkerboard Decomposition:
Divide Hamiltonian into two mutually commuting pieces

\[
H_a = -J \sum_{i \text{ odd}} (b_i^\dagger b_{i+1} + b_{i+1}^\dagger b_i) + U/2 \sum_i \hat{n}_i (\hat{n}_i - 1) - \mu/2 \sum_i \hat{n}_i
\]

\[
H_b = -J \sum_{i \text{ even}} (b_i^\dagger b_{i+1} + b_{i+1}^\dagger b_i) + U/2 \sum_i \hat{n}_i (\hat{n}_i - 1) - \mu/2 \sum_i \hat{n}_i
\]

Insert complete sets of occupation number states

\[
Z = \sum_{n_l} \langle n_0 | e^{-\Delta \tau H_a} | n_1 \rangle \langle n_1 | e^{-\Delta \tau H_b} | n_2 \rangle \langle n_2 | e^{-\Delta \tau H_a} | n_3 \rangle \langle n_3 | e^{-\Delta \tau H_b} | n_4 \rangle \langle n_4 | \ldots \langle n_{2L-2} | e^{-\Delta \tau H_a} | n_{2L-1} \rangle \langle n_{2L-1} | e^{-\Delta \tau H_b} | n_0 \rangle
\]
State of system represented by occupation number paths $n_i(\tau)$
Paths sampled stochastically

Zero Winding
Non-Zero winding
Measurable quantities

\[\rho_s = \frac{\langle W^2 \rangle}{2dt/\beta} \]

\[\mu(N) = E(N + 1) - E(N) \]

\[j(\tau) = \sum_{i=1}^{N_b} [x(i, \tau + 1) - x(i, \tau)] \]

\[\mathcal{J}(\tau) = \langle j(\tau)j(0) \rangle \]

\[\mathcal{J}(\omega) = \sum_{\tau} e^{i\omega \tau} \mathcal{J}(\tau) \]

\[\mathcal{J}(\omega \rightarrow 0) = \frac{1}{\beta} \langle W^2 \rangle \]

\[S(k) = \sum_r e^{ikr} \langle n(r_0)n(r_0 + r) \rangle \]
Stochastic Series Expansion\(^3\)

Express Hamiltonian as sum of diagonal and non-diagonal operators on bonds of lattice

\[
H = \sum_i (H_{Ui} + H_{Ji})
\]

\[
H_{Ui} = Un_i(n_i - 1) - \mu n_i
\]

\[
H_{Ji} = -J(b_i^\dagger b_{i+1} + b_{i+1}^\dagger b_i)
\]

Expand partition function in powers of \(H \)

\[
Z = \text{Tr} \ e^{-\beta H} = \sum_\alpha \sum_n \frac{(-\beta)^n}{n!} \langle \alpha | H^n | \alpha \rangle.
\]

Insert/remove operators stochastically, satisfying detailed balance.

Considerable similarities with (advanced) world-line algorithms.

Advantages over our (older) world-line implementation:

- Loop updates (reduce autocorrelation times).
- Greens function measurements possible.

Phase diagram

- For $L=64, U=4J$
 - $\rho = N_b / L$
 - μ

- For $\beta=2, U=20t$
 - $L=16, N_b=15$
 - $\Im(\omega)$

- For $\beta=2, U=20t$
 - $L=16, N_b=16$
 - $\Im(\omega)$
Quantum Phase Transition

\[\kappa = \frac{\partial \rho}{\partial \mu} \rightarrow |\mu - \mu_c|^{-\nu/2} \text{ as } \mu \rightarrow \mu_c \]

\[\rho_s \sim |\rho - \rho_{Mott}|^{z-d} \]

System sizes ranging from \(L = 16 \) to \(L = 256 \)

Quantum phase transition!

\(z = 2, \quad \nu = 1 \)

\(\beta=2, \ t=1, \ V_0=20 \)

slope = 1.02
One dimensional trapped Boson Hubbard model

No globally incompressible Mott plateau in the trapped system!
As a whole, the system is always compressible.

