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We present an exact quantum Monte Carlo study of the attractive one-dimensional Hubbard model with
imbalanced fermion population. The pair-pair correlation function, which decays monotonically in the
absence of polarization P, develops oscillations when P is nonzero, characteristic of Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) phase. The pair momentum distribution peaks at a momentum equal to the
difference in the Fermi momenta. At strong coupling, the minority and majority momentum distributions
are shown to be deformed, reflecting the presence of the other species and its Fermi surface. The FFLO
oscillations survive the presence of a confining potential, and the local polarization at the trap center
exhibits a marked dip, similar to that observed experimentally.
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Following the observation of Mott insulating transitions
as the interaction strength is tuned [1], ultracold atoms
trapped on optical lattices have been increasingly used to
emulate the rich physics of strongly correlated condensed
matter systems. One of the subtle phenomena being sought
is the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase
[2,3], in which an imbalance in the populations of up and
down spin electrons leads to Cooper pair formation and
Bose-Einstein condensation in states at nonzero momen-
tum and to spatial inhomogeneities of the pairing and spin
correlations. The observation of the FFLO phase in solids
proved very difficult and was only achieved recently in
heavy fermion systems [4].

Experiments, in which two hyperfine states of ultracold
fermionic atoms play the role of up and down spins, have
now reported the presence of pairing in the case of unequal
populations [5,6]. Theoretical studies using mean field [7—
16], effective Lagrangian [17], bosonization [18], and
Bethe ansatz [19] are reported for the uniform system
with extensions to the trapped system using the local
density approximation. For the uniform case, the debate
revolves on the details for the paired state: FFLO pairs
forming with nonzero momentum vs breached pairing (BP)
at zero momentum [15,16,20] and on the fragility of such
phases. A distinguishing feature is the presence of spatial
modulations (inhomogeneity) in the order parameter in the
FFLO case, as opposed to coexistence of superfluid and
normal components in a translationally invariant and iso-
tropic state in the BP scenario. No general consensus has
emerged on which pairing type dominates.

In this paper we report an exact quantum Monte Carlo
study of pairing in one-dimensional fermion systems with
population imbalance. We focus first on the homogeneous
(untrapped) case since even here there is no agreement on
the pairing mode. Our key result is that the FFLO phase is
very robust and appears to be the dominant pairing mecha-
nism. We show that the pair Green function exhibits oscil-
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lations characteristic of this phase, leading the pair mo-
mentum distribution function to peak at a momentum cor-
responding to the difference of the Fermi momenta of the
individual species. In the last section, we consider the
trapped system and how the basic FFLO phenomena sur-
vive the resulting density and polarization inhomogeneity.
In addition, we show that at large |U| the difference in
density between the two species exhibits a deep minimum
in the trap center in good agreement with experiments
[5,6].

We first describe the model and the quantum
Monte Carlo method we employed. The attractive
Hubbard Hamiltonian is
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where c;-rg(c ;o) are fermion creation (destruction) operators
on spatial site j with the fermionic species labeled by o =
1,2 and n;, = C}L,ch,, the corresponding number operator.
We take the hopping parameter t = 1 to set the energy
scale and attractive on-site interactions U < 0. V7 is the
strength of the quadratic confining potential. All our results
are for inverse temperature 8 = 64, so that T = W /256
with W = 4¢ the bandwidth. We have verified that this
yields ground state properties. We study a one-dimensional
lattice with L = 32 sites and periodic boundary conditions,
unless otherwise stated.

For our simulations, we use a continuous imaginary time
canonical “worm” algorithm where the total number of
particles is maintained strictly constant [21]. In this algo-
rithm, two worms are propagated, one for each type of
fermion, which allows the calculation of the real-space
Green functions of the two fermionic species, G, and
also the pair Green function, G, which are defined by
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with Fourier transforms 7,,(k) and n,,;,(k). We emphasize
that this algorithm is exact: there are no approximations
and the only errors are statistical (which are in all cases
smaller than the symbol size). The polarization is given by
P = (N, — N,)/(N, + N;), where N,(N,) is the minority
(majority) particle numbers. The associated Fermi wave
vectors are kp, = 2wN, /L. A typical run takes a day or
two on a desktop computer.

