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The three-dimensional periodic Anderson model is studied with the quantum Monte Carlo met
We find that the crossover to the Kondo singlet regime is remarkably sharp at low temperatures
that the behavior of magnetic correlations is consistently reflected in both the thermodynamics an
density of states. The abruptness of the transition suggests that energy changes associated w
screening of local moments by conduction electrons might be sufficient to drive large volume cha
in systems where applied pressure tunes the ratio of interband hybridization to correlation en
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The problem of localized, highly correlated electrons hy
bridizing with a conduction band is one of long-standin
interest [1]. Our understanding of the underlying physic
has recently been increased through new analytic a
proaches [1,2], and numeric methods like quantum Mon
Carlo (QMC) [3,4]. These techniques have emphasiz
the connection between static magnetic properties and
dynamic response like the density of states.

However, what has been much less carefully explore
by QMC is the link to thermodynamics. An intriguing
problem for which a detailed understanding of the the
modynamics is essential is the “volume-collapse” trans
tion in rare-earth metals. This phenomenon occurs wi
the application of pressure to certain Lanthanides a
gives rise to first order phase transitions with unusu
ally large volume changes (14% for cerium and 9% fo
praseodymium) [5,6]. Accompanying the change in vo
ume is a change in the magnetism: On the expande
highly correlated side of the transition, thef electrons
have well-defined moments, while on the contracted, le
correlated side these moments disappear or are expec
to disappear. The low-volumea phase of Ce is paramag-
netic, as are the early actinides which are considered to
analogs for the collapsed rare-earth phases [6].

Even the qualitative origin of this phenomenon is sti
under debate. One suggestion is that the pressure-indu
change in the ratio of the interaction strength to bandwid
gives rise to a Mott transition of the4f electrons
accompanied by loss of magnetic order [7]. An alterna
proposition is that the rapid change in the4f valence
electron coupling leads to a “Kondo volume collapse” [8]
In both cases, there are dramatic thermodynamic (e.
pressure-volume) as well as magnetic signatures of t
phenomenon.

In this paper we will establish the connection betwee
the thermodynamics and the magnetic properties of t
symmetric periodic Anderson model (PAM) in three
dimensions. While previous efforts have focused o
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the Anderson impurity model [8,9], the capabilities o
modern massively parallel computers now make feasib
rigorous QMC calculations for the more realistic periodic
model, which has so far received little attention in thre
dimensions. Our key results are as follows:

(i) The dependence of the singlet correlation functio
on the interband hybridization shows an increasingl
sharp structure as the temperature is lowered, indicati
a very rapid crossover between a regime where thef sites
have unscreened moments and one in which the mome
are quenched by the conduction electrons.

(ii) A sharp thermodynamic feature exists at the sam
interband hybridization as this change in the single
correlator. To analyze this, we introduce a new approac
to the calculation of the free energyF, and show it obeys
various analytic sum rules.

(iii) The pressure difference at the transition inferred
from F is reasonably consistent with experimenta
pressure-volume data on Ce, Pr, and Gd, given th
approximate representation of the electronic structure.

The periodic Anderson Hamiltonian is
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We choose a simple cubic structure for which

ek ­ 22tdd fcoskxa 1 coskya 1 coskzag ,

Vk ­ 22tfd fcoskxa 1 coskya 1 coskzag ,
(2)

wherea is the lattice constant. The dispersion ofVk re-
flects our choice of near-neighbor (as opposed to on-sit
hybridization of thef andd electrons. With on-site hy-
bridization, the PAM in the Hartree-Fock approximation
© 1999 The American Physical Society
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is an insulator at the half-filled symmetric point and
metal at slightly different filling, whereas our intersite hy
bridization choice is always a metal in this approximatio
making it a more plausible starting point for describing th
metallic rare earths. Parameter values and temperaturT
in this work are given in units oftdd. We takeUf ­ 6,
consistent with the rare earths for a reasonable choice
tdd ­ 1 eV, and explore a range oftfd and T values.
QMC results for this model were obtained using the d
terminant algorithm [10], which provides an exact trea
ment (to within statistical errors and finite size effects) o
the correlations. We further choose the symmetric PA
(m ­ ef ­ 0, and thus half-filling:knifl ­ knidl ­ 1) in
order to eliminate the QMC “sign problem,” allowing ac
curate simulations at lower temperatures.

Figure 1 shows the temperature andtfd dependence
of the singlet correlation function summed over ne
neighbors of a given sitei,

cfd ­
nnX
j

k $Sfi ? $Sdjl . (3)

Here $Sfi ­ sf
y
"i f

y
#id $ss f"i

f#i
d and similarly for $Sdj. For

weak hybridizationtfd the f moments are unscreened
by the conduction electrons andcfd is small. At low
temperature, a sharp change is seen to occur attfd ø 0.6
to a phase where such screening is well established.