Local compressibility

Several possible definitions of local compressibility. Simplest:

\[\kappa_i = \frac{\partial n_i}{\partial \mu_i} \]

No evidence of \(\kappa \) diverging: No quantum phase transition
ρ and κ profiles: Fixed $U=4.5$

Local Density $\rho(x)$

Local Compressibility $\kappa(x) = \frac{\partial \rho(x)}{\partial \mu(x)}$

Mott regions always co-exist with SF
ρ and κ profiles: Fixed $N_b = 50$

As U is increased, the system **gradually** crosses over to Mott:

No quantum phase transition.
A: $\rho = 1$ Mott
B: SF in center + $\rho = 1$ Mott
C: $\rho = 2$ Mott + SF + $\rho = 1$ Mott
D: SF in center + $\rho = 2$ Mott + SF + $\rho = 1$ Mott
E: SF

The trapped one dimensional bosonic Hubbard model does not exhibit quantum critical behavior like the uniform system.
Visibility Experiments

\[\mathcal{V} = \frac{S_{\text{max}} - S_{\text{min}}}{S_{\text{max}} + S_{\text{min}}}. \]

\(S_{\text{max}} (S_{\text{min}}) \) are \(\max(\min) \) of momentum distribution,

\[S(k) = \frac{1}{L} \sum_{j,l} e^{i k \cdot (r_j - r_1)} \langle a_j^\dagger a_l \rangle. \]

- Optical lattice depth \((U) \) increases: visibility decreases.
- Special values of \(U \): \(\mathcal{V} \) displays “kinks” then decreases again.
- Reflects density redistribution: SF shells transform to MI regions.\(^4\)

QMC Simulations in d=1
Density Profiles and Visibility

Simplest case: density \(n < 2 \). Only Mott domains with \(n = 1 \).

First kink: MI plateau emerge at sides of central SF, \(U = 6.3t \).
Second kink: full MI domain in middle of trap, \(U = 7.1t \).

Experimental control parameter: \((\text{lattice depth})/(\text{recoil energy})\).
\(U/t \) depends exponentially on this quantity.

Unexpected feature: freezing of the density profiles.
Comparedly Featureless.

Does Exhibit signature of Mott Transition at $U \approx 4.5t$.

Visibility begins to decrease from $\nu = 1$.
Further Signatures of Pause in Density

Difference in densities between U and $U + \delta U$

$6.40 \gtrsim U$: $d\rho(x)/dx < 0$ center; $d\rho(x)/dx > 0$ shoulders.

$6.80 \gtrsim U \gtrsim 6.40$: $d\rho(x)/dx \sim 0$ everywhere.

$U \gtrsim 6.80$: $d\rho(x)/dx < 0$ center; $d\rho(x)/dx > 0$ shoulders.
Pause in the "central density" $\sum_{i=28}^{52} \rho(i)$. Coincides with the plateau-like behavior of \mathcal{V}.

6.3 < U < 6.8: bosons no longer pushed out of central regions even though center is compressible SF!

Explanation: Emerging MI domains at the sides trap SF. U/t must increase finite amount before particle transfer.
In interval $U/t = 6.3–6.8$ different pieces of energy pause:

- **Total trapping energy** E_T.
- **Interaction energy** E_P.
- **Chemical potential** μ.
- **Ratio of potential to kinetic energy**, $\gamma = |E_P/E_K|$.

Total energy (not shown) increases continuously. Decrease in magnitude of the (negative) kinetic energy.
Visibility for System with $\rho = 2$ Mott Lobe

Up to $U/t \sim 13$, ν is similar to lower density.

Above $U/t = 13$, additional structure.

Visibility kinks from redistribution between $n = 2$ and $n = 1$ MI
(Not from the formation of new SF or MI regions.)
Redistribution occurs discontinuously in U.
Density Profiles for System with $\rho = 2$ Mott Lobe

Visibility structures at $U = (11 - 12)t$ associated with $\rho = 1$ MI shoulder development, and appearance of $\rho = 2$ MI at trap center. Further features in ν for $U \gtrsim 20$ upon breakup of $\rho = 2$ MI.
Energetics for System with $\rho = 2$ Mott Lobe

Trap center density larger than one (large double occupancy):

- γ and E_P increase with U/t.
- γ reflects the jumps produced by particle redistribution.
- Total energy of the system (E_S) increases continuously.
CONCLUSIONS

Equilibrium Phase Diagram of Confined Bosons
- Mott regions always coexist with SF.
- No quantum phase transition, in contrast to uniform case.

“Pause” in Evolution with On-Site Repulsion U
- Density distribution constant even when U increases by $t/2$.
- Emergence of static behavior caused by formation of MI “shoulders”
 Transfer of bosons to outer parts of system blocked.

Visibility
- Visibility behaves similar to experiment.
- Kinks: Redistribution of density between MI and SF regions.