We begin with the uniform system, V; = 0. In one
dimension, spin, charge, and pair correlations of the
Hubbard Hamiltonian in the ground state decay algebrai-
cally with increasing separation, with smallest exponent
characterizing the phases [22]. Here, with only an attrac-
tive on-site interaction, the dominant order is in the s-wave
superconducting channel. In Fig. 1 we show the real-space
pair correlation function G (l) for fixed U = —8 and
different P. G, (1) decays monotonically for P = 0 but
develops clear oscillations for P # 0. These oscillations
are characteristic of the FFLO state: The mismatch of the
two Fermi surfaces leads to pairing at nonzero center of
mass momentum and, consequently, spatially inhomoge-
nous regions in which the pairing amplitude oscillates. The
larger the Fermi surface mismatch, i.e., the larger the P, the
larger the center of mass momentum and the smaller the
period, as seen in Fig. 1. The modulations in G (1) follow
the Larkin-Ovchinnikov [3] (LO) form where the order
parameter is modulated with a cos(gr) as a function of
position r with ¢ = *|kg; — kg,|. The period, T, of the
oscillations is given by T = 277/|q| as can be seen easily in
Fig. 1.

To put the FFLO behavior in better context, we begin in
Fig. 2 with n,(k) and n,,; (k) for the unpolarized case. At
weak coupling, U = —2, the fermion momentum distribu-
tion function, n,(k) = n,(k), has a sharp Fermi surface
which is then increasingly rounded as |U| increases. In
all cases n, is a monotonic function of k. Meanwhile the
pair momentum distribution function, n,,;;(k), has a peak at
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FIG. 1 (color online). The pair Green function G (li — jl)
for Ny =15 and N, =15, 19, 23, 27 (polarizations P = 0,
0.118, 0.211, and 0.286) and U = —8.

k = 0 which grows with |U|: the pairs have zero momen-
tum and become more tightly bound and numerous the
larger the on-site attraction.

When the system is polarized, it is thought to develop
either pairs with nonzero momentum via the FFLO mecha-
nism or zero momentum pairs via the BP mechanism
[15,16,20]. We show in Fig. 3 the single particle and pair
momentum distributions for Ny = 7, N, = 9 (P = 0.125)
with U = —4 and U = —10 on systems with L = 32 and
L = 96 sites. We note the following features: (a) in both
cases, Ny (k) peaks at *|kp; — kp| (we show only k >0
since the figure is symmetric), (b) the height of the peak
increases with increasing |U|, (c) in both cases, the Fermi
surfaces for the minority and majority populations are
much more sharply defined than their P = O counterparts
at the same |U|. Another striking feature is the behavior of
n, (k). For U = —4, n,(k) displays a dip at k = 0.39 < k,
which deepens as |U| increases and spreads to k = 0: for
U = —10, we see that n,(k = 0.59) = 0.54 but then rises
to n,(0.59 < k = 0.78) = 0.64 before it drops at the Fermi
surface. This remarkable feature, in which the momentum
distribution can increase as k increases, is very robust for
large negative |U| and is not a finite size effect. Indeed, the
physical origin of the dip is the suppression of the majority
spin Fermi function by scattering off the minority species,
which occurs preferentially for k < K.

Similar behavior in the momentum distribution has been
seen in mean field both for FFLO and BP in Ref. [16]
where the Fulde-Ferrell (FF) single plane wave ansatz,
A(r)e'?”, was used. In the BP case, n,(k) is symmetric
around k = 0, whereas in the FFLO case n,(k) is asym-
metric. It is likely that the LO ansatz with cosine modula-
tion due to the superposition of two plane waves with
opposite wave vectors will lead to a symmetric result for
n,(k) in the FFLO state. However, there is no ambiguity in
the pair momentum distribution, n,;(k): its peak lies at
kpeak = *|kpy — k| asis seen in Fig. 3. Furthermore, this
peak starts to form at k # 0 even for the smallest values of
|U| we have examined. For example, for the case of Fig. 3,
it is present at U = —0.5.
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FIG. 2 (color online). n;(k) and £, (k) for the case of N; =
Ny=15and L =32, B =64, U = —2, —4, —8. Here P = 0,
SO nl(k) = nz(k)
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FIG. 3 (color online). Left: symbols and lines are for U = —4,
N, =717,N, =9, L =32, B = 64. Right: symbols are the same
as left panel except U = —10; lines are for L = 96, N; = 21,
N, =27, and B = 192. Finite size effects are negligible, except
for a sharper quasicondensate peak which is expected on larger
lattices.

Additional insight on the pairing is obtained from the
energetics. In Fig. 4 we show the kinetic energy (KE) per
site for the minority and majority populations, <c?+1”cl,,>,
and for the pairs, (A, lAzr}. We also show the subtracted
pair KE/site (<AH1A}L> - <c}1 c“}(c;rzc,z}) to emphasize the
contribution from pairing. We see that as |U| increases, the
single fermion kinetic energies decrease (in absolute value)
while the pair KE increases: more and more of the fermion
hopping is performed in pairs. We also see clear crossover
behavior in the KE curves (change in the sign of the
curvature) as |U| is increased, which can be understood
by examining the double occupancy, {(n;n;). Clearly,
(n;j1n;) lies between NyN,/L? at U = 0 (no pairing) and
N,/L at very large negative U (maximum pairing). When
pairing is saturated, the system is made of N, tightly bound
pairs and a gas of N, — N; unpaired fermions. The cross-
over in the KE appears to take place as the number of
tightly bound pairs most rapidly approaches its saturation
value at U = —2.5. We emphasize that for all values of U,
the peak in np,, is at ke 7 0 when P # 0.
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FIG. 4 (color online). Kinetic energy/site and the “double
occupancy” {n; n;) versus |U| for L = 32 and B8 = 64.