This sharp switch is also reflected in the energyE
and free energyF. The differenceDEsT d ­ EQMCsT d 2

EAFHFsT d of the QMC calculations relative to antiferro-
magnetic Hartree-Fock (AFHF) results at the same te
perature (T ­ 0.08) is shown in Fig. 2(a). To getF ­
E 2 ST we fit [11] the raw data forEQMCsT d,

FIG. 1. The singlet correlation functioncfd as a function of
f-d hybridization. As the temperature is lowered, there is a
increasingly rapid switch from a smalltfd regime where singlet
correlations are absent to a largetfd regime where Kondo
singlets are well formed. Error bars are visible when larg
than symbol size.
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EQMCsT d ­ E0 1
X
n

cne2nDyT . (4)

The number of fitting parameters (E0, cn, D) was taken to
be about half of the number of data points. The entrop
is then [12],

SsT d ­ S0 1
1
T

X
n

cn

√
1 1

T
nD

!
e2nDyT . (5)

Figure 3 shows a plot of the resulting free energy dif
ference DFsT d ­ FQMCsT d 2 FAFHFsT d. Independent
fits (E0, cn, D) were performed for eachtfd , so that the
smoothness of the resultant curves in Fig. 3 is one me
sure of the success of this procedure. Another is th
our fit yields

P
n cnynD to within ,3% of the expected

value [12] for tfd $ 0.8. This sum is smaller by ln2 to
within ,3% for tfd # 0.5, reflecting magnetic disorder
of the spins below our lowest temperature (T ­ 0.08) in
this regime, and consequent validity of the fit only for
T $ 0.08.

The crucial feature in Figs. 2(a) and 3 is the rapid chang
in slope at low temperatures ofDE andDF neartfd ­ 0.6.
This behavior is hard to discern in the full thermody
namic functions whose variation withtfd is ,20 times
larger than seen for these difference functions. It aris
from the QMC results as the HF solution is smooth an
without phase transitions throughout thetfd , T region
plotted here. Moreover, HF provides the natural referenc
for this subtraction as it gives the exact ground state
tfd ­ 0 and its free energy is an upper bound on the exa
QMC result at allT andtfd. The size of the present slope

FIG. 2. (a) The difference in energies between QMC an
antiferromagnetic Hartree-Fock solutions. At smalltfd, the
AFHF energy accurately tracks the QMC. However, a
intermediate coupling the QMC results break away, reflectin
the failure of HF to pick up the singlet correlations. (b) 2D
QMC data allow an assessment of finite size effects, along wi
a perturbation approach [14], labeledSs2d, shown for both 2D
and 3D. 3D QMC error bars are shown where larger than th
symbol size; 2D QMC error bars are#0.01 in size.
2343
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FIG. 3. The difference in free energies between QMC a
antiferromagnetic Hartree-Fock solutions. At strong couplin
(small tfd) the agreement in the free energy is good apa
from an overall shift ofT ln 2 associated with the tendency
of HF to overestimate the magnetic order. As in Fig. 2(a),
intermediate couplingDF becomes sizable.

change is not inconsistent with the volume collapse tra
sitions, where one might viewDF ­ minsF1, F2d 2 F1
with F1 andF2 being free energy branches associated w
the smalltfd (large volume) and largetfd (small volume)
phases, respectively. Given a volume dependence [6
tfd , V 22, the slope change is related to a pressure diff
ence byVDPy2 ­ 2s1y2d≠DFy≠ ln V , ≠DFy≠ ln tfd .
Extrapolations of experimental pressure-volume da
[13] into the two phase regions suggestsVDPy2 , 0.4,
0.5, and 1.3 eV for Ce, Pr, and Gd, respectively. T
low-T slope change in Figs. 2(a) and 3 is≠DFy≠ ln tfd ­
0.2 0.3 eV, which given the crudeness of the prese
representation of the rare-earth valence electrons is r
sonably consistent.

The QMC calculations were carried out for a43-site
periodic lattice. As a systematic exploration of syste
size for these three-dimensional (3D) calculations wou
be prohibitive, we have used 2D QMC calculation
Fig. 2(b), as well as a second-order self-energy appro
[14], labeledSs2d in Fig. 2, to estimate the size effects
While offset from the QMC results, the 2DESs2d 2

EAFHF curves in Fig. 2(b) for42, 62, and82-site lattices
reasonably approximate the finite size effects in the 2
QMC. We expect theSs2d calculations in Fig. 2(a) to
provide a comparable indication in 3D, suggesting th
finite size effects do not alter the qualitative physic
[15], and if anything, may serve to increase≠DFy≠ ln tfd ,
improving agreement with experiment.