To underscore the robustness of FFLO pairing, we show
Npsir(k) in Fig. 5 at U = —9 for several polarizations. The
curves clearly show a peak at ke, # 0, which, as is seen in
the inset, corresponds to |kp; — kp,|. It is striking that even
at the largest polarizations considered, corresponding to
N; = 15and N, = 31, FFLO pairing is still present as seen
in the n,,;, (k) peak. For these parameters, we have not
found the Clogston-Chandrasekhar limit [23] in which
extreme polarization completely destroys the supercon-
ducting state. It is possible that going to much lower N,
can reach it. Similar density matrix renormalization group
(DMRG) results concerning FFLO pairing dominance and
the Clogston limit have very recently been reported [24].

Several measurements have been reported on spin im-
balanced cold atom systems [5,6] confined in three-
dimensional, but highly elongated, traps. In these experi-
ments, the effect of the confining potential is critical to the
results. We now apply a trap, Vy # 0, in our simulations
and discuss its effect on the FFLO pairing state. It is clear
that the presence of the majority species in the trap center,
combined with the attractive interaction, will lead to in-
creased localization of the minority species in the center.
Experiments [5,6] show additional interesting features: this
localization tendency is so marked that the local density
difference n;, — n;; vanishes in an extended region about
the trap center. One recent DMRG calculation [25] ob-
serves both the FFLO state and the squeezing of the
minority population, but their local density difference is
maximal at the trap center. More precisely, there is an
extended flat region of constant local polarization near
the center, which then falls off as the distance increases.
The constancy of this polarization is reflected in the fact
that the period of the FFLO oscillations is uniform
throughout the central region.

A second DMRG treatment [26] studying several den-
sities and polarizations, low and high, also gives evidence
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FIG. 5 (color online). npair(k) for several values of the polar-
ization showing the FFLO peak going to higher values of kpq as
|kpi — kpy| increases. The inset shows the position of the peak
versus |kp; — kpsl.
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FIG. 6 (color online). Left: density profiles for the minority
and majority populations in a trap Vy = 0.005, L =40, U =
—10, B = 64. The phase in the trap center is not a fully packed
Fock state, yet the difference in the local density still exhibits a
deep minimum. Right: the Fourier transform 7,,;.(k) of the pair
correlation function.

for an FFLO phase. However, zero density difference in the
trap center is reported only for the case of a Fock state of
sites which are fully occupied with n;; = n;, = 1. This
leads to a vanishing local polarization, but does not support
superconductivity (at any wave vector) since the particles
cannot move. At larger global polarization the Fock state
melts and the minimum in local polarization is nonvanish-
ing at the trap center, but the state there is metallic rather
than superconducting, since the sites are still fully occu-
pied in the majority channel.

In Fig. 6 we show that a marked minimum in the density
difference is present even when the trap center is super-
fluid, with both n;; < 1 and n;, < 1, as in the experimental
situation. The figure also shows a peak in n,,;(k) at non-
zero k, demonstrating that pairing occurs and, furthermore,
that this superfluid is of the FFLO variety, as expected from
the nonzero local polarization, p;. At the trap center, p; =
n;; — np = 0.049, which would lead to FFLO pairing at
k, = 0.31 in the uniform case. Towards the edge of the
central polarization minimum, the maximal p; = 0.115,
with an associated k;, = 0.72. The observed peak in
N, (k) lies very close to k, and is determined by the lower
polarization region.

To conclude, we studied the d = 1 attractive Hubbard
model with imbalanced populations for a range of P and U
with and without a trapping potential. In the absence of a
trap, we presented results for pair Green functions, single
particle and pair momentum distributions, and kinetic and
interaction energies. Our results show that FFLO pairing is
robust from very small values of |U| all the way to satura-
tion at very large |U| and for a wide range of P. We found
no values of U and P for which BP dominates over FFLO:
the maximum of n,,;, (k) is always at kpex = |k — kpol.

We have also shown that at large |U|, n,, (k) of the majority
populations is not monotonic. Finally, these features are
robust to the spatial inhomogeneities induced by the pres-
ence of a trap.
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