There is striking consistency between the singlet co
relations in Fig. 1 and the energy and free energy diffe
ences in Figs. 2(a) and 3. In all cases there is a rat
2344
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abrupt switch in low-T behavior acrosstfd , 0.6, which
anneals with increasing temperature. The anomalies a
largely gone aboveT , 0.5, an upper bound for what
might be a critical temperature in the present mode
The actual critical temperature will reflect competition be
tween effects like these inDF and the volume dependence
of a realistic generalization ofFAFHF . An important term
in DF is the QMC entropy, which reflects disordered
spins for smalltfd at the lowest temperatureT ­ 0.08,
in contrast to largertfd values at this temperature, as wel
as the stable AFHF solution throughout the range plo
ted in Fig. 3, where the entropy is approximately mini
mal. Consequently,DF includes a2T ln 2 entropy term
at smalltfd, but not at largetfd , which serves to level out
theDF curves as temperature is increased.

Besides singlet formation, magnetic ordering of the lo
cal moments is a generic feature of the PAM. Indeed, o
calculations of thef-f structure factor suggest a strong
tendency for thef moments to order antiferromagnetically
at low temperatures with a maximal ordering temperatu
in the vicinity of tfd ­ 0.8. Further insight into the re-
lation between AF, singlet formation, and the thermody
namics can be obtained by computing the heat capac
CsT d ­ dEsT dydT [6]. We find a low-temperature peak
similar to recent work on the two-dimensional Hubbar
model [11], with an area

R
dTCsT dyT of ln 2 at smalltfd ,

which, however, washes out with decreasing area at lar
tfd. The peak has only minor impact on the slope chang
discussed above forDEQMC andDFQMC as functions of
tfd [16].

A more complete picture of the PAM is given by the
density of states,Nfsvd, which we obtain using the maxi-
mum entropy method [17] to perform the analytic con
tinuation of the imaginary time Greens function compute
in QMC. The results for differenttfd at fixed T ­ 0.2
are shown in Fig. 4. Nfsvd evolves from a structure
with upper and lower Hubbard bands separated by a g
Uf at small tfd to a regime where broadened remnan
of these bands are still evident, but additional resona
peaks characteristic of Kondo singlet formation have als
developed. These first appear with increasingtfd at tfd ø
0.6. Further increase intfd enhances the weight in this
central region at the expense of the Hubbard sidebands

The precise nature of the gap in the density of stat
at the Fermi surface,v ­ 0, is still open to inter-
pretation. For the half-filled, single band Hubbard
Hamiltonian,Nsvd has a similar gap which evolves con-
tinuously from predominantly Mott-Hubbard character
for U ¿ W , to a Slater gap associated with antiferro
magnetic order, forU ø W . Similarly, the two-band
model considered here has a Mott gap at smalltfd , while
the gap at largertfd could originate either as a result
of long range antiferromagnetic order on thef sites, or,
alternately, reflect a “coherence gap” associated with si
glet formation. The competition between these two latte
effects onNsvd is well documented in a lower dimension
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FIG. 4. The f-band density of states for differentf-d hy-
bridization. For weak hybridization, there are peaks at6Ufy2.
These broaden with increasingtfd , and a Kondo resonance
develops.

[4]. Here, studies of thef-f correlation function show
no signs of antiferromagnetic long-range order (AFLRO
at tfd ­ 0.6 and T ­ 0.2 . TNeel, which suggests these
resonances signal singlet formation, not AFLRO. An
lytic continuation of two particle Green’s functions, like
the magnetic susceptibility, will lend further insight into
this question.

In this paper we have shown that there is a strikin
consistency between the location of sharp crossovers
the singlet magnetic and thermodynamic properties
the three-dimensional periodic Anderson model. Thef
density of states shows a structure expected to arise fr
singlet correlations. Finally, estimates of the associa
change in free energy are of the same order of magnitu
as observed in the rare-earth volume collapse transition

Two important issues remain open. The first is th
extension to Hamiltonians with the full rare-earth orbit
complexity. Initial studies of how the Mott transition
varies with band degeneracy in the Hubbard mod
and other issues, already exist [18] within approxima
numerical approaches like dynamical mean-field theo
[2]. The second, related, issue concerns band fillin
Studies with manyf orbitals will require working away
from the symmetric point.

Work at UCD was supported in part by an Accelerate
Strategic Computing Initiative grant and by the LLNL
Materials Institute; that at LLNL, by the U.S. Departmen
of Energy under Contract No. W-7405-Eng–48. Th
QMC calculations were performed on the ASCI Blue
Pacific and Red platforms.
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